N

N

Using data integration to help design more secure
applications

Sébastien Salva, Loukmen Regainia

» To cite this version:

Sébastien Salva, Loukmen Regainia. Using data integration to help design more secure applications.
12th International Conference on Risks and Security of Internet and Systems (CRISIS’17), Sep 2017,
dinard, France. hal-01715104

HAL Id: hal-01715104
https://uca.hal.science/hal-01715104v1
Submitted on 22 Feb 2018

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche francais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.

https://uca.hal.science/hal-01715104v1
https://hal.archives-ouvertes.fr

Using data integration to help design more
secure applications

Sébastien Salva! and Loukmen Regainia?

1 LIMOS CNRS UMR 6158, Clermont Auvergne University,
sebastien.salvaQuca.fr
2 LIMOS CNRS UMR 6158, Clermont Auvergne University,

loukmen.regainia@uca.fr

Abstract. Security patterns are reusable solutions, which enable the de-
sign of maintainable systems or applications that have to meet security
requirements. The generic nature of security patterns and their growing
number make their choices difficult, even for experts in software design.
We propose to contribute in this issue by presenting a methodology of
security pattern classification based upon data integration. The classi-
fication exhibits relationships among 215 software attacks, 66 security
principles and 26 security patterns. It expresses pattern combinations,
which are countermeasures to a given attack. This classification is semi-
automatically inferred by means of a data-store integrating disparate
publicly available security data. Besides pattern classification, we show
that the data-store can be used to generate Attack Defence Trees. In our
context, these illustrate, for a given attack, its sub-attacks, steps, tech-
niques and the related defences given under the form of security pattern
combinations. Such trees make the pattern classification more readable
even for beginners in security patterns.

Keywords: Security patterns ; Classification ; Attack ; Attack Defence
Tree

1 Introduction

In the domain of software security, many documents (knowledge bases, papers,
etc.) are now publicly available to help developers design and code more secure
applications. For instance, the notion of security patterns, which is one of the
topics of this paper, aims at providing guidelines to help in design secure systems
[17]. Schumacher postulates that a security pattern intuitively relates counter-
measures to threats and attacks in a given context [11]. As developers cannot be
expert in all security fields, this plethora of (often complex) documents exposes
them to the difficult choice of the most suitable security solutions for a given
context. From these resources, several works recently proposed to organise them
in order to help developers in their understanding and usage. Security patterns
were arranged into different categories, e.g., by security principles [I8)3], by ap-
plication domains [4] (software, network, user, etc.), by vulnerabilities [2] or by
attacks [I52].

Despite the benefits brought by these classifications, they all are confronted to
several limitations, which prevent their adoptions in the industry. Firstly, these
classifications were manually devised, by directly comparing textual descriptions
of different security concepts (patterns, principles, vulnerabilities, attacks, etc.).
As these descriptions are generic and have miscellaneous abstraction levels, the
categorisation of a pattern can be performed only when there is an evident
relation between it and another security property. In addition, as these classifi-
cations are not deterministic (no strict definition of the classification process [3]),
it often becomes delicate to upgrade them. Yskout et al. also reported that the
security pattern adoption is limited possibly due to a sub-optimal quality of the
documentation [19]. We indeed believe that many security pattern classifications
lack of Navigability and Comprehensibility, which are quality criteria, proposed
in [3] and respectively related to: the ability to direct a software designer among
collaborative and related patterns; the ease to understand patterns by both a
novice and expert developer.

From these observations, we propose to contribute to the security pattern
classification by proposing a strict and precise classification process based on
the concept of data integration. To make this classification navigable and com-
prehensible, we propose to automatically infer attack-defence trees (ADTrees
[7]), which illustrate the security pattern combinations that can be used to pre-
vent an attack on an application. More precisely, the contributions of this paper
can be summarised by the following points:

— we propose a data integration methodology, built on six steps. These extract
data from various Web and publicly accessible sources and store them into
a data-store composed of relationships among attacks, attack steps, security
principles and security patterns;

— we automatically derive a security pattern classification from the data-store,
which can be updated after every data modification. For an attack, the
classification expresses the security pattern combinations that can be used in
the software design stage to later prevent the attack from being successfully
carried out on the application;

— we generate Attack-Defence Trees (ADTrees [7]), which aim at supplement-
ing the classification with illustrations depicting, for a given attack, its (more
concrete) sub-attacks, steps and techniques along with defences preventing
the attacks expressed here with security patterns combined with logic oper-
ations. Such ADTrees aim at improving the navigability and understanding
of the previous classification.

We have generated a data-store and a security pattern classification spe-
cialised to the Web application domain, which is composed of 215 attacks, 26
security patterns and 66 security principles covering various security aspects.
This classification and the ADTree generator are available here)|

The remainder of the paper is organised as follows: Section [2] presents some
related work and the motivations of our approach. The method, which aims at

3 http://regainia.com/research/database.html

http://regainia.com/research/database.html

integrating data to build a data-store, is given in Section [3] Section 4 shows how
we automatically extract the pattern classification and ADTrees from the data-
store. We finally discuss on the resulting classification and conclude in Sections

Bl and [6

2 Related work

Several classifications were proposed to ease the pattern choice in the catalogues
available in the literature, e.g., [1],[19], totalling around 180 patterns. The clas-
sifications proposed in [IBT212IT3] focus on the attacker side. This choice of
categorisation seems quite interesting and meaningful as attacks are more and
more known and examined by designers. Wiesauer et al. initially presented a
short taxonomy of security design patterns manually made from links between
attack textual descriptions and security pattern purposes [I5]. Tondel et al. pre-
sented in [I2] the combination of three formalisms of security modelling (misuse
cases, attack trees and security activity graphs) in order to give a more complete
security modelling approach. In particular, they link some activities of attack
trees with attacks; they also connect some activities of SAGs (security activity
graphs) with security patterns. The relationships among security activities and
security patterns are manually extracted from documentation and are not ex-
plained. Alvi et al. presented a classification scheme for security patterns putting
together attacks and security patterns [2]. They analysed some security pattern
templates available in the literature and proposed a new text section for complet-
ing the CAPEC classification [9]. After inspection, we observed that this section
is seldom available, which limits its interest. Finally, Uzunov et al. proposed a
taxonomy of security threats and patterns specialised for distributed systems
[13]. This classification includes a library of threats and their relationships with
security patterns.

Some papers reviewed these classifications and established a comparative
study to point out their positive and negative aspects. Alvi et al. outlined 24
pattern classifications, including security pattern classifications, and established
a comparative study to point out their positive and negative aspects [3]. They
chose 29 classification attributes (purpose, abstraction levels, life-cycle, etc.) and
compared the classifications against a set of desirable quality criteria (Navigabil-
ity, Comprehensibility, Usefulness, etc.). They observed that several classifica-
tions were built in reference to a unique classification attribute, which appears
to be insufficient. They indeed concluded that the use of multiple attributes
enables the pattern selection in a faster and more accurate manner. Bunke et
al. presented a systematic literature review of the papers dealing with security
patterns between 1997 and 2012. In addition, they listed a set of classification cri-
teria and compared design pattern and security pattern classifications [4]. They
finally proposed a classification based upon the application domains of patterns
(software, network, user, etc.).

We observed that the main problem of the above classifications lies in the
fact that these all are manually conceived by directly finding relations in tex-

tual documents. Justifying these classifications or updating them is difficult. We
also observed that they often lack of either Navigability or Comprehensibility or
both. Relations among patterns are often not given, yet we noticed that some
patterns are compatible together and that others are conflicting. As a conse-
quence, a designer may be still confused about the pattern choice. As in [2], we
propose a pattern classification expressing which patterns can be used to counter
an attack step. Our classification proposes a more precise and accurate mapping
between patterns and attacks. It is more accurate in the sense that we translate
the meaning of the patterns and attacks into smaller properties. We establish
relations among these properties with respect to security principles, which iden-
tify the meaning of these relations. In addition, the classification is completed
with inter-pattern relationships. Our data integration process also offers the ad-
vantage to justify the pattern classification and reduces the efforts required to
update it. Finally, the generation of ADTrees makes the classification precise
and readable even for novice in patterns or security.

3 Data integration

We present below the architecture of the data-store we devised and an example of
data integration for attacks and security patterns related to the Web application
domain. Beforehand, we recall some basic fact about security patterns.

3.1 Security patterns

Security patterns provide guidelines for secure system design and evaluation
[I7]. They often are presented textually or with schema (UML diagrams) and
are characterised by a set of structural and behavioural properties.

Several security pattern catalogues are available on the Internet and litera-
ture, e.g., [1U19], themselves extracted from other papers. The quality of a pattern
and its classification can be established by means of its strong points, which are
properties expressing pattern key design features. Besides, a security pattern
may have different relationships with other patterns. These new properties may
noticeably help combine patterns and not to devise unsound composite patterns.
Yskout et al. proposed a listing of pattern relations with the following annota-
tions [I8]: ”"depend”, ”benefit”, ”impair” (the functioning of the pattern can be

obstructed by the implementation of a second one), ”alternative”, ” conflict”.

Application Firewall is a security pattern example whose primary objective
is to filter out undesired messages given or produced by an application, by means
of access control policies. Figure[I]depicts the UML class diagram of this security
pattern. This schema shows that it forces to structure an application in such a
way that the filtering logic is centralised and decoupled from the functional logic
of the application. This also corresponds to a strong point of the pattern.

Application

Client Acess Service Service
Application Level

Implementation Level Identity

Identity Base

PolicyAuthorizationPoint checkAccess Policies Enforcement Point

conmunicatesThrough Application Firewall +protects

Fig. 1. Security pattern ” Application Firewall”

3.2 Data-store architecture presentation

The classification purpose is to ease the design of more secure applications. To
do so, we propose to arrange security patterns in such a way that the resulting
classification provides the set of patterns that can be used as countermeasures
against a given attack (in reference to the security pattern definition of Schu-
macher [I1]) and relations among patterns.

To infer a precise classification, we chose to anatomize attacks and security
patterns into more detailed properties that can be interconnected in an explicit
manner. After reviewing the literature and some attack bases, we observed that
attacks are documented with more concrete attacks, which can be themselves
segmented into steps; These steps can be performed with techniques and can
be prevented with countermeasures. We did not found smaller properties in the
literature. On the other hand, security patterns can be characterised with some
sub-properties, e.g., forces, consequences or strong points. A strong point is a
pattern key feature that is extractable from its forces or consequences.

In both sides, countermeasures and strong points refer to the notion of attack
prevention. But directly finding relations among them is still an obscure task as
these properties have different purposes and abstraction levels. To solve this is-
sue, we propose the option of gathering countermeasures into clusters (groups)
to reach roughly the same abstraction level as strong points. Indeed, counter-
measures are often much more detailed. Then, to link clusters and strong points,
we chose to focus on security principles as mediators. We indeed observed that
security patterns and strong points are classifiable w.r.t. security principles like
most of the security techniques. Since countermeasures aim at preventing attack
steps, it sounds natural that countermeasure clusters and strong points belong
at least to one principle.

All the security properties considered here and their relations are structured
with the meta-model illustrated in Figure [2] as explained before. The entities
refer to security properties, the relations formally express associations among
them. This meta-model finally structures our data-store.

materialises >
0..*

defines >

Attack step 1..* 1.* Attack Inter-pattern
1 0..1 relation

l"* \7 1T A

< prevents f to 0..*
1 uses >1..* rcim 1 relation

Counter- At“alfk Security
measure Sch pattern

1.* 1.%
materialises > includes >
1 0..*|_—| 1.*
Counter- Security -1 Strong

measure * * inci * i
cluster 0. L. L{:Iplel 0. Lmt
< reflects < reflects

Fig. 2. The proposed mapping metamodel

3.3 Data integration and consolidation steps

We present, in this section, the different steps for integrating security properties
into the data-store. The data integration is divided into six steps, which aim at
collecting security properties and establishing the different relations presented
in Figure [2| Steps 1 to 5 give birth to databases, and Step 6 consolidates them
so that every entity of the meta-model is related to the other ones as expected.
These steps offer the strong advantage to semi-automatically achieve a data-
store, which can be updated.

We implemented these steps mostly by means of Talend, E| an ELT (Ex-
traction, Load, Transform) tool that allows an automated processing of data
independently from the type of its source or destination. We applied these steps
on attacks, patterns and principles related to the Web application context. We
provide some quantitative results related to this context with each step. But,
these can also be applied to other kinds of systems as long as documentation
is available. We integrate data coming from different sources: the CAPEC base
[9], several papers dealing with security principles [TO/T4I8] and the pattern cat-
alogue given in [19].

Step 1: Extraction of attacks, steps, techniques and countermeasures
We chose to focus on the CAPEC base to extract information about security at-
tacks. The Common Attack Pattern Enumeration and Classification (CAPEC)
is an open database offering a catalogue of attacks in a comprehensive schema.

4 https://talend.com/

https://talend.com/

Attack patterns are descriptions of common approaches that attackers take to
attack software or systems. An attack pattern, which we refer here as documen-
tation (to avoid the confusion with security pattern), consists of several textual
sections. For instance, the section ”Related attack patterns” shows interdepen-
dence among attacks, having different levels of abstractions.

We extracted attacks of the CAPEC base and organised them into a single
tree, which describes a hierarchy of attacks from the most abstract to the most
concrete ones so that, we can get all the sub-attacks of a given attack. To reach
that purpose, we rely on the relationships among attack descriptions found in
the CAPEC section ”Related Attack Patterns”. By scrutinising all the CAPEC
documents, it becomes possible to develop a hierarchical tree whose root node
is unlabelled and connected to the attacks of the type ” Category”. These nodes
may also be parent of attacks that belong to the type ”"Meta Attack pattern”
and so on. The leaves are the most concrete attacks of the type ”Detailed attack
pattern”. Then, for every attack, we collected from the CAPEC base (section
” Attack Execution Flow”) its steps, which may be composed of more concrete
sub-steps, and for each step, the corresponding techniques and security controls,
which correspond to countermeasures.

This data extraction is automatically performed with a tool, which yields
a database DB;. From the CAPEC base Version 2.8, we extracted these ele-
ments for the Web application context and collected 215 attacks, 209 steps, 448
techniques and 217 countermeasures, knowing that attacks can share steps, tech-
niques, etc.

Step 2: Countermeasure hierarchical clustering

The countermeasure number grows quickly while reading the attacks of the
CAPEC base. Many of them have a close meaning though, which can be ex-
plained by the number of different contributors that added them. These coun-
termeasures can be hence grouped into families to be later associated with a
security principle.

We semi-automated this process by applying a hierarchical clustering tech-
nique of documents. We firstly used the tool KHcoder EL which is a reputed tool
performing quantitative content analysis or text mining. In short, we applied the
tool as follows:

1. the Stanford (Part-of-speech) POS tagger is called to sort the keywords
found in the countermeasure descriptions (log, input, credentials, etc.) by
their frequencies and types (noun, verb, adverb, etc.);

2. from the frequencies, weights are computed and scaled with the Jaccard co-
efficient (the dissimilarity between sample sets) to measure a distance among
countermeasures. The distance between two security controls is minimised
when they have more common keywords.

Afterwards, we used the method Ward to automatically yield a hierarchy of
countermeasure clusters [16]. We chose Ward because it offers the possibility to

® http://khc.sourceforge.net/en/

http://khc.sourceforge.net/en/

merge groups, piece by piece, instead of directly providing big clusters. In our
case, this second solution would tend to build big clusters covering too much
security aspects, which would be later associated with too much security princi-
ples. Finally, the level to consider in the cluster organisation (and implicitly the
number of clusters to keep) is manually chosen, as the choice of the number of
clusters is always supervised with Ward. To get a coherent clustering, we chose
the most suitable level after some iterations by checking whether the counter-
measures obtained in the clusters refer to the same security principle or set of
principles.

The resulting clusters are stored into the database DBy. The 217 security
controls collected by the previous step, are aggregated into 21 clusters.

Step 3: security patterns and strong points integration

We manually collected security patterns and their strong points from the cat-
alogue given in [19]. Strong points often have to be deduced in the sections
referring to the forces and consequences of the patterns. Then, we manually
established two relations among patterns and strong points:

1. the first one is a many-to-many relation between security patterns and strong
points, each pattern being characterised by a set of strong points that can
be shared with other patterns. For example, the patterns ” Authorization en-
forcer” and ” Container managed security” share the strong point ” Providing
the application with authorization mechanism;

2. the second relation is related to the annotations ”depend”, ”benefit”, ”im-
pair” or "alternative” defined among patterns [I8]. With P a set of pat-
terns, this relation is defined as a mapping from P? to the annotation set
{?depend”,”benefit”,” impair”,” alternative” }, which provides for a pair of
patterns (pl,p2) an annotation about the relationship between pl and p2.

These data and relations, which provide connections among security patterns
and between patterns and strong points, are encoded into the database D Bj.
For the domain of Web applications, we gathered 26 security patterns and 36
strong points.

Step 4: Security principle integration

We chose to organise security principles into a hierarchy, from the most abstract
to the most concrete principles. We collected 66 security principles related to
Web applications found in [I0JT4)8] and manually established dependencies in
relation to the nature of each security principle, often described with text. The
current hierarchy, which has four levels, is certainly not exhaustive. But it covers
all the security patterns given in [19]. This security principle hierarchy is stored
in the database DBy.

This principle organisation gives a complete hierarchical view on security
mechanisms, which are in the meantime required to prevent an attack step and
which are provided by strong points. As principles are hierarchically organised
from the most abstract to the most concrete ones, we can find relations between
strong points and countermeasure clusters even if they do not exactly have the

same level of abstraction.

Step 5: mapping between strong points, security principles and coun-
termeasure clusters

In this step, we established the many-to-many relation between strong points
and security principles. This step was manually done because strong points and
principles are mostly presented in an abstract manner. During this step, we ob-
served that the abstraction level of the strong points better fit with the most
concrete principles, which are the leaves of our hierarchical organisation.

In the same way, we established the many-to-many relation between counter-
measure clusters and security principles. In Step 3, clusters include countermea-
sures sharing the same security aspects, e.g., Input validation, Authentication
or Authorisation. Once these aspects are deduced, linking clusters and security
principles becomes straightforward.

These relations are materialised with the database DBs, which combines 21
clusters, 36 strong points and 66 principles.

Step 6: data consolidation
This automatic step integrates the previous databases DB; to D Bs into a single
one. On the one hand, DBy, DBy and D Bjs store the relations among attacks,
steps, countermeasures and principles. On the other hand, DB3 and D Bj store
the relations among security patterns, strong points and principles. It is now
manifest that the security principle hierarchy becomes the central point that
helps map attacks onto security patterns.

This step is automatically performed by the tool Talend by means of the
meta-model given in Figure [2l The step produces the final database DBy.

4 Security pattern classification and ADTree generation

4.1 Security pattern classification

The database DBy holds all the data and relations among attacks, steps, se-
curity principles and security patterns allowing to extract a security pattern
classification. We have chosen to catalogue the combinations of patterns that
are countermeasures against an attack. Given an attack Att, the following data
and relations are hence extracted from DDBjy:

— the information about Att (name, identifier, description);

— the tree T'(Att), whose root is Att, if Att is not a leaf of the attack tree
derived in Step 1. For every attack found in T'(Att), we also extract its
attack steps and techniques;

— for each step st, the complete hierarchy of security principles Sp(st) by means
of the successive relations established among st, countermeasure clusters
and security principles. Sp(st) represents the complete hierarchy of security
principles related to a step, i.e., if a principle sp associated to the step st
is not a leaf of our hierarchical organisation, then we also extract all the
principle sub-tree whose root is sp;

— for each principle sp in Sp(st), the set of security patterns P, the set of
patterns P2, not in P, that have relations with any pattern of Py, and the
nature of these relations defined for couples of patterns by the annotations

” N

in {"depend”,”benefit”,” impair”,” alternative”, ” con flict” }.

attack D+ Attack_StepTitle + Attack_Step + tech_desc Security_pattern + SP_relationship + related_Security_patiern +
34 Experiment Atiempt variations on Use CRLF characters | Application Firewall altenative Input Guard
input parameters (encoded or not)in the
payloads in order fo see
ifthe HTTP header can
be split
Output Guard
AuditInterceptor benefits Secure Service Facade
depends Secure Logger
Input Guard alternative Application Firewall
benefits Qutput Guard
Secure Logger beneiits Audit Interceptor
Secure Pipe
Use a proxy tool to Application Firewall alternative Input Guard
record the HTTP
responses hearers
Output Guard
AuditInterceptor benefits Secure Service Facade
depends Secure Logger
Input Guard alternative Application Firewall
benefits Qutput Guard
Secure Logger benefits AuditInterceptor
Secure Pipe

Fig. 3. Data extraction for the attack CAPEC-34

Figure |3] depicts an extraction example for the CAPEC attack 34 "HTTP
Response Splitting”. The first column gives the ID of the chosen attack. This
attack belongs to the category ”Detailed” of the CAPEC, therefore it has no
sub attacks (otherwise, the next columns would list them too). Columns 2 to 4
index the attack steps and techniques. Due to lack of room, we only illustrate the
step ”Experiment” here. The security patterns allowing to prevent the step are
given in Column 5. These four patterns have to be contextualised in the appli-
cation model and implemented to prevent the attack. The last two columns add
the security patterns being associated with the patterns of Column 5 and their
relations. For instance, Figure [3| shows that ” Application Firewall” and ”Input
guard” are alternative patterns, hence using one of them is enough (although
using both is not incorrect).

The classification extraction is achieved once all the attacks stored in the
database DBy are covered. This extraction is automatically performed with a
tool based upon Talend. This tool can be re-executed every time the data-store
is updated. The classification remains up-to-date accordingly.

At this stage, we think that Comprehensibility, which refers to the ability to
use the classification by experts or novices, is not yet totally satisfied. Indeed,

the classification is given under a tabular form only, which does not appear to
be the most user-friendly way to represent a classification. This is why we also
propose to generate ADTrees.

4.2 Attack-Defence Tree generation

Attack Defence Trees " are graphical representations of possible measures an at-
tacker might take in order to attack a system and the defences that a defender
can employ to protect the system” [7]. We recall that ADTrees have two different
kinds of nodes: attack nodes (red circles) and defence nodes (green squares).
A node can be refined with child nodes using conjunctive or disjunctive refine-
ments. The former is recognisable by edges going from a node to its children. The
latter is graphically distinguishable by connecting these edges with an arc. Here,
we extend these two refinements with the sequential conjunctive refinement of
attack nodes, defined by the same authors in [5]. This operator expresses the
execution order of child attack nodes. Graphically, a sequential conjunctive re-
finement is depicted by connecting the edges going from a node to its children
with an arrow.

Keeping in mind that we use ADTrees to help developers design more secure
applications, we propose to generate them with the general form illustrated in
Figure This ADTree points out how an attack is sequenced with steps and
how to prevent them with countermeasures given under the form of security
pattern combinations. An ADTree root node is labelled by an attack. If the
attack is linked to sub-attacks, the root node is also connected to child attack
nodes expressing these sub-attacks. When an attack is defined with steps and
techniques, its corresponding node has child nodes expressing them. A node
labelled by an attack step has a child defence node, which is the root of a
defence sub-tree expressing combinations of security patterns.

We automatically generate ADTrees from the data-store as follows:

1. every CAPEC attack found in DBy has its own ADTree whose root node is
labelled by its identifier. This root node is linked to other attack nodes with
a disjunctive refinement if the attack has sub-attacks. This step is repeated
for every sub-attack;

2. for each attack Att of the preceding tree, we collect its sequence of steps.
The node labelled by Att is refined with a sequential conjunction of attack
nodes, one for each step. We repeat this process if a step is itself composed of
steps. In the same way, for each step St, the related techniques are extracted
from the classification and are associated to the node labelled by St with a
disjunctive refinement;

3. for each step St, we extract the set P of security patterns that are counter-
measures of St. Given a couple of patterns (p1,p2) € P, we illustrate these
relations with new nodes and logic operations as follows. If we have:

— (p1 R p2) with R a relation in {depend, benefit}, we build three defence
nodes, one parent node labelled by p; R p2 and two nodes labelled by p1,
p2 combined with this parent defence node by a conjunctive refinement;

XOR

/N

R R'
Composition / \ /7
/‘T_)\ A B A B Potential
pattern pattern pattern attack

(a) ADTree general form (b) Conflicting pattern repre-
sentation with ADTree

Fig. 4.

— (p1 alternative ps), we build three defence nodes, one parent node la-
belled by p; alternative ps and two nodes labelled by p1, p2, which are
linked by a disjunctive refinement to the parent node;

— (p1 R p2) with R arelation in {impair, conflict}. In this particular case,
we would want to use the zor operation. Unfortunately, the latter is not
available with the ADTree model. Therefore, we replace the operator
by the classical formula (A zor B) — ((A or B) and not (A and B)).
The not operation is here replaced by an attack node meaning that two
conflicting security patterns used together might constitute a kind of
attack. The node ”Potential attack” expresses a kind of negation. The
corresponding sub-tree is depicted in Figure

— p1 having no relation with any pattern p; in P, we add one parent defence
node labelled with p;.

The parent defence nodes, resulting from the above steps, are combined
to a defence node labelled by ”Pattern Composition” with a conjunctive
refinement. This last defence node is linked to the attack node labelled by
St.

We implemented the ADTree generation with a tool, which takes as input an
attack identifier and yields an ADTree, which is stored into an XML file. These
files can be used with the editing tool given in [6]. As a consequence, ADTrees
can be modified or updated as the developer wishes.

Figure [f] illustrates the ADTree obtained from the attack CAPEC 34. The
root of the tree is the main goal of the attacker. Its second and third levels
relate to the attack steps. These nodes are sequential conjunctive refinements of
the root node. For instance, the step Exploit is achieved if both steps 3.1 and
3.2 are successfully executed in the right order (from left to right). An attack

2.1-Aerptvarztans o
input perameters

32Cache paisoning

Fattzms
Compikton

Fatzms
Compikton

Meratve Degencs Me-atve Depe-ds Mlerratve Ceperds

AN AN A N ANV AR\

Applctizn Irpu ad Sec.re Applicaio Contie Audt Secure Applzaizn it Auct Secure

v qard || Ineector Iogger Frawal iercepto” oager Fienal e ceptar logge-

/

P e it Atemetive
werd quad

/\ /\

Ot Comparstr Checled Oupst Comperator Crecked
suad Faut ToerartSystem e FakTelersnt Syste~

Fig. 5. ADTree of the Attack CAPEC-34

step has a disjunctive refinement of attack nodes labelled by techniques. The
step is achieved if one of the attack techniques is applied with success. Defence
nodes (square nodes) illustrate security pattern combinations. For instance, the
step ”1.1 Spider” refers to the Web application exploration through Graphical
user interfaces in order to get all the URLs of the application. This step can be
prevented by designing the application with both patterns ” Audit interceptor”
and ”Secure logger”. ” Audit interceptor” can be used to detect the application
crawling and to warn an administrator. The audit logs are secured by means
of ”Secure logger”, which guarantees that the audit logs cannot be accessed or
altered by unauthorised users. This example illustrates that a designer can easily
follow the concrete materialisations of an attack in an ADTree and can directly
choose security patterns.

5 Classification discussion

Our security pattern classification associates attacks, security principles and se-
curity patterns in order to help developers in the choice of the most suitable
pattern combinations to design and code secure applications. The current classi-
fication is founded on 215 CAPEC attacks, 26 security patterns and 66 principles
related to the Web application context. It enables multi-attribute based decisions
insofar as patterns can be selected according to the provided inter-pattern rela-
tions and/or according to the attack steps.

Security_pattern
Application Firewall
Audit Interceptor
Authentication Enforcer
Autharization Enforcer
Checkpointed System
Comparator Checked Fault Tolerant Systam
Compartmentalization
Container Managed Security
Container Managed security
Controlled Object Factary
Controlled Object Menitor
Controlled Process Creator
Centrolled Virtual Address Space
Demilitarized Zone
Distributed Respensibllity
Encrypted Storage
Firewall
Input Guard
Least privilege
Output Guard
I FEAC
[Pathname Canonicalization
RBAC

Secure Logger

Secure Plpe
Secure Service Facade

Trust Partiioning

Fig. 6. Percentage of fixed attacks per pattern

Alvi et al. proposed in [3] some criteria for measuring classification quality.
Among these criteria, we have noted that our classification meets:

— Navigability: our classification, accompanied by ADTrees, satisfies this cri-
terion as it exhibits the hierarchical refinements of an attack and, for every
attack step, the combinations of patterns, which should be integrated in the
application model. In addition, the classification provides the relationships
among security patterns, which help choose the most appropriate pattern
combination;

— Determinism: the classification is clearly defined by means of the method
steps. All these steps justify the soundness of the classification;

— Unambiguity /Comprehensibility: patterns are classified w.r.t. defined cate-
gories, i.e., attacks, steps, and security principles. This organisation, which
is illustrated by means of ADTrees, makes our classification readable and
comprehensible even for novices in security patterns;

— Usefulness: we believe the classification can be used in practice since it is
based upon a known security pattern catalogue [19] and upon the CAPEC
base, which is more and more employed in the industry;

— Repeatability: the classification is generic and can be reused. Furthermore,
the data-store and the classification can be updated and generated semi-
automatically.

Besides, a variety of statistical information can be automatically extracted
from the data-store. For instance, Figure [6] depicts a pie chart, which shows

the ratios of attacks that can be partially prevented per security pattern. These
kinds of charts, which are automatically generated from the data-store, seem
quite useful to guide designers towards security analysis, good practices and
education. For instance, with the above chart, a designer can observe that 2
patterns seem to emerge for partly countering a large part of the 215 attacks
covered by the classification, namely ”Input Guard” and ” Application firewall”.
It is manifest that if we complete the data-store with more data, e.g., patterns
or attack risks, such charts could be more refined and adapted to the developer
needs.

Our classification and data integration process present some limitations,
which could lead to future works. Firstly, we did not consider the notion of
attack combination. Such a combination could be seen as several attacks or as
one particular attack. Furthermore, the classification is not yet exhaustive: it
includes 215 attacks out of 569 (for any kind of application) and 26 security
patterns out of around 180. We also do not take into consideration the ADTree
size. This is a strong limitation since large trees are usually unreadable, which
contradicts the classification purposes. The ADTree reduction could be a first
solution on this problem. But, reducing such trees remains a hard problem as
the node meaning must be taken into account in the node aggregating process.

6 Conclusion

We have proposed a security pattern classification method associating attacks,
security principles and security patterns in order to help designers understand
the inner workings of attacks and choose the most suitable pattern combinations
to design secure applications. This method integrates data obtained from various
sources and subdivides attacks and patterns into detailed properties, which are
associated in accordance with security principles. The pattern classification is
then automatically generated from the data-store. The data-store and the clas-
sification can be upgraded by following some steps only. We also proposed to
portray this classification by means of ADTrees showing attack scenarios (steps,
techniques, etc.) and countermeasures given as security pattern combinations.
In future research, we will firstly focus on the automation of some data in-
tegration steps. Indeed, it could be relevant to investigate whether some text
mining techniques would help partially automate the extraction and integration
of the security pattern properties without adding ambiguity. As our ADTrees
exhibit concrete attack scenarios composed of sequences of steps, we also intend
to use them for the test case generation to check whether an implementation
is protected against the attacks given in an ADTree or if security patterns are
correctly contextualised and implemented w.r.t. the application context.

7 Acknowledgement

Research supported by the industrial chair on Digital Confidence| http://confiance-
numerique.clermont-universite.fr/index-en.html

http://confiance-numerique.clermont-universite.fr/index-en.html
http://confiance-numerique.clermont-universite.fr/index-en.html

References

1.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

Security pattern catalog, http://www.munawarhafiz.com/
securitypatterncatalog/

Alvi, A.K., Zulkernine, M.: A Natural Classification Scheme for Software Security
Patterns. 2011 IEEE Ninth International Conference on Dependable, Autonomic
and Secure Computing pp. 113-120 (2011)

Alvi, Aleem, K., Zulkernine, M.: A Comparative Study of Software Security Pattern
Classifications. 2012 Seventh International Conference on Availability, Reliability
and Security pp. 582-589 (2012)

Bunke, M., Koschke, R., Sohr, K.: Organizing security patterns related to secu-
rity and pattern recognition requirements. International Journal on Advances in
Security 5 (2012)

Jhawar, R., , B., Mauw, S., Radomirovi¢, S., Trujillo-Rasua, R.: Attack trees with
sequential conjunction. In: IFIP International Information Security Conference.
pp. 339-353. Springer (2015)

Kordy, B., Kordy, P., Mauw, S., Schweitzer, P.: Adtool: security analysis with
attack—defense trees. In: International Conference on Quantitative Evaluation of
Systems. pp. 173-176. Springer (2013)

Kordy, B., Mauw, S., Radomirovié¢, S., Schweitzer, P.: Attack—defense trees. Journal
of Logic and Computation p. exs029 (2012)

Meier, J.: Web application security engineering. Security & Privacy, IEEE 4(4),
16-24 (2006)

Mitre corporation: Common attack pattern enumeration and classification,
url:https://capec.mitre.org/ (2015), https://capec.mitre.org/

Saltzer, J.H., Schroeder, M.D.: The protection of information in computer systems.
Proceedings of the IEEE 63(9), 1278-1308 (1975)

Schumacher, M.: Security Engineering with Patterns: Origins, Theoretical Models,
and New Applications. Springer-Verlag New York, Inc., Secaucus, NJ, USA (2003)
Tgndel, I.A., Jensen, J., Rgstad, L.: Combining misuse cases with attack trees and
security activity models. In: Availability, Reliability, and Security, 2010. ARES’10
International Conference on. pp. 438—445. IEEE (2010)

Uzunov, A.V., Fernandez, E.B.: An extensible pattern-based library and taxonomy
of security threats for distributed systems. Computer Standards & Interfaces 36(4),
734-747 (2014)

Viega, J., McGraw, G.: Building Secure Software: How to Avoid Security Problems
the Right Way, Portable Documents. Pearson Education (2001)

Wiesauer, A., Sametinger, J.: A security design pattern taxonomy based on attack
patterns. In: International Joint Conference on e-Business and Telecommunica-
tions. pp. 387-394 (2009)

Willett, P.: Recent trends in hierarchic document clustering: a critical review. In-
formation Processing & Management 24(5), 577-597 (1988)

Yoder, J., Yoder, J., Barcalow, J., Barcalow, J.: Architectural patterns for enabling
application security. Proceedings of PLoP 1997 51, 31 (1998)

Yskout, K., Heyman, T., Scandariato, R., Joosen, W.: A system of security patterns
(2006)

Yskout, K., Scandariato, R., Joosen, W.: Do security patterns really help designers?
In: Proceedings of the 37th International Conference on Software Engineering -
Volume 1. pp. 292-302. ICSE ’15, IEEE Press, Piscataway, NJ, USA (2015), http:
//dl.acm.org/citation.cfm?id=2818754.2818792

http://www.munawarhafiz.com/securitypatterncatalog/
http://www.munawarhafiz.com/securitypatterncatalog/
https://capec.mitre.org/
http://dl.acm.org/citation.cfm?id=2818754.2818792
http://dl.acm.org/citation.cfm?id=2818754.2818792

	Lecture Notes in Computer Science
	Introduction
	Related work
	Data integration
	Security patterns
	Data-store architecture presentation
	Data integration and consolidation steps

	Security pattern classification and ADTree generation
	Security pattern classification
	Attack-Defence Tree generation

	Classification discussion
	Conclusion
	Acknowledgement

