
HAL Id: hal-01719242
https://uca.hal.science/hal-01719242

Submitted on 21 Oct 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Enhancing the reusability and interoperability of
artificial neural networks with DEVS modeling and

simulation
David Ifeoluwa Adelani, Mamadou Kaba Traoré

To cite this version:
David Ifeoluwa Adelani, Mamadou Kaba Traoré. Enhancing the reusability and interoperability of
artificial neural networks with DEVS modeling and simulation. International Journal of Modeling,
Simulation, and Scientific Computing, 2016, 07 (02), pp.1650005. �10.1142/S1793962316500057�. �hal-
01719242�

https://uca.hal.science/hal-01719242
https://hal.archives-ouvertes.fr

1

ENHANCING THE REUSABILITY AND INTEROPERABILITY

OF ARTIFICIAL NEURAL NETWORKS WITH DEVS

MODELING AND SIMULATION

David Ifeoluwa Adelani

Department of Computer Science
African University of Science and Technology,

Abuja, Nigeria
Email: davlanade@gmail.com

Mamadou Kaba Traore

LIMOS, CNRS UMR 6158

Université Blaise Pascal, Clermont-Ferrand 2

Campus des Cezeaux, 63173 Aubiere,
E-mail: traore@isima.fr

ABSTRACT

Artificial Neural Networks (ANNs), a branch of Artificial Intelligence has become a very

interesting domain since the eighties when back-propagation learning algorithm for multi-layer

feed-forward architecture was introduced to solve non-linear problems. It is used extensively to

solve complex non-algorithmic problems such as prediction, pattern recognition, and clustering.

However, in the context of a holistic study, there may be a need to integrate ANN with other

models developed in various paradigms to solve a problem. In this paper, we suggest Discrete

Event System Specification (DEVS) be used as a Model of Computation (MoC) to make ANN

models interoperable with other models (since all discrete event models can be expressed in

DEVS, and continuous models can be approximated by DEVS). By combining ANN and DEVS,

we can model the complex configuration of ANNs and express its internal workings. Therefore,

we are extending the DEVS-Based ANN proposed by Toma et al [1] for comparing multiple

configuration parameters and learning algorithms and also to do prediction. The DEVS models

are described using the High Level Language for System Specification (HiLLS)[2], a graphical

modeling language for clarity. The developed platform is a tool to transform ANN models into

DEVS computational models, making them more reusable and more interoperable in the context

of larger multi-perspective modeling and simulation.

Keywords: Artificial Neural Networks, DEVS, Z-Schema, reusability, interoperability, HiLLS,

Learning Algorithm, Modeling and Simulation.

1. INTRODUCTION

Modeling and Simulation (M&S), the third pillar of science is a paradigm that provides a way of

obtaining the behavior of the representation of an object in real life without doing physical

experiments. Modeling complex systems requires a robust formalism. The Discrete Event

System Specification (DEVS) formalism [3] which was introduced in the early 70’s is a

theoretically well-defined formalism for modeling discrete event systems in a hierarchical and

modular manner. It allows the behavior modeling of complex systems.

Artificial Neural Networks (ANN) is a branch of artificial intelligence that became popular in the

eighties when the back-propagation algorithm [4] for multilayer feed-forward architectures was

introduced. Moreover, it is widely known that classical neural networks, even with one hidden

2

layer, are universal function approximators [5]. ANNs became widely applicable for real

applications when it had the capabilities to solve non-linear problems. It is used for modeling of

complex optimization problems such as classification, prediction and pattern recognition.

In the context of a holistic approach in modeling a complex system, there may be need to

integrate ANN with other models developed in various paradigms (like continuous systems and

discrete systems). Reusability and Interoperability are two important concepts in holistic

modeling approach. The reuse of simulation models should reduce the time and cost for model

development. Hence, a trained ANN can be reused severally to predict new results required by

other models when provided with new set of inputs. On the other hand, interoperability is the

ability of two or more systems to exchange information and to use the information that has been

exchanged [6]. Generally, the communicating systems may be of different paradigms; for

interoperability to be achieved, some degree of compatibility must exists among all elements that

must cooperate in some purpose [7]. Therefore, a robust modeling formalism is needed to

integrate ANN models with models of different paradigms to achieve interoperability.

DEVS formalism has been shown to be robust for modeling hybrid systems [8] since all discrete

event models can be expressed in DEVS and continuous models can be approximated [9] by

DEVS. The benefit of using ANNs is its capability of modeling complex non-linear systems

using adaptive learning mechanism to derive meaning from complicated or imprecise data with a

high degree of accuracy. By modeling ANNs in DEVS, we can have a hybrid model composed

of ANN models, discrete models and continuous models. Without this, it will not be convenient

to efficiently interoperate this dynamic model with other models. Combining DEVS and ANN is

possible because ANNs are by default using discrete events i.e., the network is always waiting to

an input event to generate an output one. Toma et al [1] proposed an approach for describing the

structure of ANN with DEVS known as DEVS-Based ANN. This approach was said to be able

to facilitate the network configuration that depends a lot on ANN. Our focus is to present DEVS

as a Model of Computation (MoC) to make ANN models interoperable with other models.

We propose to extend the work in [1] for comparing multiple configuration parameters and

learning algorithms. The approach makes it flexible to do prediction after training by

disconnecting the DEVS models associated with learning. This will help users and developers

test and compare different algorithm implementations and parameter configurations. HiLLS, a

graphical modeling language will be used to describe the approach for a clear understanding.

Also, we will describe the benefits (reusability and interoperability) of transforming ANN

models into DEVS computational models in the context of larger multi-perspective modeling and

simulation.

This paper is structured as follows. In section 2, we describe DEVS and ANN learning

algorithms and configuration parameters. In section 3, we review some related works. In section

4, we present the extended DEVS-Based ANN approach. In section 5, we describe the benefits of

DEVS-Based ANN and section 6 concludes the paper.

3

2. BACKGROUND

2.1. Artificial Neural Networks (ANN)

ANN models the way biological neurons process information to solve complex non-algorithmic

problems like recognizing patterns, classifying into groups, series prediction. An artificial neuron

is composed of set of inputs, connection weights, activation function and outputs. ANN has been

a subject of active research from as early as 1943 when McCulloch and Pitt[10] designed the first

neural network. Donald Hebb [11] in 1949 designed the first learning rule for ANN since they

learn by example to solve problems. In the 1950 and 60’s, many researchers (Block, Minsky,

Papert and Frank Rosenblatt [12]) introduced and developed a large class of artificial neural

networks called perceptrons that proved to converge to the correct weights. However, the

perceptron could not learn non-linear separable functions, this cause a decline in research in

neural networks until back propagation algorithm [13] was discovered to solve the problem.

2.1.1. Architecture of ANN

The Artificial Neural Network (ANN) has two main architectures: Feed-Forward and Recurrent

Networks. In this section, we are interested in the Feed-Forward Neural Network (FFNN). FFNN

can be single layered or multiple layered (MLFFNN). Figure 1 shows an example of MLFFNN

with input layer, one hidden layers and an output layer. Each layer comprises of neurons. A link

with numeric weight ��� from neuron � to neuron � serves to propagate the activation ��. �� =

	
��� where �� = ∑ ���
�
��� �� and 	 is the activation function.

The basic operation of an artificial neuron involves summing its weighted input signal an

activation function to produce a calculated output. The input layer makes use of identity

function ((�� = ��. For hidden and output layers, a non-linear activation function (see figure 2)

is used. The activation function is expected to be continuous, differentiable and monotonically

non-decreasing. For computational efficiency, its derivative be easy to compute [14].

.

.

.

Output

Layer

Input

Layer

.

.

.

Hidden

Layer

.

.

.

Figure 1: A Multilayer Feed-Forward Neural Architecture

��

��

��

��

��

��

��

��

Figure 2: Activation Functions

Binary Sigmoid Bipolar Sigmoid Hyperbolic Tangent Gaussian

4

2.1.2. Learning Algorithm

The power of ANN comes from the learning process. It needs to be trained to map an input

vector to the targeted output. Depending on the learning algorithm used to train them, they can

learn either very fast or very slow. There are two major types of learning algorithms – supervised

and unsupervised learning. In this paper, we are interested in supervised learning – neural

networks learn from a set of sample data. Typically, supervised learning uses gradient descent

for the minimization of errors between the desired output and calculated output.

The Back Propagation (BP) algorithm is the most popular learning rule for supervised learning.

It uses a gradient-based technique to minimize the error function equivalent to the Mean Square

Error (MSE) between the desired and actual network outputs. The BP algorithm propagates

backward the error between the desired signal and the network output through the network. The

new error is used to update the weights for a feed-forward process. The steps of BP are:

1. Configuration and Input of Parameters: set of training samples each with input and output

vectors (x, t), a multilayer network with L layers, learning rate (�), minimum error, epoch.

2. Weight initialization: set a small random number for ��� for layer to layer connection.

While termination condition is not met do

For each sample (x, t) in the training set do

3. Feed-Forward Calculation: The input layer activation is identity (�� = �� ∀ ���� � �

for l=2 to L do

 ��� � = ∑ ������

 �� = 	
��� ��

4. Error Correction (or Learning)

The error for the output layer is !� = 	"(��� ��
�� − $�� (2.1)

for l=L-1 to 1 do

 !� = 	"(��� ��(∑ ���!�� � (2.2)

 Δ��� = � &'

&()*
= �!��� (2.3)

 ���($ + 1� = ���($� + Δ��� (2.4)

One of the drawbacks of using the error gradient function to calculate the error is being trapped

in a local minima and never getting the global minima. To solve this problem, a momentum term

was introduced in the BP algorithm [4] by Rumelhart. The weight change is in a direction that is

a combination of the current gradient and the previous gradient. Equation 2.3 becomes

 Δ���($� = � &'

&()*
 + - Δ���($ − 1�

We considered some other algorithms that tries to optimize equation 2.3 : Silva & Almeida [15] ,

Delta-Bar-Delta [16], QuickProp [17] and Resilient Propagation [18] (RPROP). Schiffmann et al

[18] gives a very good description of these algorithms

Momentum BP

5

2.2. Discrete Event System Specification (DEVS)

The Discrete event system specification (DEVS) is a formalism introduced by Zeigler in 1976 to

describe discrete event system in a hierarchical and modular manner. It is theoretically well-

defined system formalism [20]. The DEVS models are seen as black boxes with input and output

ports used to describe system structure as well as system behavior. As a result, DEVS offers a

platform for modeling and simulation (M&S) of complex systems in different domains.

2.2.1. Atomic Model

An atomic model is defined as a 7-tuple ./ =< 1, 3, 4, !��5 , !675 , 8, $9 > where

1 = set of input events

3 = set of output events

4 is the set of state variables

!��5: 4 → 4 is the internal transition function

$9: 4 → ℝ�,>?
> is the time advance function

!675: @ × 1 → 4 is the external transition function.

where @ = B(�, ��|� ∈ 4, � ∈ E0, $9(��GHis the set of total states and e is the time

elapsed since the last transition

8: 4 → 3 is the output function

A DEVS model is always in a state � ∈ 4 at a given time. The model can transit from one state to

another using transition functions !��5 and !675. In the absence of external events, it remains in

the state for a lifetime of $9(��. When ta(s) is reached, the model outputs value� ∈ 3 through its

port using the output function 8(��, then it changes to a new state defined by !��5(��. In the case

of an external events triggered by external inputs, the external transition function determines the

new state given by !675(�, �, ��, where � is the current state, � is the time elapsed since the last

transition, and � ∈ 1 is the external event received.

22.2.2. Coupled Model

A DEVS coupled model is composed of several atomic or coupled sub-models with three

possible kinds of coupling: Internal coupling (IC), external-input coupling (EIC) and external-

output coupling (EOC) as shown in the diagram below.

There are many implementation of DEVS formalism [21]. However, for this paper, we made use

of SimStudio Simulation Package (a component of SimStudio[21]) – an Object-Oriented

implementation of simulation algorithm for C-DEVS and P-DEVS written in Java.

 Figure 3: Example of a Coupled Model

CM
out

AM1

AM2

out in
in

out
in

IC EOC
EIC

6

2.3. High Level Language for System Specification (HiLLS)

HiLLS evolved from the DEVS-Driven Modeling Language (DDML)[22], a graphical modeling

language built on DEVS to facilitate the use of the latter by domain experts via user-friendly

graphical concrete syntax to describe system models. The goal of HiLLS is to be able to create

multi-semantic models that can be used for simulation, formal analysis and enactment. HiLLS'

syntax combines system-theoretic and Software Engineering concepts adopted from the DEVS

and Object-Z [23] (to express functional and behavioral properties) respectively.

The concrete notations to express HiLLS' concepts are described in Figure 4(a-h). HClass (a) and

HSystem (b) are similar to the UML class symbol but with Object-Z notations for state schema

and axiomatic schema. It uses DDML borrowed concepts for the state configurations (Fig. c-e)

and state transitions (g-h). For more details, see [2]. The choice of HiLLS is its ability to model

dynamic structure systems (DSS) and ANN is a good example. Moreover, HiLLS was shown to

be able to model Dynamic Structure DEVS (DSDEVS) using its rich concrete syntax [2].

However, HiLLS does not support input and output interfaces structural changes. This is not a

challenge since the DEVS-Based ANN parameters are defined before simulation starts.

Figure 4: Concrete Syntax of HiLLS [2]

7

3. RELATED WORKS

Neural networks have been used extensively to determine the behavior of discrete event systems

because it can learn from empirical data but little research is focused on using discrete event

modeling to specify the structure and components of a neural network. Sung Hoon Jung and Tag

Gon Kim in [24] made use of neural network as an interface between continuous system and

discrete event system. The trained neural network provided the state transition rules (and can

also predict new rules) for the DEVS model abstracted from the continuous system. Si Jong Choi

and Tag Gon Kim [25] were able to extract a DEVS model after the behavior learning of a

Compound Recurrent ANN (CRNN). They showed that a trained CRNN is behaviorally

equivalent to FM-DEVS model. Jean-Baptiste Filipi et al [26] proposed Neuro-DEVS by

extending the DEVS atomic model with functions like activation function, learning function and

connection links. Neuro-DEVS hybrid system offers comparative, concurrent and adaptive

simulation since DEVS and ANN are in the same box although of different paradigms.

In modeling the complex structures of ANN, S. Vahie [27] made use of discrete event modeling

formalism to model the neurobiological components(dendrite, cell body and axon) of the neural

network in order to increase the computational power, adaptability and dynamic response of

ANNs. He proposed a DEVS model called Dynamic Neuronal Ensembles (DNE). The DNE is a

coupled model of components that are themselves coupled models called dynamic neurons (DN).

However, the huge number of messages transferred among DNE will cause a slow simulation.

S. Toma et al [1] described the structure of ANN with DEVS atomic and coupled models. Each

layer of ANN is an atomic model which was categorized into non-calculation (input layer) and

calculation layer (hidden and output layer). Two additional atomic DEVS models were added for

the learning phase: Error-Generator and Delta-Weight Model. Their approach offers a good

visual representation of ANN, easy network configuration and also the clear separation of the

feed-forward calculation models and learning models which makes it possible to do prediction

when the Delta-Weight Models are disconnected. However, prediction was not implemented.

The platform is known as DEVS-Based ANN and Momentum BP was the only learning

algorithm used.

In this paper, we present DEVS as Model of Computation (MoC) for ANNs to make them more

reusable and interoperable. From the works of Tag Gon Kim [23] [24], the ability of ANNs to

derive meaning from imprecise data using adaptive learning mechanism was useful for providing

transition rules for DEVS. In holistic approach, if the ANNs were modeled with DEVS, the

trained ANN sub-model will be more reusable since new predicted outputs generated can serve

as inputs for other sub-model(s). Also, having various models from different paradigms modeled

in a single robust modeling paradigm enhances efficiency and interoperability among sub-

models.

We validated and extended the DEVS-Based ANN by incorporating 6 learning algorithms and 4

activation functions described in section 2. This will help modelers to test, compare and choose

8

the best algorithm and parameter configuration suitable for solving a non-linear problem. Also,

we have added prediction feature to the DEVS-Based ANN platform. For a clear understanding

of the DEVS Model, we will make uses of HiLLS, a graphical modeling language to describe the

models taking into consideration the parameter configurations such as number of hidden layers,

output neurons for each layer and stopping condition (minimum error or maximum number of

iterations). This allows for more expressible models of DEVS-Based ANN.

4. DEVS-Based ANN APPROACH

4.1. DEVS-Based ANN Modeling

In this section, we will describe the four atomic models in the DEVS-Based ANN [28]

representing the ANN layers and the separate learning models. The first model is the non-

calculation (or input) layer that forwards inputs to the first calculation (hidden) layer. The

calculation layer model describes the structure of the hidden and output layers. Error-Generator

and Delta-Weight are the two models that are used by the ANN learning phase. After the neural

network has been trained, one can do prediction by simply removing the learning models.

All the ports with circle are ports used only in training phase. As shown in the Figure 5, the

connections between the training layer and the calculation models are basically for learning

purposes. The Input atomic model forwards data to the hidden layer (shown in step 1 in the

figure), and then each hidden layer (including the Output layer) computes the weighted sum and

activation functions. In steps 2 and 3, each hidden or output layer sends output data to the next

layer and learning data (inputs, outputs and weights) to the delta-weights. As soon as the output

layer sends its output (ANN calculated outputs) to the error-generator model, it sends error

(difference between the target output and calculated output) to the Delta-Weight models (step 4).

Figure 5: DEVS-Based Neural Networks Architecture

Training layer
Input layer Output layer

Command and

Input Pattern List
Number of

Inputs

Number of hidden

neurons in layer 1

Number of hidden

neurons in layer n

Number of

outputs

Target

outputs

Input Hidden

1

Hidden

n

Output

1

 2

3

Error

generator

Delta

Weight

Delta

Weight n

Delta

Weight 1
. . . .

List of input,

output, weights

New

weight

list

Error List for

all outputs

Deltas

4
4

5

9

The Delta-Weight model calculates the new error (delta) from the learning data and the weight

change from any of the gradient descent algorithms specified. After that, the delta-weight model

will back-propagate error to another delta-weight model if it exist and weight list will be sent to

the corresponding calculation layer (step 5). The entire cycle explained above is considered as

one learning iteration (or epoch) that is repeated (steps from 1 to 5) depending on the stopping

condition.

4.1.1. Non-Calculation Layer Atomic Model (NC)

IPattern: is a list of inputs or outputs in a single pattern (usually many patterns are used for

training a neural network). IJKLMI: is the list of all training patterns. N�O$ �1 is added to signal

to the NC model that all training patterns have been sent. is the number of inputs

Figure 6: Non-Calculation Model

The DEVS atomic model is in a passive state with $9 = +∞. When an event is received from

port 2 (input pattern), the input pattern is stored and a counter Q is incremented. However, on

receiving a ‘1’ message from the first port, the model computes �$ = 1/Q, and transits to an

10

active state. The model remains active with a life time of 1/Q, it forwards each value in the input

pattern list through different output ports to the calculation layer.

4.1.2. Calculation Layer Model

STUVWI: is a data type expressed as ��� to shows connection between i input and j output.

XYZIZ: is expressed as a record that has weights, input and output. The values are needed by the

DELTA-WEIGHT model. [is the number of input neurons and K is the number of output

neurons.

Figure 7: Calculation Model

The calculation layer model represents any hidden or output layer, as both layers have the same

behavior. The calculation layer has two special ports reserved for learning: one among the input

ports (port a) and the other among the output ports (port b) as shown in Figure 7.

11

The model is in a passive state with $9 = +∞. When messages are received through the input

ports (except port a), it transits to an active state with $9 = 0. Immediately, it computes the

calculated outputs through the activation function; after which it sends the calculated outputs

through its output ports and the learning data through port b before returning to passive state. If

message is received from port a, the weights of the layer are updated.

4.1.3. Error Generator Model

[is the number of calculated outputs. [UK\ is the minimum error.

Figure 8: Error Generator Model

The model receives calculated output from the last calculation layer (output layer) and also target

outputs. It compares the two outputs by computing the difference known as error. In an ideal

situation, the error between the target output and calculated output should be zero. Unfortunately,

12

there is always a percentage error. The error list is forwarded to the delta-weight atomic model of

the corresponding output layer to re-calibrate the network for better performance.

In figure 8, the model has one special input port for target output list (port a). The model is in a

passive state with $9 = +∞. When a message is received from port a, the model stores the

output pattern and increment a variable (Q = Q + 1�; but it remains in the passive state.

However, if there are inputs from other ports, the model transit to an active state with $9 = 0

where the error]^ is computed.

4.1.4. Delta-Weight Model

Figure 9: Delta-Weight Model

The Delta-Weight model has two input ports and two output ports. It receives learning data from

the calculation layer through the first input port. The learning data consist of the input, output

13

and weight list of the corresponding calculation layer. On the other hand, the second port

receives the error list from another delta-weight model or error generator (for the last delta-

weight). The Delta-Weight model has two states (passive and active).

In figure 9, the model is in a passive state with $9 = +∞. When it receives a message from the

first port, it stores the learning data required for weight update and remains in the passive state.

On receiving a message from the second port, it transits to active state with $9 = 0; then, it

computes the new error and the new weights. The new error is sent to another delta-weight

model if available while the new weights are sent to the corresponding calculation model.

4.2. Implementation and Results

The DEVS model described in section 4.1 is implemented with the SimStudio DEVS framework

in JAVA programming language. It is a coupled model with 6 atomic models namely:

InputGenerator, TargetGenerator, InputLayer, CalculationLayer, ErrorGenerator and

DeltaWeight. For each run, we need to specify the learning rate, momentum, activation function,

learning algorithm, training input pattern list, training target pattern list, number of hidden

neurons for each hidden layer and the minimum error.

A Graphical user friendly platform has been developed to facilitate the modeling and simulation

approach of the DEVS-Based ANN system. When the configuration parameters are set, weights

are randomly generated into initWeights.txt before training. The platform has the ability to build

a neural network model with several activation functions and learning algorithms for a multi-

layer neural network. It can also do prediction for a trained network using an updated weight list

stored in a text file. The platform has 3 sections: Parameter configuration and execution, DEVS

model design and graph results. Figure 10 shows an example of algorithm comparison in XOR.

Figure 10: Algorithm Comparison for XOR function

Figure 11 shows an XOR function result with multiple activation functions (Binary sigmoid,

Bipolar sigmoid, Hyperbolic tangent and Gaussian) and Resilient propagation algorithm. The

14

learning rate of 0.3 and momentum of 0.7 was used. Also, a minimum error of 0.001 was used to

compare the activation functions.

Figure 11: Comparison of Activation Functions in XOR

A practical example is gotten from UCI Machine Learning Repository [29] to classify wine

samples into 3 different types represented as 1 0 0, 0 1 0, and 0 0 1 respectively. The data set

consists of 178 input patterns and each one is described with 13 characteristics However, we will

be using 27 input patterns for the training of the neural networks and 3 for test inputs. (see figure

12 and 13)

Figure 12: Training of Wine Samples

15

Figure 13: Test Input for Wine Samples

5. BENEFITS OF DEVS-BASED ANN IN HOLISTIC MODELING APPROACH

For the analysis and design of such complex systems, it is convenient to transform all models to

the same modeling formalism as in Figure 13. We suggested DEVS because all discrete event

models can be expressed in DEVS, and continuous models can be approximated [30] by DEVS.

Non-linear

dynamical

systems

(e.g. ANN)

DEVS MODEL

M1

Discrete Event

Systems (e.g DEVS,

State charts, Petri-

nets, cellular

Automata, FSA)

Continuous

systems (e.g

ODE, PDE)

DEVS MODEL

M3

DEVS MODEL

M2

DEVS MODEL

M5

DEVS MODEL

M4

Stochastic

systems (e.g

markov Chains)

Transformed by

DEVS-Based ANN

DES can be easily

transformed
Transformed by

quantization (GDEVS)

Transformed by

STDEVS

Figure 13: Holistic Modeling Approach

Coupled DEVS Model

Deterministic Systems

16

Also, DEVS has been shown to model stochastic systems [31] using stochastic DEVS

(STDEVS). The new platform DEV-Based ANN (described in section 4) can be used to

transform ANN to DEVS Models of computation. In figure 13, the ANN MoCs (M1) can be

more interoperable with other systems modeled in DEVS (M2, M3, M4 and M5). Without

transforming other systems from different paradigms to DEVS, ANN will not be able to

interoperate with them. With the resurgence in neural networks research (deep learning), models

that incorporate ANNs have better chances of being used for solving more complicated data-

driven problems.

For the ANN MoCs to be reusable, the ANN must be trained with high degree of accuracy (i.e.

small mean square error). Then, the trained ANN can send outputs to other DEVS models. With

this connection in place, new set of inputs can be used to generate predicted outputs useful for

the simulation of other models.

The goal of HiLLS is to create multi-semantic models that can be used for simulation, formal

analysis and enactment. However, to make models more reusable and more interoperable in the

context of in larger multi-perspective M&S, we need an implementation that provides model

interoperability among DEVS models located at remote locations. A good example is

DEVSML[32] built on XML where various DEVS models are expressed in XML schema.

6. CONCLUSION

Toma et al [1] presented a DEVS-Based ANN Approach to facilitate the network configuration

of ANN using back propagation with Momentum with two groups of model: feed-forward

calculations (non-calculation and calculation atomic models) and learning models (error-

generator and delta-weight). This separation makes it easy to do only prediction through the

feed-forward calculations (with optimized weights) immediately after the training process.

We developed a platform to transform ANN models into DEVS computational models, making

them more reusable and more interoperable in the context of larger multi-perspective modeling

and simulation. Also, we validated and extended the DEVS-Based ANN to test several learning

algorithms and activation functions. The approach shows the power of DEVS formalism in

modeling nonlinear dynamical systems such as ANNs. The HiLLS visual modeling language

used in describing DEVS-Based ANN models enables us to express all the arithmetic and logical

expressions because of the rich mathematical language of Z-Schema. This approach will help

users and algorithm developers to test and compare different algorithm implementations and

parameter configurations of ANN

However, the simulation speed is largely dependent on the number of patterns used for training

and the number of hidden layers. As the number of patterns used for training increases, the

simulation tends to be slower because of message passing from one model to another.

17

The DEVS-Based ANN platform built is using the classic DEVS and gradient descent based

algorithms. Further work might include using different DEVS extension like PDEVS. Also, other

supervised learning algorithm approach that is not gradient-descent based could be considered. It

will also be interesting to build a DEVS-Based model that can handle unsupervised learning.

ACKNOWLEDGEMENTS

This research received no specific grant from any funding agency in the public, commercial or

not-for-profit sectors.

REFERENCES

[1] S. Toma, L. Capocchi, and D. Federici, “A NEW DEVS-BASED GENERIC ARTFICIAL

NEURAL NETWORK MODELING APPROACH,” in The 23rd European Modeling &

Simulation Symposium (Simulation in Industry), 2011.

[2] O. Maïga, H. O. Aliyu, and M. K. Traoré, “A New Approach to Modeling Dynamic

Structure Systems,” in The 29th European Modeling & Simulation Symposium (Simulation in

Industry), Leicester, United Kingdom, 2015.

[3] B. P. Zeigler, H. Praehofer, and T. G. Kim, Theory of modeling and simulation: integrating

discrete event and continuous complex dynamic systems. Academic press, 2000.

[4] D. R. G. H. R. Williams and G. E. Hinton, “Learning representations by back-propagating

errors,” Nature, pp. 323–533, 1986.

[5] K. Hornik, M. Stinchcombe, and H. White, “Multilayer feedforward networks are universal

approximators,” Neural Netw., vol. 2, no. 5, pp. 359–366, 1989.

[6] I. of Electrical and E. Engineers, The authoritative dictionary of IEEE standards terms.

Standards Information Network, IEEE Press, 2000.

[7] D. Carney and P. Oberndorf, “Integration and interoperability models for systems of

systems,” in Proc. System and Software Technology Conf, 2004, pp. 1–35.

[8] H. L. Vangheluwe, “DEVS as a common denominator for multi-formalism hybrid systems

modelling,” in Computer-Aided Control System Design, 2000. CACSD 2000. IEEE

International Symposium on, 2000, pp. 129–134.

[9] B. P. Zeigler and J. S. Lee, “Theory of quantized systems: formal basis for DEVS/HLA

distributed simulation environment,” in Aerospace/Defense Sensing and Controls, 1998, pp.

49–58.

[10] W. S. McCulloch and W. Pitts, “A logical calculus of the ideas immanent in nervous

activity,” Bull. Math. Biophys., vol. 5, no. 4, pp. 115–133, 1943.

[11] D. O. Hebb, The organization of behavior: A neuropsychological theory. Psychology

Press, 2005.

[12] F. Rosenblatt, “The perceptron: a probabilistic model for information storage and

organization in the brain.,” Psychol. Rev., vol. 65, no. 6, p. 386, 1958.

[13] P. Werbos, “Beyond regression: New tools for prediction and analysis in the behavioral

sciences,” 1974.

[14] L. Fausett, Fundamentals of neural networks: architectures, algorithms, and

applications. Prentice-Hall, Inc., 1994.

[15] L. Almeida and F. Silva, “Speeding up backpropagation,” Adv Neural Comput, pp. 151–

158, 1990.

18

[16] R. A. Jacobs, “Increased rates of convergence through learning rate adaptation,” Neural

Netw., vol. 1, no. 4, pp. 295–307, 1988.

[17] S. E. Fahlman, “Faster-learning variations on back-propagation: An empirical study,”

1988.

[18] M. Riedmiller and H. Braun, “A direct adaptive method for faster backpropagation

learning: The RPROP algorithm,” in Neural Networks, 1993., IEEE International

Conference on, 1993, pp. 586–591.

[19] W. Schiffmann, M. Joost, and R. Werner, Optimization of the backpropagation algorithm

for training multilayer perceptrons. Univ., Inst. of Physics, 1993.

[20] C. Seo and B. P. Zeigler, “Interoperability between DEVS simulators using service

oriented architecture and DEVS namespace,” in Proceedings of the 2009 Spring Simulation

Multiconference, 2009, p. 157.

[21] R. Franceschini, P.-A. Bisgambiglia, L. Touraille, P. Bisgambiglia, D. Hill, R. Neykova,

and N. Ng, “A survey of modelling and simulation software frameworks using Discrete

Event System Specification,” in 2014 Imperial College Computing Student Workshop, 2014,

p. 40.

[22] U. B. Ighoroje, O. Maïga, and M. K. Traoré, “The DEVS-driven modeling language:

syntax and semantics definition by meta-modeling and graph transformation,” in

Proceedings of the 2012 Symposium on Theory of Modeling and Simulation-DEVS

Integrative M&S Symposium, 2012, p. 49.

[23] G. Smith, “The Object-Z specification language,” Adv. Form. Methods Kluwer Acad.

Publ. Dordr., 2000.

[24] S. H. Jung and T. G. Kim, “Abstraction of continuous system to discrete event system

using neural network,” in AeroSense’97, 1997, pp. 42–51.

[25] S. J. Choi and T. G. Kim, “Identification of discrete event systems using the compound

recurrent neural network: extracting DEVS from trained network,” Simulation, vol. 78, no. 2,

pp. 90–104, 2002.

[26] J. Filippi, P. Bisgambiglia, and M. Delhom, “Neuro-devs, an hybrid methodology to

describe complex systems,” in Proceedings of the SCS ESS 2002 conference on simulation in

industry, 2002, vol. 1, pp. 647–652.

[27] S. Vahie, “Dynamic neuronal ensembles: neurobiologically inspired discrete event neural

networks,” in Discrete Event Modeling and Simulation Technologies, Springer, 2001, pp.

229–262.

[28] S. Toma, “Detection and identication methodology for multiple faults in complex

systems using discrete-events and neural networks: applied to the wind turbines diagnosis,”

University of Corsica, 2014.

[29] “UCI Machine Learning Repository: Wine Data Set.” [Online]. Available:

https://archive.ics.uci.edu/ml/datasets/Wine. [Accessed: 18-Oct-2015].

[30] N. Giambiasi, B. Escude, and S. Ghosh, “GDEVS: A generalized discrete event

specification for accurate modeling of dynamic systems,” in Autonomous Decentralized

Systems, 2001. Proceedings. 5th International Symposium on, 2001, pp. 464–469.

[31] R. Castro, E. Kofman, and G. Wainer, “A formal framework for stochastic DEVS

modeling and simulation,” in Proceedings of the 2008 Spring Simulation Multiconference,

pp. 421–428.

[32] S. Mittal, J. L. Risco-Martín, and B. P. Zeigler, “DEVSML: automating DEVS execution

over SOA towards transparent simulators,” in Proceedings of the 2007 spring simulation

multiconference-Volume 2, 2007, pp. 287–295.

