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ABSTRACT 

Artificial Neural Networks (ANNs), a branch of Artificial Intelligence has become a very 

interesting domain since the eighties when back-propagation learning algorithm for multi-layer 

feed-forward architecture was introduced to solve non-linear problems. It is used extensively to 

solve complex non-algorithmic problems such as prediction, pattern recognition, and clustering. 

However, in the context of a holistic study, there may be a need to integrate ANN with other 

models developed in various paradigms to solve a problem. In this paper, we suggest Discrete 

Event System Specification (DEVS) be used as a Model of Computation (MoC) to make ANN 

models interoperable with other models (since all discrete event models can be expressed in 

DEVS, and continuous models can be approximated by DEVS). By combining ANN and DEVS, 

we can model the complex configuration of ANNs and express its internal workings. Therefore, 

we are extending the DEVS-Based ANN proposed by Toma et al [1] for comparing multiple 

configuration parameters and learning algorithms and also to do prediction. The DEVS models 

are described using the High Level Language for System Specification (HiLLS)[2], a graphical 

modeling language for clarity. The developed platform is a tool to transform ANN models into 

DEVS computational models, making them more reusable and more interoperable in the context 

of larger multi-perspective modeling and simulation.  

Keywords: Artificial Neural Networks, DEVS, Z-Schema, reusability, interoperability, HiLLS, 

Learning Algorithm, Modeling and Simulation. 

1. INTRODUCTION 

Modeling and Simulation (M&S), the third pillar of science is a paradigm that provides a way of 

obtaining the behavior of the representation of an object in real life without doing physical 

experiments. Modeling complex systems requires a robust formalism. The Discrete Event 

System Specification (DEVS) formalism [3] which was introduced in the early 70’s is a 

theoretically well-defined formalism for modeling discrete event systems in a hierarchical and 

modular manner. It allows the behavior modeling of complex systems. 

Artificial Neural Networks (ANN) is a branch of artificial intelligence that became popular in the 

eighties when the back-propagation algorithm [4] for multilayer feed-forward architectures was 

introduced. Moreover, it is widely known that classical neural networks, even with one hidden 



2 

 

layer, are universal function approximators [5]. ANNs became widely applicable for real 

applications when it had the capabilities to solve non-linear problems. It is used for modeling of 

complex optimization problems such as classification, prediction and pattern recognition. 

In the context of a holistic approach in modeling a complex system, there may be need to 

integrate ANN with other models developed in various paradigms (like continuous systems and 

discrete systems). Reusability and Interoperability are two important concepts in holistic 

modeling approach. The reuse of simulation models should reduce the time and cost for model 

development. Hence, a trained ANN can be reused severally to predict new results required by 

other models when provided with new set of inputs. On the other hand, interoperability is the 

ability of two or more systems to exchange information and to use the information that has been 

exchanged [6]. Generally, the communicating systems may be of different paradigms; for 

interoperability to be achieved, some degree of compatibility must exists among all elements that 

must cooperate in some purpose [7]. Therefore, a robust modeling formalism is needed to 

integrate ANN models with models of different paradigms to achieve interoperability. 

DEVS formalism has been shown to be robust for modeling hybrid systems [8] since all discrete 

event models can be expressed in DEVS and continuous models can be approximated [9] by 

DEVS. The benefit of using ANNs is its capability of modeling complex non-linear systems 

using adaptive learning mechanism to derive meaning from complicated or imprecise data with a 

high degree of accuracy. By modeling ANNs in DEVS, we can have a hybrid model composed 

of ANN models, discrete models and continuous models. Without this, it will not be convenient 

to efficiently interoperate this dynamic model with other models. Combining DEVS and ANN is 

possible because ANNs are by default using discrete events i.e., the network is always waiting to 

an input event to generate an output one. Toma et al [1] proposed an approach for describing the 

structure of ANN with DEVS known as DEVS-Based ANN. This approach was said to be able 

to facilitate the network configuration that depends a lot on ANN. Our focus is to present DEVS 

as a Model of Computation (MoC) to make ANN models interoperable with other models. 

We propose to extend the work in [1] for comparing multiple configuration parameters and 

learning algorithms. The approach makes it flexible to do prediction after training by 

disconnecting the DEVS models associated with learning. This will help users and developers 

test and compare different algorithm implementations and parameter configurations. HiLLS, a 

graphical modeling language will be used to describe the approach for a clear understanding.  

Also, we will describe the benefits (reusability and interoperability) of transforming ANN 

models into DEVS computational models in the context of larger multi-perspective modeling and 

simulation. 

This paper is structured as follows. In section 2, we describe DEVS and ANN learning 

algorithms and configuration parameters. In section 3, we review some related works. In section 

4, we present the extended DEVS-Based ANN approach. In section 5, we describe the benefits of 

DEVS-Based ANN and section 6 concludes the paper. 
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2. BACKGROUND 

2.1. Artificial Neural Networks (ANN) 

ANN models the way biological neurons process information to solve complex non-algorithmic 

problems like recognizing patterns, classifying into groups, series prediction. An artificial neuron 

is composed of set of inputs, connection weights, activation function and outputs. ANN has been 

a subject of active research from as early as 1943 when McCulloch and Pitt[10] designed the first 

neural network. Donald Hebb [11] in 1949 designed the first learning rule for ANN since they 

learn by example to solve problems. In the 1950 and 60’s, many researchers (Block, Minsky, 

Papert and Frank Rosenblatt [12]) introduced and developed a large class of artificial neural 

networks called perceptrons that proved to converge to the correct weights. However, the 

perceptron could not learn non-linear separable functions, this cause a decline in research in 

neural networks until back propagation algorithm [13] was discovered to solve the problem.  

2.1.1. Architecture of ANN 

The Artificial Neural Network (ANN) has two main architectures: Feed-Forward and Recurrent 

Networks. In this section, we are interested in the Feed-Forward Neural Network (FFNN). FFNN 

can be single layered or multiple layered (MLFFNN). Figure 1 shows an example of MLFFNN 

with input layer, one hidden layers and an output layer. Each layer comprises of neurons. A link 

with numeric weight ���  from neuron � to neuron � serves to propagate the activation ��.  �� =

	
��� where  �� = ∑ ���
�
��� �� and 	 is the activation function.  

 

 

 

 

 

 

The basic operation of an artificial neuron involves summing its weighted input signal an 

activation function to produce a calculated output. The input layer makes use of identity 

function (	(�� = ��. For hidden and output layers, a non-linear activation function (see figure 2) 

is used. The activation function is expected to be continuous, differentiable and monotonically 

non-decreasing. For computational efficiency, its derivative be easy to compute [14]. 
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Figure 1: A Multilayer Feed-Forward Neural Architecture 
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2.1.2. Learning Algorithm 

The power of ANN comes from the learning process. It needs to be trained to map an input 

vector to the targeted output. Depending on the learning algorithm used to train them, they can 

learn either very fast or very slow. There are two major types of learning algorithms – supervised 

and unsupervised learning. In this paper, we are interested in supervised learning – neural 

networks learn from a set of sample data. Typically, supervised learning uses gradient descent 

for the minimization of errors between the desired output and calculated output. 

The Back Propagation (BP) algorithm is the most popular learning rule for supervised learning. 

It uses a gradient-based technique to minimize the error function equivalent to the Mean Square 

Error (MSE) between the desired and actual network outputs. The BP algorithm propagates 

backward the error between the desired signal and the network output through the network. The 

new error is used to update the weights for a feed-forward process. The steps of BP are: 

1. Configuration and Input of Parameters: set of training samples each with input and output 

vectors (x, t), a multilayer network with L layers, learning rate (�), minimum error, epoch. 

2. Weight initialization: set a small random number for ��� for layer to layer connection. 

While termination condition is not met do 

For each sample (x, t) in the training set do 

3. Feed-Forward Calculation: The input layer activation is identity  (�� = ��  ∀ ���� � � 

for l=2 to L do 

 ��� � = ∑ ������  

 �� = 	
��� ��        

4. Error Correction (or Learning) 

The error for the output layer is !� = 	"(��� ��
�� − $��  (2.1) 

for l=L-1 to 1 do 

 !� = 	"(��� ��(∑ ���!�� �      (2.2) 

 Δ��� = � &'

&()*
= �!���             (2.3) 

  ���($ + 1� =    ���($� + Δ���           (2.4) 

 

One of the drawbacks of using the error gradient function to calculate the error is being trapped 

in a local minima and never getting the global minima. To solve this problem, a momentum term 

was introduced in the BP algorithm [4] by Rumelhart. The weight change is in a direction that is 

a combination of the current gradient and the previous gradient. Equation 2.3 becomes 

 Δ���($� = � &'

&()*
 +  - Δ���($ − 1�                      

We considered some other algorithms that tries to optimize equation 2.3 : Silva & Almeida [15] , 

Delta-Bar-Delta [16], QuickProp [17] and Resilient Propagation [18] (RPROP). Schiffmann et al 

[18] gives a very good description of these algorithms 

Momentum BP 
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2.2. Discrete Event System Specification (DEVS) 

The Discrete event system specification (DEVS) is a formalism introduced by Zeigler in 1976 to 

describe discrete event system in a hierarchical and modular manner. It is theoretically well-

defined system formalism [20]. The DEVS models are seen as black boxes with input and output 

ports used to describe system structure as well as system behavior. As a result, DEVS offers a 

platform for modeling and simulation (M&S) of complex systems in different domains.  

2.2.1. Atomic Model 

An atomic model is defined as a 7-tuple  ./ =< 1, 3, 4, !��5 , !675 , 8, $9 > where  

1 = set of input events 

3 = set of output events 

4 is the set of state variables 

!��5: 4 → 4 is the internal transition function 

$9: 4 → ℝ�,>?
>  is the time advance function 

!675: @ × 1 → 4 is the external transition function.  

where @ = B(�, ��|� ∈ 4, � ∈ E0, $9(��GHis the set of total states and e is the time 

elapsed since the last transition 

8: 4 → 3 is the output function 
 

A DEVS model is always in a state � ∈ 4 at a given time. The model can transit from one state to 

another using transition functions  !��5 and !675. In the absence of external events, it remains in 

the state for a lifetime of $9(��. When ta(s) is reached, the model outputs value� ∈ 3 through its 

port using the output function 8(��, then it changes to a new state defined by !��5(��. In the case 

of an external events triggered by external inputs, the external transition function determines the 

new state given by !675(�, �, ��, where � is the current state, � is the time elapsed since the last 

transition, and � ∈ 1 is the external event received. 
 

22.2.2. Coupled Model 

A DEVS coupled model is composed of several atomic or coupled sub-models with three 

possible kinds of coupling: Internal coupling (IC), external-input coupling (EIC) and external-

output coupling (EOC) as shown in the diagram below. 

 

 

 

 

There are many implementation of DEVS formalism [21]. However, for this paper, we made use 

of SimStudio Simulation Package (a component of SimStudio[21]) – an Object-Oriented 

implementation of simulation algorithm for C-DEVS and P-DEVS written in Java.  

 Figure 3: Example of a Coupled Model 

CM 
out  

AM1  

AM2 

 

out in 
in 

out 
in 

IC EOC 
EIC 



6 

 

2.3. High Level Language for System Specification (HiLLS) 

HiLLS evolved from the DEVS-Driven Modeling Language (DDML)[22], a graphical modeling 

language built on DEVS to facilitate the use of the latter by domain experts via user-friendly 

graphical concrete syntax to describe system models. The goal of HiLLS is to be able to create 

multi-semantic models that can be used for simulation, formal analysis and enactment. HiLLS' 

syntax combines system-theoretic and Software Engineering concepts adopted from the DEVS 

and Object-Z [23] (to express functional and behavioral properties) respectively.  

 
 

The concrete notations to express HiLLS' concepts are described in Figure 4(a-h). HClass (a) and  

HSystem (b) are similar to the UML class symbol but with Object-Z notations for state schema 

and axiomatic schema. It uses DDML borrowed concepts for the state configurations (Fig. c-e) 

and state transitions (g-h). For more details, see [2]. The choice of HiLLS is its ability to model 

dynamic structure systems (DSS) and ANN is a good example. Moreover, HiLLS was shown to 

be able to model Dynamic Structure DEVS (DSDEVS) using its rich concrete syntax [2]. 

However, HiLLS does not support input and output interfaces structural changes. This is not a 

challenge since the DEVS-Based ANN parameters are defined before simulation starts.  

Figure 4: Concrete Syntax of HiLLS [2] 
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3. RELATED WORKS 

Neural networks have been used extensively to determine the behavior of discrete event systems 

because it can learn from empirical data but little research is focused on using discrete event 

modeling to specify the structure and components of a neural network. Sung Hoon Jung and Tag 

Gon Kim in [24] made use of neural network as an interface between continuous system and 

discrete event system. The trained neural network provided the state transition rules (and can 

also predict new rules) for the DEVS model abstracted from the continuous system. Si Jong Choi 

and Tag Gon Kim [25] were able to extract a DEVS model after the behavior learning of a 

Compound Recurrent ANN (CRNN). They showed that a trained CRNN is behaviorally 

equivalent to FM-DEVS model. Jean-Baptiste Filipi et al [26] proposed Neuro-DEVS by 

extending the DEVS atomic model with functions like activation function, learning function and 

connection links. Neuro-DEVS hybrid system offers comparative, concurrent and adaptive 

simulation since DEVS and ANN are in the same box although of different paradigms. 

In modeling the complex structures of ANN, S. Vahie [27] made use of discrete event modeling 

formalism to model the neurobiological components(dendrite, cell body and axon) of the neural 

network in order to increase the computational power, adaptability and dynamic response of 

ANNs. He proposed a DEVS model called Dynamic Neuronal Ensembles (DNE). The DNE is a 

coupled model of components that are themselves coupled models called dynamic neurons (DN). 

However, the huge number of messages transferred among DNE will cause a slow simulation. 

S. Toma et al [1] described the structure of ANN with DEVS atomic and coupled models. Each 

layer of ANN is an atomic model which was categorized into non-calculation (input layer) and 

calculation layer (hidden and output layer). Two additional atomic DEVS models were added for 

the learning phase: Error-Generator and Delta-Weight Model. Their approach offers a good 

visual representation of ANN, easy network configuration and also the clear separation of the 

feed-forward calculation models and learning models which makes it possible to do prediction 

when the Delta-Weight Models are disconnected. However, prediction was not implemented. 

The platform is known as DEVS-Based ANN and Momentum BP was the only learning 

algorithm used.  

In this paper, we present DEVS as Model of Computation (MoC) for ANNs to make them more 

reusable and interoperable. From the works of Tag Gon Kim [23] [24], the ability of ANNs to 

derive meaning from imprecise data using adaptive learning mechanism was useful for providing 

transition rules for DEVS. In holistic approach, if the ANNs were modeled with DEVS, the 

trained ANN sub-model will be more reusable since new predicted outputs generated can serve 

as inputs for other sub-model(s). Also, having various models from different paradigms modeled 

in a single robust modeling paradigm enhances efficiency and interoperability among sub-

models.  

We validated and extended the DEVS-Based ANN by incorporating 6 learning algorithms and 4 

activation functions described in section 2. This will help modelers to test, compare and choose 
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the best algorithm and parameter configuration suitable for solving a non-linear problem. Also, 

we have added prediction feature to the DEVS-Based ANN platform. For a clear understanding 

of the DEVS Model, we will make uses of HiLLS, a graphical modeling language to describe the 

models taking into consideration the parameter configurations such as number of hidden layers, 

output neurons for each layer and stopping condition (minimum error or maximum number of 

iterations). This allows for more expressible models of DEVS-Based ANN. 

 

4. DEVS-Based ANN APPROACH 

4.1. DEVS-Based ANN Modeling 

In this section, we will describe the four atomic models in the DEVS-Based ANN [28] 

representing the ANN layers and the separate learning models. The first model is the non-

calculation (or input) layer that forwards inputs to the first calculation (hidden) layer. The 

calculation layer model describes the structure of the hidden and output layers. Error-Generator 

and Delta-Weight are the two models that are used by the ANN learning phase. After the neural 

network has been trained, one can do prediction by simply removing the learning models. 

 

 

 

 

 

 

 

 

 

 

All the ports with circle are ports used only in training phase. As shown in the Figure 5, the 

connections between the training layer and the calculation models are basically for learning 

purposes. The Input atomic model forwards data to the hidden layer (shown in step 1 in the 

figure), and then each hidden layer (including the Output layer) computes the weighted sum and 

activation functions. In steps 2 and 3, each hidden or output layer sends output data to the next 

layer and learning data (inputs, outputs and weights) to the delta-weights. As soon as the output 

layer sends its output (ANN calculated outputs) to the error-generator model, it sends error 

(difference between the target output and calculated output) to the Delta-Weight models (step 4). 

Figure 5: DEVS-Based Neural Networks Architecture 
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The Delta-Weight model calculates the new error (delta) from the learning data and the weight 

change from any of the gradient descent algorithms specified. After that, the delta-weight model 

will back-propagate error to another delta-weight model if it exist and weight list will be sent to 

the corresponding calculation layer (step 5). The entire cycle explained above is considered as 

one learning iteration (or epoch) that is repeated (steps from 1 to 5) depending on the stopping 

condition. 

4.1.1.  Non-Calculation Layer Atomic Model (NC) 

IPattern: is a list of inputs or outputs in a single pattern (usually many patterns are used for 

training a neural network).  IJKLMI: is the list of all training patterns. N�O$ �1 is added to signal 

to the NC model that all training patterns have been sent.   is the number of inputs 

 

Figure 6: Non-Calculation Model 

The DEVS atomic model is in a passive state with $9 = +∞. When an event is received from 

port 2 (input pattern), the input pattern is stored and a counter Q is incremented. However, on 

receiving a ‘1’ message from the first port, the model computes �$ = 1/Q, and transits to an 
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active state. The model remains active with a life time of 1/Q, it forwards each value in the input 

pattern list through different output ports to the calculation layer.  

4.1.2. Calculation Layer Model 

STUVWI: is a data type expressed as ���  to shows connection between i input and j output. 

XYZIZ: is expressed as a record that has weights, input and output. The values are needed by the 

DELTA-WEIGHT model. [ is the number of input neurons and K is the number of output 

neurons. 

 

Figure 7: Calculation Model 

The calculation layer model represents any hidden or output layer, as both layers have the same 

behavior. The calculation layer has two special ports reserved for learning: one among the input 

ports (port a) and the other among the output ports (port b) as shown in Figure 7. 
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The model is in a passive state with $9 = +∞.  When messages are received through the input 

ports (except port a), it transits to an active state with $9 = 0. Immediately, it computes the 

calculated outputs through the activation function; after which it sends the calculated outputs 

through its output ports and the learning data through port b before returning to passive state. If 

message is received from port a, the weights of the layer are updated.  

4.1.3. Error Generator Model 

[ is the number of calculated outputs. [UK\ is the minimum error. 

 

Figure 8: Error Generator Model 

The model receives calculated output from the last calculation layer (output layer) and also target 

outputs. It compares the two outputs by computing the difference known as error. In an ideal 

situation, the error between the target output and calculated output should be zero. Unfortunately, 
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there is always a percentage error. The error list is forwarded to the delta-weight atomic model of 

the corresponding output layer to re-calibrate the network for better performance. 

In figure 8, the model has one special input port for target output list (port a). The model is in a 

passive state with $9 = +∞.  When a message is received from port a, the model stores the 

output pattern and increment a variable (Q = Q + 1�; but it remains in the passive state. 

However, if there are inputs from other ports, the model transit to an active state with $9 = 0 

where the error ]^  is computed. 

4.1.4. Delta-Weight Model 

 

Figure 9: Delta-Weight Model 

The Delta-Weight model has two input ports and two output ports. It receives learning data from 

the calculation layer through the first input port. The learning data consist of the input, output 
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and weight list of the corresponding calculation layer. On the other hand, the second port 

receives the error list from another delta-weight model or error generator (for the last delta-

weight). The Delta-Weight model has two states (passive and active).  

In figure 9, the model is in a passive state with $9 = +∞. When it receives a message from the 

first port, it stores the learning data required for weight update and remains in the passive state. 

On receiving a message from the second port, it transits to active state with $9 = 0; then, it 

computes the new error and the new weights. The new error is sent to another delta-weight 

model if available while the new weights are sent to the corresponding calculation model. 

4.2. Implementation and Results 

The DEVS model described in section 4.1 is implemented with the SimStudio DEVS framework 

in JAVA programming language. It is a coupled model with 6 atomic models namely: 

InputGenerator, TargetGenerator, InputLayer, CalculationLayer, ErrorGenerator and 

DeltaWeight. For each run, we need to specify the learning rate, momentum, activation function, 

learning algorithm, training input pattern list, training target pattern list, number of hidden 

neurons for each hidden layer and the minimum error. 

A Graphical user friendly platform has been developed to facilitate the modeling and simulation 

approach of the DEVS-Based ANN system. When the configuration parameters are set, weights 

are randomly generated into initWeights.txt before training. The platform has the ability to build 

a neural network model with several activation functions and learning algorithms for a multi-

layer neural network. It can also do prediction for a trained network using an updated weight list 

stored in a text file. The platform has 3 sections: Parameter configuration and execution, DEVS 

model design and graph results. Figure 10 shows an example of algorithm comparison in XOR. 

 

Figure 10: Algorithm Comparison for XOR function 

Figure 11 shows an XOR function result with multiple activation functions (Binary sigmoid, 

Bipolar sigmoid, Hyperbolic tangent and Gaussian) and Resilient propagation algorithm. The 
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learning rate of 0.3 and momentum of 0.7 was used. Also, a minimum error of 0.001 was used to 

compare the activation functions.  

 

Figure 11: Comparison of Activation Functions in XOR 

A practical example is gotten from UCI Machine Learning Repository [29] to classify wine 

samples into 3 different types represented as 1 0 0, 0 1 0, and 0 0 1 respectively. The data set 

consists of 178 input patterns and each one is described with 13 characteristics However, we will 

be using 27 input patterns for the training of the neural networks and 3 for test inputs. (see figure 

12 and 13) 

 

Figure 12: Training of Wine Samples 
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Figure 13: Test Input for Wine Samples 

 

5. BENEFITS OF DEVS-BASED ANN IN HOLISTIC MODELING APPROACH 

For the analysis and design of such complex systems, it is convenient to transform all models to 

the same modeling formalism as in Figure 13. We suggested DEVS because all discrete event 

models can be expressed in DEVS, and continuous models can be approximated [30] by DEVS.  
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Also, DEVS has been shown to model stochastic systems [31] using stochastic DEVS 

(STDEVS). The new platform DEV-Based ANN (described in section 4) can be used to 

transform ANN to DEVS Models of computation. In figure 13, the ANN MoCs (M1) can be 

more interoperable with other systems modeled in DEVS (M2, M3, M4 and M5). Without 

transforming other systems from different paradigms to DEVS, ANN will not be able to 

interoperate with them. With the resurgence in neural networks research (deep learning), models 

that incorporate ANNs have better chances of being used for solving more complicated data-

driven problems. 

For the ANN MoCs to be reusable, the ANN must be trained with high degree of accuracy (i.e. 

small mean square error). Then, the trained ANN can send outputs to other DEVS models. With 

this connection in place, new set of inputs can be used to generate predicted outputs useful for 

the simulation of other models. 

The goal of HiLLS is to create multi-semantic models that can be used for simulation, formal 

analysis and enactment. However, to make models more reusable and more interoperable in the 

context of in larger multi-perspective M&S, we need an implementation that provides model 

interoperability among DEVS models located at remote locations. A good example is 

DEVSML[32] built on XML where various DEVS models are expressed in XML schema. 

 

6. CONCLUSION 

Toma et al [1] presented a DEVS-Based ANN Approach to facilitate the network configuration 

of ANN using back propagation with Momentum with two groups of model: feed-forward 

calculations (non-calculation and calculation atomic models) and learning models (error-

generator and delta-weight). This separation makes it easy to do only prediction through the 

feed-forward calculations (with optimized weights) immediately after the training process.  

We developed a platform to transform ANN models into DEVS computational models, making 

them more reusable and more interoperable in the context of larger multi-perspective modeling 

and simulation. Also, we validated and extended the DEVS-Based ANN to test several learning 

algorithms and activation functions.  The approach shows the power of DEVS formalism in 

modeling nonlinear dynamical systems such as ANNs. The HiLLS visual modeling language 

used in describing DEVS-Based ANN models enables us to express all the arithmetic and logical 

expressions because of the rich mathematical language of Z-Schema. This approach will help 

users and algorithm developers to test and compare different algorithm implementations and 

parameter configurations of ANN 

However, the simulation speed is largely dependent on the number of patterns used for training 

and the number of hidden layers. As the number of patterns used for training increases, the 

simulation tends to be slower because of message passing from one model to another. 
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The DEVS-Based ANN platform built is using the classic DEVS and gradient descent based 

algorithms. Further work might include using different DEVS extension like PDEVS. Also, other 

supervised learning algorithm approach that is not gradient-descent based could be considered. It 

will also be interesting to build a DEVS-Based model that can handle unsupervised learning. 
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