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Abstract

Many software engineering approaches often rely on formal models to automate
some steps of the software life cycle, particularly the testing phase. Even though
automation sounds attractive, writing models is usually a tedious and error-prone
task. In addition, with industrial software systems, models, when they exist, are
often not up-to-date. Hence, testing these systems becomes problematic. In this
context, this paper proposes a method and a framework called Autofunk to test
production systems by combining two approaches: model generation and passive
testing. Given a large set of events collected from a production system, Auto-
funk combines the notions of expert system, formal models and machine learning
to infer symbolic models while preventing over-generalisation (i.e., the models
should not capture more behaviours than those possible in the real system). Af-
terwards, these models are considered to passively test whether another system is
conforming to the models. As the generated models do not express all the possi-
ble behaviours that should happen, we define conformance with four specialised
implementation relations. Two relations are dedicated for offline passive testing
(events are collected, while the system is running, the tester gives verdicts after-
wards). The two remaining relations are for the online mode (events are analysed
on the fly).

Keywords: Model inference ; Passive testing ; Industrial systems ; Symbolic
models
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1 Introduction
This paper tackles the problem of testing production systems such as those of

our industrial partner Michelin, one of the three largest tire manufacturers in the
world. A production system is defined as a set of production machines controlled
by a software, in a factory. Such systems are composed of heterogeneous devices,
interconnected with specialised networks and controlled by a software in a factory.
Testing them is often performed manually with simulations to replicate human
operations and to not damage real devices. This testing phase usually requires a
long period of time, from some weeks up to several months.

Passive testing is an approach that can partially automate this stage and shorten
its deadline. Generally speaking, a passive tester (also known as observer) collects
observations from the system and aims at checking if its behaviour meets require-
ments expressed in a model. Testing can be performed in either online or offline
mode. Online passive testing means that sequences of observations, called traces,
are computed and analysed on-the-fly for the detection of defects; in offline mode,
traces are collected and analysed later. However, passive testing suffers from a
common issue : we need of a specification (models or properties). And writing a
specification is known as a long and error-prone task.

Model inference is a research field, which brings appealing concepts to bypass
this issue. It proposes a set of techniques that infer models describing how a sys-
tem behaves by analysing system executions. A model, inferred from an initial
production system, could help in the test of a new or updated one. Here comes
the context proposed by our partner Michelin who wishes a way to automate the
testing of new or updated systems, but without having models. To cope with this
problematic, we have chosen to devise a framework, called Autofunk (for Auto-
matic Functional model inference), which combines model inference and passive
testing. This paper presents this framework, i.e., the theoretical background that
we considered and preliminary results.

1.1 Context
Michelin is a worldwide tire manufacturer and designs most of its factories,

production systems, and related software. Like many other industrial companies,
Michelin follows the Computer Integrated Manufacturing (CIM [WYD07]) ap-
proach, using computers and software to control the entire manufacturing process
and acquire data. The CIM approach segments the manufacturing process and
production strategies into several hierarchical levels: CMI1 is the device level,
CMI2 includes all the applications that monitor and control devices. Levels 3 and
4 focus on the factory management.
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Figure 1 – Simplified representation of a workshop

A factory includes workshops, each devoted to a step of the tire building pro-
cess, e.g., tire assembling (assembling the components onto a tire drum) or cur-
ing (applying pressure on assembled tires in molds to give their final shapes).
A workshop gathers devices, branch points, conveyor belts and human operators
that perform specific actions (removal of products to assess their qualities, etc.).
A workshop is controlled by a set of CIM2 applications (except for the operators):
every order (move, stop, change state, etc.), product modifications or alerts pass-
ing among industrial devices and software are materialised with messages that we
call production events. These applications are continuously updated and some-
times replaced, for instance when the physical configuration of the workshop is
modified, when new machines are added, when bugs are detected, or when it is
decided that applications are too old and are no more maintainable.

As depicted in Figure 1, at the workshop level, we observe a continuous stream
of products following assembly lines from specific entry points to exit points, i.e.,
where products go to reach the next step of the manufacturing process. Some
factories produce over 30,000 tires a day, resulting in thousands of production
events at the CIM2 level, which are collected and persisted in databases.

Production systems are tested when they are set up and every time they are
updated with new applications, parameters, devices, etc. We do not focus on the
device level here (CIM1), but on the CIM2 level (although physical devices are
tested too). For readability, when we refer to production systems in the remainder
of the paper, we actually focus on the software of the CIM2 level, which acquires
and sends production events to the devices.

For testing a production system, Michelin engineers firstly build simulations
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by mocking most of the devices. Then, they run hundreds of scenarios composed
of production events, collect all the observable production events and manually
inspect them to detect abnormal behaviours. As simulations are not sufficient
to run all the possible scenarios, production events are again collected when the
system is running, and events are scrutinised every time an issue is detected. This
manual testing process can be followed for a long period time, depending on the
modifications made on the system (up to 6 months). Michelin wished to partially
automate this phase to:

— quicker detect potential regressions when CIM2 applications are modified
or when devices are replaced to ensure that they are interoperable with the
current application versions,

— test an updated system, different from the original one and focus on its
new behaviours to later seek for potential faults,

— reduce the testing delay.
The main problem faced by Michelin lies in the lack of up-to-date (and hence

exact) documentation. Indeed, the lifetime of the applications deployed in their
factories goes up to twenty years. During this long lifetime, applications are in-
dependently updated many times in every factory all over the world, potentially
highlighting different behaviours and features. Initially, these applications are
documented with models, which become outdated in the long run as models are
often not modified. Furthermore, even if a lot of effort is put into standardising
applications and development processes, different programming languages and
frameworks are still used by development teams, making difficult to focus on a
single technology. This application set appears too disparate and insufficiently
documented to apply conventional testing techniques. This is why our industrial
partner firstly needs a safe way to generate up to date and ”the most exact” models
in the sense that they do not capture more behaviours than those possible in the
real system.

In addition, Michelin engineers have need for a scalable tool since a produc-
tion system produces thousands of tires a day, along with thousands of production
events. When an issue is detected in a production system or when the latter is get-
ting jammed, they are interested in getting models as quickly as possible to help
them diagnose failure causes.

1.2 Related work and motivation
Model inference

Model inference can be defined as a set of methods that infer a specifica-
tion by gathering and analysing system executions and concisely summarising
the frequent interaction patterns as state machines that capture the system be-
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haviour [ABL02]. These models, even if partial, can be examined by designers
to complete them, to identify errors, and can be utilised for analysis, etc. Models
can be generated from different kinds of data samples such as affirmative/nega-
tive answers [Ang87] , execution traces [KBP+10], documentation [ZZXM11],
source code [PG09], or network traces [ANV11]. After reviewing the literature,
we observed that two main categories of methods emerged that we call active and
passive methods. The first category contains methods interacting with systems or
humans to extract knowledge, which is studied to build models. Active inference
approaches repeatedly query systems or humans to collect positive or negative ob-
servations. With production systems, this active functioning may give rise to some
inconvenient and should not be used. Indeed, to stimulate the system, it must be
shut-down, interrupted or reset for some time. Resetting such a system is difficult
and often long.

This is why we prefer focusing on the second category. It includes techniques
that infer models from a given set of samples, e.g., a set of execution traces. As
there is no interaction with the system to model, these techniques are said passive.
Models are often constructed by representing sample sets with automata whose
equivalent states are later merged. A substantial part of the papers covering this
topic proposes approaches either based upon event sequence abstraction or state-
based abstraction to infer models.

With event sequence abstractions, the abstraction level of the models is raised
by merging the states having the same event sequences. This process stands on
two main algorithms: kTail [BF72] and kBehavior [MP07]. KTail generates mod-
els from trace sets in two steps. First, it builds a Prefix Tree Acceptor, which is
a tree whose edges are labelled with the event names found in traces. Then kTail
transforms this tree into a Finite State Automaton (FSA) by merging every pair
of states if they exhibit the same future of length k, i.e., if they have the same
set of event sequences having the maximum length k, which all are accepted by
the two states. kBehavior generates models from a set of traces by taking every
trace one after one and by completing the FSA in such a way that it now accepts
the trace. More precisely, whenever a new trace is submitted to kBehavior, it
first identifies the sub-traces that are accepted by sub-automata in the current FSA
(the sub-traces must have a minimal length k, otherwise they are considered too
short to be relevant). Then, kBehavior extends the model with the addition of new
branches that suitably connect the identified sub-automata, producing a new ver-
sion of the model that accepts the entire trace. Both Algorithms were enhanced to
support events combined with data values [LMP08].

The approaches, which use state-based abstraction, adopted the generation of
state-based invariants to define equivalence classes of states that are combined
together to form final models. The Daikon tool [ECGN99] were originally pro-
posed to infer invariants composed of data values and variables found in execution
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traces. An invariant is a property that holds at a certain point or points in a soft-
ware. An invariant generator mines the data found in traces and specific to related
objects or components, and then reports properties that are true over the observed
executions. Several works were proposed to infer models from traces produced
by software components (classes) [KBP+10] or source codes [YEB+06].

Passive testing

Observing the behaviour of an implementation and testing if it adheres to a
given user-provided specification has been referred under different names such as
passive testing or runtime verification. Passive testing (and runtime verification)
offers the advantage to not disturb the implementation under test by collecting
observations or samples and by checking if these meet a specification or prop-
erties. With runtime verification, specifications are usually written with CTL or
LTL properties, which is out of the scope of the paper. We prefer referring to
[LS09]. Several works, dealing with the passive testing of protocols or compo-
nents, have also been proposed over the last decade. We propose to group some
of them related to our work in two different categories:

— Invariant satisfiability: invariants represent properties that are always true.
An invariant is constructed by hand, and later checked on a set of traces
collected from an implementation. This approach is very similar to run-
time verification and allows the test of complex and formal properties. It
gave birth to several works, e.g., [CMdO09, BCNZ05, MMC13, MMC+10,
AMNn12]. For instance, the passive testing method presented in [CMdO09]
aims to test the satisfiability of invariants on Mobile ad-hoc network (MANET)
routing protocols. Different steps are required: definition of invariants, ex-
traction of execution traces with sniffers, verification of the invariants on
the trace set. Other works focused on Component-based System Testing:
in this case, passive methods are usually used for conformance or security
testing. For instance, the TIPS tool [MMC+10] performs an automated
analysis of the captured trace sets to determine if a given set of timed ex-
tended invariants hold. As in [CMdO09], invariants are constructed from
a specification and traces are collected with network sniffers. Andrès et al.
presented another methodology to perform the passive testing of timed sys-
tems [AMNn12]. The paper gives two algorithms, which check whether
timed invariants hold on logs recorded from an implementation under test;

— Forward checking: implementation reactions are observed by a tester,
which detects incorrect behaviours by covering a model every time a new
event is collected [LCH+06, UX07]. For instance, Lee et al. proposed
some methods dedicated to wired protocols in [LCH+06]. Protocols are
modelled with Event-driven Extended Finite State Machines (EEFSM),
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which are specialised FSM composed of variables and constraints over
these variables. Several algorithms on the EEFSM model are provided as
well as their applications on the protocols TCP and Open Shortest Path
First (OSPF). Algorithms check whether partial traces, composed of ac-
tions and parameters, meet an EEFSM on-the-fly: every time a new event
is received, new configurations are computed from an existing configura-
tion set. A configuration represents a tuple gathering a reached state of the
model and a set of assignments and guards modelling the variable states.
When no configuration can be computed, an error is detected.

1.2.1 Key observations and motivations

After having studied both research fields and discussing with our industrial
partner, it quickly turned out that passive inference appeared to be a good so-
lution. Nevertheless, the proposed approaches still reflect some limitations that
plague the final quality of the models. Most of the model inference techniques are
over-approximating system behaviours, i.e., models often admit more behaviours
than those observed. When models are employed for verification or testing, over-
approximated models often bring false positives. Indeed, infeasible test cases can
be generated from these models, i.e., test cases that cannot be executed or that
expect observations the system cannot produce. Such test cases give incorrect
verdicts. We observed that over-approximation often comes from the state merg-
ing process, which combines the states having the same properties. Specifically,
this issue comes from the state equivalence relations (k-future, congruence equiv-
alences, etc.) that raise the abstraction level of the model. Furthermore, most
of the above algorithms have a complexity polynomial in time with respect to the
model size or require a polynomial number of queries. However, we observed that
only few methods [YEB+06, PG09] focus on scalability and propose algorithms
that can take huge event sets as inputs and still infer models quickly. To do so,
these use a context-specific state merging process.

Based on these observations, we chose to devise a (context-specific) model
inference approach that aims at recovering models as Symbolic Transition Sys-
tems (STS [FTW05]) from production event sets. As models are used for testing,
we want to prevent (control) their over-generalisations. This approach is hence
initially based upon trace abstraction and model compression to avoid the con-
struction of models composed of over-approximations. During this process, we
remove the information related to products, which we call normalisation. The
originality of the model construction resides in the combination of an expert sys-
tem to encode expert knowledge (given by Michelin engineers or found in doc-
umentation) and of transition systems to embrace formal tools. This means that
the STS transformations and compression, called STS reduction, are defined with
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inference rules thanks to the STS theory, and are triggered by the same expert
system. The STS reduction, is based on an event sequence abstraction. We also
show that our approach is scalable: it can take millions of production events and
still build models quickly thanks to our specific state merging process.

Concerning passive testing, we noticed that the above techniques assume hav-
ing either complete specifications encoding all the correct behaviours, or proper-
ties. We observed that these are not specifically tailored to support partial models,
which are neither complete specifications nor properties. Hereinafter, we propose
two passive testing techniques to test whether a production system under test is
conforming to an initial system under analysis. The first technique uses an offline
mode, the second one checks conformance in an online way. These two techniques
are based on specific implementation relations to define conformance.

Finally, in [SD15] and [DS15], we proposed algorithms for inferring models
from industrial systems and for passively testing them (offline mode). The main
differences with this paper lie in the model inference goals. In [SD15], model
inference is applied to learn more abstract and over-approximated models. In con-
trast, models are here built for testing purposes, hence, we define particular trace
sets (complete and filtered traces), we consider model normalisation and adapt the
inference steps so that both offline and online passive methods reuse some formal
definitions. The offline passive tester, introduced in [DS15], is revisited with new
propositions on the implementation relations to prepare the proof of the algorithm
soundness.

Paper organisation:
The paper is structured as follows: Section 2 recalls some definitions and nota-
tions about the STS formalism. We present the theoretical aspects of Autofunk in
Section 3 and 4. The first section is related to the model generation of production
systems into STSs with a view to perform testing. We also describe the practical
assumptions that guided the design of Autofunk. Section 4 details the offline and
online passive testers, which embody the implementation relations. Afterwards,
we evaluate Autofunk on a real production system, in Section 5. We show that
Autofunk can infer models from millions of production events in reasonable time.
We also apply offline passive testing on different kinds of system under test. We
traditionally conclude in Section 6.

2 Model Definition and Notations
In this paper, we focus on models called Symbolic Transition Systems (STS)

([FTW05]) to represent how production systems behave. A STS is a kind of sym-
bolic automaton compound of states called locations. Transitions between loca-
tions are labelled with events including a label and parameters. One can also find
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guards and variable assignments.

Definition 1 (Variable assignment) We assume that there exist a finite domain
of values denoted D and a variable set X taking values in D. The assignment of
variables in Y ⊆ X to elements of D is denoted with a mapping α : Y → D.
We denote DY the assignment set over Y . For y ∈ Y , α(y) returns the assignment
of the y variable. We also denote idY the identity assignment over Y .

For instance, α = {x := 1,y := 3} is a variable assignment of D{x,y}. α(x) =
{x := 1} is the variable assignment related to the variable x.

Definition 2 (STS) A Symbolic Transition System (STS) is a tuple (L, l0,V,V 0, I,
Λ,→), where:

— L is the finite location set, with l0 being the initial one,
— V is the finite set of internal variables, I is the finite set of parameters,
— V0 is the initial condition, a predicate with variables in V ,
— Λ is the finite set of symbolic events a(p), with p= 〈p1, ..., pk〉 a finite tuple

of parameters in Ik(k ∈ N),
— → is the finite transition set. A transition (l1, l2,a(p),G,A), from the loca-

tion l1 ∈ L to l2 ∈ L, also denoted l1
a(p),G,A−−−−−→ l2, is labelled by:

— an event a(p) ∈ Λ, with p = 〈p1, ..., pk〉,
— a guard G, which is a predicate with variables in V ∪{p1, ..., pk} that

restricts the firing of the transition. For simplicity (and since this is
sufficient in our context), we restrict to the guards of the form:
G→ PG | G op G,
PG→Variable ==Constant,
op→∧ | ∨,

— internal variables are updated with the assignment function A of the
form (x := Ax)x∈V , Ax is an expression over V ∪{p1, ..., pk}.

Below, we define some notations on STSs. In particular, we use the notion of
projection on guards, denoted Pro jX(G), which aims to only keep the equalities
of G using the variables of the set X . A projection comes down to eliminating the
equalities using the variables in (I∪V )\X . For the definition of variable elimina-
tion (a.k.a. forgetting), we refer to [LLM03].

Definition 3 Given a STS S = (L, l0,V,V 0, I,Λ, →) and l, l′ ∈ L, we use the
following notations:

— l1
(a1,G1,A1)...(an,Gn,An)−−−−−−−−−−−−−→ ln+1 =de f ∃li, li+1,ai,Gi,Ai

(1≤ i≤ n) : l1
a1,G1,A1−−−−−→ l2, ..., ln

an,Gn,An−−−−−→ ln+1;
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— l 9 =de f ¬∃l′,a(p),G,A : l
a(p),G,A−−−−−→ l′. We say that l is a deadlock loca-

tion;

— l
a(p),G−−−−→ l′ =de f ∃,a(p),G,A = idV : l

a(p),G,idV−−−−−−→ l′;
— Pro jX(G), the projection of the guard G over the variable set X ⊆ I ∪V ,

which eliminates from G the equalities on the variables of (I∪V )\X.

The use of symbolic variables helps describe infinite state machines in a fi-
nite manner. This potentially infinite behaviour is represented by the semantics
of a STS, given in terms of Labelled Transition System (LTS). The LTS seman-
tics can be assimilated to a valued automaton, which is often infinite: the LTS
states are labelled by internal variable assignments, and transitions are labelled
by valued events, composed of parameter assignments. The semantics of a STS
S = (L, l0,V,V 0, I,Λ,→) is the LTS ||S|| = (Q,q0,∑,→) composed of valued
states in Q = L×DV , q0 = (l0,V0) is the initial one, ∑ is the set of valued events,
and→ is the transition relation.

The complete definition of the relation between a STS and its LTS semantics is
given in [FTW05]. For simplicity, we only give its insight in this paper. For a STS

transition l
a(p),G,A−−−−−→ l′, we have LTS transitions of the form (l,v)

a(p),α−−−→ (l′,v′)
with v an assignment over the internal variable set if there exists a parameter
value set α such that the guard G evaluates to true with v∪α. Once the transition
is fired, the internal variables are assigned with v′ derived from the assignment
A(v∪α).

From the LTS semantics, one can derive runs and traces, which reflect the
concrete functioning of the system modelled with S and ||S||:

Definition 4 (Runs and traces) Let S be a STS and ||S|| = (Q,q0,∑,→) be its
LTS semantics.

— A run q0a0(α0)...qk−1ak−1(αk−1)qk is an alternate sequence of states and

valued events such that: ∃qi,qi+1,ai,αi(0 ≤ i ≤ k− 1) : q0
a0(α0)−−−−→ q1...

qk−1
ak(αk)−−−→ qk ∈→∗.

Runs(S) = Runs(||S||) is the set of runs found in ||S||. RunsF(S) is the set
of runs that end in a state q of F×DV with F ⊆ L.

— the trace of a run r = q0a0(α0)...qk−1ak−1(αk−1)qk, denoted Trace(r) is
the sequence a0(α0)...ak−1(αk−1).
TracesF(S) = TracesF(||S||) = {Trace(r) | r ∈ RunsF(S)}.
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3 Model generation of production systems
After having studied the above background, we came up to the conclusion that,

in order to target the largest part of all the Michelin CIM Level 2 applications, the
most appropriate solution would be to take advantage of the production events
exchanged among devices. Indeed, these events hold a lot of interesting informa-
tion that can be interpreted to understand how a whole industrial system behaves.
These events are exchanged over a network layer and stored into a logging system
that guarantee (synchronous) ordering and delivery. This context leads to some
assumptions that have been considered to design our framework:

— Black-box systems: production systems are seen as black-boxes from which
production events can be passively collected at the CIM2 level. Such sys-
tems are compound of assembly lines fragmented into several devices and
sensors. A production system has one or more entry and one or more exit
points. In the remainder of the paper, we assume that a production sys-
tem can be modelled by an (unknown) LTS, denoted Sua for System under
analysis, or Sut for System under test. This assumption allows to later
write definitions with Sua or Sut;

— Production events: a production event of the form a(α) includes a distinc-
tive label a along with a parameter assignment α. Two production events
a(α1) and a(α2) having the same label a must own assignments over the
same parameter set. Network protocols guarantee synchronous commu-
nications and the event ordering with timestamps assigned to a parameter
denoted time, which takes values from a global clock. A specific parame-
ter, denoted point, stores the physical location of devices;

— Traces identification: execution traces are sequences of production events
a1(α1)... ak(αk) identified by a specific parameter that is included in all
the event assignments of a trace. In this paper, this identifier is denoted
with pid and identifies products, e.g., tires at Michelin. At the same time,
we cannot have two different traces (for two products) having the same
pid;

— Event delivery: network protocols guarantee the event delivery and an as-
sembly line is conceived in such a way that it does not have deadlock states
except when a product exits the line.

In the remainder of this section, we describe the model generation of produc-
tion systems, illustrated in Figure 2. The model generation stage is conceived
upon the notion of expert system adopting a forward chaining. Such a system
separates the data (events, traces, transitions, models), from the reasoning: the
former are expressed with knowledge bases, a.k.a. facts while the latter is defined
with inference rules that are applied on the facts. Our framework Autofunk relies
upon two kinds of inference rules: on the one hand, we have rules capturing the
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Figure 2 – Model inference detailed steps

knowledge of a human expert or found in documentation. On the other hand, the
remaining rules relate to STS transformations. The use of an expert system is a
strong originality of our approach. And the possibility to change rules for match-
ing other kinds of systems is a manifest benefit. Nevertheless, such rules have to
be triggered a finite number of times to ensure the model inference termination
ans must always give identical results with the same bases of facts (soundness).
To reach that goal, we assume that inference rules used by our framework meet
these hypotheses:

Model inference assumptions:
1. inference rules are Modus Ponens (simple implications that lead to sound

facts if the original facts are true);

2. the facts in knowledge bases have an Horn form.

These assumptions guarantee that the resolution of the inference rules (based
on Modus Ponens) with a knowledge base (in Horn form) is sound and complete.
These assumptions will be used to discuss about the soundness and complexity of
the model generation. We are now ready to present the steps depicted in Figure 2.

3.1 Trace collecting and filtering
As depicted in Figure 2, Autofunk starts by collecting input data from files

gathering the events passing through the network of the system under analysis
Sua. In this way, it is not disrupted since production events are collected by its
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1 17−Jun−2014 2 3 : 2 9 : 5 9 . 0 0 | INFO |New F i l e
2 17−Jun−2014 2 3 : 2 9 : 5 9 . 5 0 | 1 7 0 1 1 |MSG IN [ nsys : 1 ] [ n sec : 8 ] [ p o i n t : 1 ] [ p i d : 1 ]
3 17−Jun−2014 2 3 : 2 9 : 5 9 . 6 1 | 1 7 0 2 1 |MSG OUT [ nsys : 1 ] [ n sec : 8 ] [ p o i n t : 3 ] [ t p o i n t : 8 ] [

p i d : 1 ]
4 17−Jun−2014 2 3 : 2 9 : 5 9 . 7 0 | 1 7 0 1 1 |MSG IN [ nsys : 1 ] [ n sec : 8 ] [ p o i n t : 2 ] [ p i d : 2 ]
5 17−Jun−2014 2 3 : 2 9 : 5 9 . 9 2 | 1 7 0 2 1 |MSG OUT [ nsys : 1 ] [ n sec : 8 ] [ p o i n t : 4 ] [ t p o i n t : 9 ] [

p i d : 2 ]

Figure 3 – Production event examples

1 r u l e ”Remove INFO e v e n t s ”
2 when :
3 $a : ValuedEvent ( a s s i g n m e n t . va lueOf ( ” t y p e ” ) == TYPE INFO )
4 t h e n
5 r e t r a c t ( $a )
6 end

Figure 4 – Inference rules example for filtering

logging system. A production message is mainly compound of a label along with
kinds of variable assignments. An example of messages is given in Figure 3. It
includes simplified production events similar to those extracted from the Michelin
logging system. INFO, 7011 and 17021 are labels that are accompanied with
assignments of variables, e.g., nsys that indicates an industrial device number, or
point that gives the device position in a workshop. With real events, there are
around 20 parameters.

Production events are formatted into a knowledge base of valued events of the
form a(α), with a a label and α a parameter assignment. Thereafter, this base is
filtered by means of inference rules of the form: When a(α), condition on a(α),
Then retract(a(α)). Figure 4 shows a rule example applied on Michelin systems.
This rule is written with the Drools 3 formalism. Drools is a rule-based expert sys-
tem where knowledge bases are expressed with Java objects. Straightforwardly,
this rule removes the production events that hold the INFO label. Indeed, human
experts confirmed us that it does not worth keeping this kind of event since they
do not express a behaviour part.

From this filtered valued event base, we reconstruct the corresponding traces
by linking together the events a(α) holding the same trace identifier pid, and by
ordering them with respect to their timestamps assignments. We call the resulting
trace set Traces(Sua):

Definition 5 (Traces(Sua)) Given a system under analysis Sua, Traces(Sua) de-
notes its trace set.

Traces(Sua) includes finite traces i.e., finite sequences of production events of

3. http://www.drools.org/
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the form a1(α1)....ak(αk) such that: ∃ unique v ∈ D,∀αi(1 ≤ i ≤ k) : αi(pid) =
(pid := v).

The trace set Traces(Sua) is then filtered two times. Firstly, it is analysed
for recovering the different entry and exit points of the production lines of Sua.
The entry and exit point sets are denoted Entry(Sua) and Exit(Sua). A trace of
Traces(Sua), starting with an assignment that does not include an entry point of
Entry(Sua), is considered as incomplete and removed.

Autofunk relies on a machine learning technique to compute Entry(Sua) and
Exit(Sua). Intuitively, every trace is analysed to collect on the first and last pro-
duction events, the assignments on the variable point. Indeed, this variable cap-
tures the product physical locations. We then obtain two raw sets Entry(Sua) and
Exit(Sua). In order to determine the entry and exit points of Sua, we rely on the
well-known K-means clustering method [WH79], a machine learning algorithm,
which is both fast and efficient, and does not need to be trained before being ef-
fectively used (that is called unsupervised learning, and it is well-known in the
machine learning field). K-means clustering aims to partition n observations into
K clusters. Here, observations are represented by the assignments of the variable
point in Entry(Sua) or Exit(Sua). As we want to group the outliers together and
leave the others in another cluster, we use K = 2.

This method is suitable for production systems because they hold physical
assembly lines where almost all the products flow from real entry and exit points.
Hence, on sufficiently large production event sets, we should observe high ratios
of products moving from the same (entry) points to the same exit points. Using
K-means helps automate this step, but, as explained in the evaluation of Autofunk
(Section 5), when there are only few production events, we need an expert to
provide them.

Once the entry points are learnt, we filter Traces(Sua) and keep in CTraces(Sua)
the complete traces, i.e., those that are obtained from one entry point of Sua and
that lead to a deadlock state of Sua:

Definition 6 (Complete traces) Let Traces(Sua) be the trace set of the produc-
tion system under analysis Sua = (Q,q0,Σ,→), and Entry(Sua) be its (physical)
entry point set. Let Qd ⊆ Q be the set of states q such that q 9.
CTraces(Sua) =de f {a1(α1)...an(αn)∈TracesQd(Sua) |α1(point)∈Entry(Sua)}

CTraces(Sua) may still include traces that are not relevant to recover a model
describing the normal functioning of Sua. Indeed, it often appeared during our ex-
perimentations that some traces represent abnormal product lifes in the production
system. Some unfinished products are indeed abruptly removed for different pur-
poses. We have chosen to remove such traces. This step is done by only keeping
the traces whose last assignments on the variable point give an exit point of Sua
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in Exit(Sua). In addition, we observed that the physical devices may repetitively
query other devices, depending on the use of the load of the devices. The re-
sulting traces express this repetitive behaviour with repetitive sequences of events
that we call repetitive patterns of events. We have chosen to remove the traces
including repetitive patterns in order to reduce the final model size. The detec-
tion of repetitive patterns in traces is done by removing the variable assignments
related to product since these assignments are always different among the traces.
We call this step normalisation. In our case, the variables designed as specific to
product are pid and time. We denote the trace normalisation with the operator
Norm. Autofunk tries to detect repetitive patterns in this way: if it finds a trace
t of the form t1 p...pt2 and another trace t ′1 p′t ′2 such that Norm(t1) = Norm(t ′1),
Norm(t2) = Norm(t ′2), Norm(p) = Norm(p′), then Norm(p) is a designated as
a repetitive pattern and t is removed from CTraces(Sua) since we suppose that t
does not express a new and interesting behaviour. Traces are completely removed
rather than cleaning them (i.e. deleting the repetitive patterns) to prevent from
encoding behaviours not observed from Sua.

A repetitive pattern detection algorithm is provided in [SD15]. Here, we prefer
giving the definition of the filtered trace set, denoted FTraces(Sua):

Definition 7 (Filtered traces) Let Traces(Sua) be the trace set of the production
system Sua = (Q,q0,Σ,→), Entry(Sua) and Exit(Sua), be its sets of entry and
exit points respectively.
Let a1(α1)...an(αn) ∈ CTraces(Sua), X be the variable set and Y ⊆ X the vari-
ables related to products.

1. Norm(a1(α1)...an(αn)) =de f a1(α
′
1)...an(α

′
n) with α′i = αi(X \Y )(1≤ i≤

n)

2. R =de f {t1 p...pt2 ∈ CTraces(Sua) | t ′1 pt ′2 ∈ CTraces(Sua), Norm(t1) =
Norm(t ′1), Norm(t2) = Norm(t ′2), Norm(p) = Norm(p′)}

3. Pattern(Sua) =de f {Norm(p) | t1 p...pt2 ∈ R}
4. FTraces(Sua) =de f {a1(α1)...an(αn)∈CTraces(Sua) |αn(point)∈Exit(Sua)}\

R

Traces are assembled and filtered to achieve a set FTraces(Sua) that is not
over-approximated, trace inclusion with Traces(Sua) is preserved:

Proposition 1 FTraces(Sua)⊆CTraces(Sua)⊆ Traces(Sua)

3.2 STS generation
This step aims at building a STS S from FTraces(Sua) in such a way that S

only encodes the behaviours found in FTraces(Sua). The STS generation is incre-
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mentally done by lifting traces into runs, and runs into STS paths. The translation
of FTraces(Sua) into a run set denoted Runs is done by completing traces with
states. Each run starts by the same initial state (l0,v /0) with v /0 an empty condition.
Then, new states are injected after each valued event. Runs is defined as :

Definition 8 (Structured Runs) Let FTraces(Sua) be a trace set obtained from
Sua. We denote Runs the set of runs derived from FTraces(Sua) with the following
inference rule:

tid=(a1,α1)...(ak,αk)∈FTraces(Sua),α1(pid)=(pid:=id)
(l0,v /0)a1(α1)(lid1,v /0)...(lidk−1,v /0)ak(αk)(lidk,v /0)∈Runs

The runs of Runs have states that are unique except for the initial state (l0,v /0).
We defined such a set to ease the process of building a STS having a tree structure.
Runs are transformed into STS paths that are assembled together by means of a
union. The resulting STS forms a tree compound of branches starting from the
location l0. Parameters and guards are extracted from the assignments found in
valued events. In this step, the events of the runs are normalised with the Norm
operator to remove the parameter assignments related to products (assignment
of the variables pid and time in our context). We obtain more generalised STSs,
which express the behaviours of Sua, independently of the manufactured products.

Definition 9 Given a run set Runs and Y the set of variables related to prod-
ucts, S= (LS, l0S,VS,V 0S, IS,ΛS,→S) is the STS expressing the (generalised) be-
haviours found in Runs such that:

— LS = {l | ∃r ∈ Runs,(l,v /0) is a state of r},
— l0S = l0 is the initial location such that ∀r ∈ Runs, r starts with (l0,v /0),
— VS = /0, V 0S = v /0,
— →S and ΛS are defined by the following inference rule applied on every

element r ∈ Runs:
(l,v /0)a(α)(l′,v /0) ∈ r,a(α′) = NormY (a(α)), p = {x | α ∈ DX ,x ∈ X},

G =
∧

(x:=v)∈α′
x == v

l
a(p),G−−−−→Sl′

This first ”raw” STS has a tree form, one branch exactly modelling one trace
of FTraces(Sua). Figure 5(a) illustrates the STS S obtained from the production
events of Figure 3. We have STS events, each associated with its own parameters.
Transitions are labelled with guards directly derived from parameter assignments.
It is manifest that this STS meets our initial goal in terms of trace inclusion with
FTraces(Sua):

Proposition 2
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(a) First inferred STS example (b) Reduced STS example

Figure 5

NormY (FTraces(Sua)) = NormY (TracesLd(S)) with Ld ⊆ LS the deadlock
location set of S.

3.3 STS reduction
The above STS S is most likely too large for being analysed in a scalable man-

ner. Yet, production systems are often conceived with finite physical paths and
build product with finite steps. As a consequence, the STS S should contain paths
capturing the same sequences of events (without necessarily the same parame-
ter assignments) and could be minimised. Initially, we studied the state merging
techniques used with passive inference methods, briefly presented in Section 1.2.
As stated earlier, these techniques build over-approximated models though, which
may lead to false positives when used for testing.

Consequently, we have chosen to add in our framework a context-specific and
lightweight STS reduction technique, which aims at reducing a STS S into another
STS denoted R(S). This technique can be assimilated to a formal classification
method (data mining) whose role consists in combining STS paths that have the
same sequences of events. The resulting STS R(S) still keeps its tree structure.
In addition, when STS paths are merged, their guards are wrapped into matrices.
The guard compression is performed in such a way that trace equivalence between
S and R(S) is preserved.

Given a STS S, its paths are firstly adapted to express sequences of guards in a
vector form. Later, the concatenation of these vectors shall give birth to matrices.
This adaptation is obtained with the definition of the STS operator Mat:

Definition 10 Let S=< LS, l0S,VS,V 0S, IS,ΛS,→S> be a STS inferred from Sua.
We denote Mat the STS operator that consists in expressing guards of STS paths
in a vector form.

Mat(S)=<LMat(S), l0Mat(S),VMat(S),V 0Mat(S), IMat(S),ΛMat(S),→Mat(S)> where:
— LMat(S) = LS, l0Mat(S) = l0S, IMat(S) = IS, ΛMat(S) = ΛS,
— VMat(S), V 0Mat(S) and→Mat(S) are given by the following rule:
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b = l0
(a1(p1),G1)...(an(pn),Gn)−−−−−−−−−−−−−−→S ln

V 0Mat(S) =V 0Mat(S)∧Mb == [G1, ...,Gn]

l0Mat(S)
(a1(p1),Mb[1])...(an(pn),Mb[n])−−−−−−−−−−−−−−−−−→Mat(S) ln

Given a branch b ∈→Mat(S), we also denote Mat(b) = M the vector storing
guards of b.

The STS paths having the same sequences of events can now be assembled.
These paths are grouped in path equivalence classes:

Definition 11 (STS path equivalence class) Let S=<LS, l0S,VS,V 0S, IS,ΛS,→S>
be a STS obtained from Sua (and having a tree structure).

[b] denotes the equivalence classes of S paths such that:

[b] = {b′ = l0S
(a′1(p′1),G

′
1),...(a

′
n(p′n),G

′
n)−−−−−−−−−−−−−−−→ l′n | b = l0S

(a1(p1),G1)...(an(pn),Gn)−−−−−−−−−−−−−−→ l,ai(pi) =
a′i(p′i) (1≤ i≤ n)}

The reduced STS R(S) of S is obtained by concatenating the paths of an equiv-
alence class [b] found in Mat(S) into one path. For an equivalence class [b], the
vectors found in the paths of [b] are joined into the matrix M[b]. A vector, which
collects an ordered sequence of guards of one path of S, is placed in one of the
matrix columns. Furthermore, we take advantage of this step to label all the final
locations of R(S) with ”Pass”. We denote these locations as verdict locations and
gather them in the set Pass⊆ LR(S)). R(S) is defined as follows:

Definition 12 (STS reduction) Let S =< LS, l0S,VS,V 0S, IS,ΛS,→S> be a STS
inferred from Sua. The reduction of S is modelled by the STS R(S) =< LR, l0R,VR,
V 0R, IR,ΛR,→R> where:

— IR = IS, ΛR = ΛS,
— LR, l0R,VR, V 0R and→R are given by the following rule:

[b] = {b1, ...,bm} with bi = l0S
(a1(p1),Gi1)...(an(pn),Gin)−−−−−−−−−−−−−−−→Mat(S) lin

V 0R =V 0R∧M[b] == [Mat(b1), ...,Mat(bm)]∧ (1≤ c[b] ≤ m),

l0R
(a1(p1),M[b][1,c[b]])...(an(pn),M[b][n,c[b]])−−−−−−−−−−−−−−−−−−−−−−−→R (Pass)

We also denote Entry(R(S)) = Entry(Sua), Exit(R(S)) = Exit(Sua),
Pattern(R(S)) = Pattern(Sua).

R(S) is a STS whose paths are composed of guards, which refer to a matrix
n×m denoted M[b], with [b] an equivalence class of paths of Mat(S). The choice
of the column in a matrix depends on a new variable c[b], which takes a value
between 1 and m within the initial condition V 0R.

The STS depicted in Figure 5(a) has two paths that can be combined since
they have the same sequence of labels. The guards are placed into two vectors
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M1 = [G1 G2] and M2 = [G3 G4]. These are combined into the matrix M[b], as
illustrated in Figure 5(b). By means of the initial condition V 0 and the variable
c[b], the two initial paths can be easily recovered with the assignments c[b] := 1 or
c[b] := 2.

The STS R(S) has less paths but still encodes the initial behaviours described
by the STS S. This is captured with the following proposition:

Proposition 3 Traces(R(S)) = Traces(S).

3.4 Soundness complexity and termination of the model gener-
ation

The soundness and the termination of the model inference stage mainly depend
on the inference rules and the knowledge bases. The latter hold by (positive)
facts (Events, Traces, Transitions, Models) that have an Horn form. We have
assumed that the inference rules are Modus Ponens. Therefore, the resolution of
the inference rules and the inference of knowledge bases is sound and complete
(is achieved in finite time). From this fact and by considering the propositions 1,
2 and 3, we can state the soundness of the model inference stage with:

Proposition 4
1. FTraces(Sua)⊆ Traces(Sua) and FTraces(Sua) ⊆ TracesPass(R(S))

2. NormY (TracesPass(R(S)))=NormY (FTraces(Sua))⊆NormY (Traces(Sua))

The whole complexity of this step is polynomial in time and is proportional to
O(t +m(t2 + t + k+ log(m))) with m production events, t traces in Traces(Sua),
k inference rules for filtering (worst case). The complexity to filter m production
events with k rules is O(mk). The remaining ones are sorted in O(m ∗ log(m))
(with the Java Collection.sort()). We mine Traces(Sua) with K-means, whose
complexity is proportional to O(2t) with t the number of traces in Traces(Sua).
The complexity to extract CTraces(Sua) from Traces(Sua) is O(t), since only the
first and last valued events of the traces are read. The algorithm, which builds
FTraces(Sua), is proportional to O(t2m). Traces are lifted to the STS level by
covering them with a complexity proportional to O(m). The STS reduction com-
plexity is O(m+ tm). Indeed, path equivalence classes are generated with a hash
function, called on event sequences (O(m)). The paths of a class are grouped with
a rule covering all the paths together (O(tm)).
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(a) Offline Passive Testing (b) Online Passive Testing

Figure 6

4 Passive testing
The second part of Autofunk relates to the testing phase. It takes a model R(S)

inferred from the reference system Sua and production events collected from an-
other system under test Sut. R(S) expresses some possible behaviours that should
happen, which are encoded by the traces TracesPass(R(S)). We refer to these
traces as pass traces. We call the others, possible failure traces because R(S) is a
partial model.

Sut can refer to the same production system as Sua, which has been updated.
In this case, testing comes down to checking that changes have not introduced new
faults (regression testing). Sut can also be a new system in a new factory, which
should behave as Sua.

In this section, we introduce two passive testing methods, the first one being
offline, and the second one using an online mode.

4.1 Offline passive testing
The offline mode is outlined in Figure 6(a). A set of production events has

been collected from Sut, in the same way as previously with Sua. These are
grouped into traces to form the trace set Traces(Sut). The latter is filtered as
described in Section 3.1 to obtain a set of filtered traces FTraces(Sut). A passive
tester is finally called to check whether Sut conforms to R(S) with FTraces(Sut).
Conformance is defined with implementation relations.

4.1.1 Implementation relations

We define conformance with a first implementation relation to check whether
any filtered trace of Sut matches a behaviour captured by R(S). This first imple-
mentation relation, denoted with ≤ f t ( f t for filtered traces), is defined by:
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Definition 13 (Implementation relation ≤ f t) Let R(S) be an inferred model of
Sua and Sut be the system under test.
Sut ≤ f t R(S) =de f FTraces(Sut)⊆ TracesPass(R(S))

The model R(S) can be under-approximated and may not include some correct
behaviours. If an execution of Sut is not captured by R(S), one cannot conclude
that Sut is a faulty implementation. Michelin engineers hence wished the defi-
nition of a second relation ”less strict on the parameters on condition that these
parameters could be found inside the model”. This implementation relation must
be considered as a complementary relation of ≤ f t , which is fully useful when
≤ f t returns a possible failure trace of Sut. The second relation aims to point
out whether this trace might reflect a realistic scenario, composed of a correct
sequence of events completed of parameters found in other traces of the model
R(S). This helps classify possible failure traces in risk importance. In the Miche-
lin context, when a trace of Sut is a possible failure trace for both relations, the
likelihood of failure detection is the highest.

This relation, denoted≤m f t (with m f t for multiple filtered traces), defines that
an implementation Sut is correct iff its filtered traces a1(α1)...an(αn) can be found
in several traces of TracesPass(R(S)) having the same sequence of labels a1...an.
The implementation relation ≤m f t , is defined by:

Definition 14 (Implementation relation ≤m f t) Let R(S) be an inferred model of
Sua and Sut be the system under test.
Sut ≤m f t R(S) =de f ∀t = a1(α1)...an(αn) ∈ FTraces(Sut), ∀α j(x)(1≤ j≤n),∃t ′ ∈
TracesPass(R(S)) : t ′ = a1(α

′
1)...an(α

′
n) and α′j(x) = α j(x).

In the following, we propose to rewrite this relation in a simpler form. Indeed,
all the traces of R(S) having the same sequence of labels can be found in one
equivalence class [b] (Definition 11), and in one path of the reduced STS R(S) (in
which every equivalence class [b] is reduced into one STS path). We remind that
a sequence of guards found in a path of an equivalent class [b] is stored into one
column of the matrix M[b]. Each variable assignment α j(x) should now satisfies
one of the guards of the matrix line j in M[b][ j,∗]. The implementation relation
≤m f t can be reformulated as:

Proposition 5 Sut ≤m f t R(S) iff ∀t = a1(α1) . . . an(αn) ∈ FTraces(Sut),∃b =

l0R(S)
(a1(p1),M[b][1,c[b]]),...,(an(pn),M[b][n,c[b]])−−−−−−−−−−−−−−−−−−−−−−−−→ Pass with (1 ≤ c[b] ≤ m), ∀α j(x)(1 ≤

j ≤ n) : α j(x) |= M[b][ j,1]∨·· ·∨M[b][ j,m].

If we take back the example of Figure 5(b), the trace t = (17011(nsys :=
1,nsec := 8, point := 1, pid := 1) 17021(nsys := 1,nsec := 8, point := 4, t point :=
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9, pid := 1) is not a pass trace for the relation≤ f t because this trace cannot be ex-
tracted from one of the paths of the STS of Figure 5(b). If we focus on the guards
and on the matrix M[b], the parameter assignments of the event 17011(nsys :=
1,nsec := 8, point := 1, pid := 1) satisfy the guard G1 but those in 17021(nsys :=
1,nsec := 8, point := 4, t point := 9, pid := 1) do not meet the guard G2 on ac-
count of the variables point and t point, which do not take the expected val-
ues. In the second column of the matrix, the first guard G3 does not hold with
(nsys:=1,nsec:=8,point:=1,pid:=1).

With the implementation relation≤m f t , the parameter assignments of the event
17011(nsys := 1,nsec := 8, point := 1, pid := 1) satisfy the guard G1 and those
in 17021(nsys := 1,nsec := 8, point := 4, t point := 9, pid := 1) satisfy the guard
G4. Hence, the trace t is a pass trace for the relation ≤m f t . This example shows
that ≤m f t is a weaker relation than ≤ f t and that:

Proposition 6 Sut ≤ f t R(S) =⇒ Sut ≤m f t R(S)

The proof of Proposition 6 is given in Annex.
The implementation relation ≤m f t can be simplified again by re-writing the

disjunction of guards M[b][ j,1]∨ ...∨M[b][ j,m], found in the matrix M[b]. This
formula is simplified by gathering the equalities x == val together with disjunc-
tions for every variable x. Such equalities are extractable by means of the the
Proj operator (see Definition 3). We obtain one guard of the form

∧
x∈I(x ==

val1 ∨ ...∨ x == valk). If we generalise this idea on all the matrices of R(S), it
becomes possible to replace matrices composed of several columns into matrices
of one column of guards (vectors). We propose to transform the STS R(S) into
another STS, denoted D(S) composed of such vectors.

Definition 15 Let R(S) =< LR, l0R,VR,V 0R, IR,ΛR, →R> be a reduced STS, in-
ferred from Sua. We denote D(S) the STS < LD, l0D,VD,V 0D, ID,ΛD,→D> de-
rived from R(S) such that:

— LD = LR, l0D = l0R, ID = IR, ΛD = ΛR,
— VD,V 0D and→D are given by the following inference rule:

b = l0R
(a1(p1),M′[b][1,c

′
[b]])...(an(pn),M′[b][n,c

′
[b]])−−−−−−−−−−−−−−−−−−−−−−−→R ln(1≤ c′[b] ≤ m) in V 0R

l0D
(a1(p1),M[b][1])...(an(pn),M[b][n])−−−−−−−−−−−−−−−−−−−→D ln,M[b][ j](1≤ j≤n) =∧

x∈p j

(Pro jx(M′[b][ j,1])∨·· ·∨Pro jx(M′[b][ j,m]))

V 0D =V 0D∧ (c[b] == 1)∧M[b]

The second implementation relation ≤m f t can now be expressed with D(S):
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Proposition 7
Sut ≤m f t R(S) iff ∀t = a1(α1)...an(αn) ∈ FTraces(Sut),∃ l0D(S)

(a1(p1),M[b][1]),...,(an(pn),M[b][n])−−−−−−−−−−−−−−−−−−−→ Pass such that ∀α j(1≤ j ≤ n),α j |= M[b][ j].

All these transformations on ≤m f t allow to say that ≤m f t holds iff the traces
of Sut also are pass traces of the model D(S). Now, the meaning of≤m f t is not far
from the meaning of the first relation ≤ f t , and it turns out that ≤m f t is definable
with ≤ f t :

Proposition 8 Sut ≤m f t R(S)⇔ Sut ≤ f t D(S).

This proposition involves that the same passive tester algorithm can be used to
check if a given system under test meets both relations ≤ f t and ≤m f t , by means
of the two STSs R(S) and D(S).

4.1.2 Offline passive tester algorithm

The passive tester algorithm is presented in Algorithm 1. It takes the traces
of Sut and R(S) and starts by constructing the filtered traces FTraces(Sut) and
D(S). Then, it covers every trace t of FTraces(Sut) and checks with the procedure
complies with(t, R(S))(lines 22-32) whether t is a trace of R(S). If the function
returns True, it is not necessary to check if the traces t satisfies the second relation
≤m f t since ≤ f t =⇒≤m f t (Proposition 6). On the contrary, the trace t is placed
into the set T1, which gathers the possible failure traces w.r.t. ≤ f t . The algorithm
performs the previous step once more but on the STS D(S). If the function returns
False, the trace t is placed into the set T2. The latter gathers the possible failure
traces, w.r.t. the relation ≤m f t . At the end of the algorithm, if both T1 and T2
are empty, the verdicts ”Pass≤ f t” and ”Pass≤m f t” are returned, which means that
both implementation relations hold. Otherwise, when the first relation does not
hold (or the second one), T1 is provided (or T2).

When one of the implementation relations does not hold, this algorithm offers
the advantage to provide the possible failure traces of FTraces(Sut). Such traces
can later be analysed to check if Sut has defects. That is helpful for Michelin
engineers as it allows them to only focus on what are potentially faulty behaviours,
reducing debugging time.

Soundness, termination and complexity of Algorithm 1:
The soundness of Algorithm 1 is captured by the following proposition, whose

sketch of proof is given in Annex:

Proposition 9
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Algorithm 1: Passive testing algorithm
input : R(S),Traces(Sut)
output: Verdicts and possible failure trace sets T1,T2

1 T1 = T2 = /0;
2 Build FTraces(Sut);
3 Build D(S);
4 foreach t ∈ FTraces(Sut) do
5 found=false;
6 foreach i ∈ 1, . . . ,n do
7 if complies with(t, R(Si)) then
8 found=true; break;

9 if f ound == f alse then
10 T1 = T1 ∪{t};
11 foreach i ∈ 1, . . . ,n do
12 if complies with(t, D(Si)) then
13 found=true; break;

14 if f ound == f alse then
15 T2 = T2 ∪{t}

16 if T1 == /0 and T2 == /0 then
17 return ”Pass≤ f t , Pass≤m f t ”

18 if T1 6= /0 and T2 == /0 then
19 return T1, ”Pass≤m f t ”

20 if T1 6= /0 and T2 6= /0 then
21 return T1, T2

22 Function complies with(trace t, STS S ) : bool is

23 if ∃b = l0S
(a1(p1),G1)...(ak(pk),Gk)−−−−−−−−−−−−−−−→ Pass : trace = a1()α1) . . .ak(αk) then

24 M[b] = Mat(b) is the Matrix l× c of b;
25 i = 1;
26 while i≤ c do
27 C = M[b][∗, i];
28 foreach j ∈ 1, . . . ,k do
29 if α j 6|=C[ j] then break ;

30 if j == k then return True ;
31 i++;

32 return False;
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1. Sut ≤ f t R(S) =⇒ Algorithm 1 returns ”Pass≤ f t”, ”Pass≤m f t”

2. Sut ≤m f t R(S) =⇒ Algorithm 1 returns ”Pass≤m f t”

Algorithm 1 terminates if FTraces(Sut) is finite (which is necessarily the case
since the filtered traces are built from a finite number of log files). For every trace
in FTraces(Sut), it covers the paths of R(S) and D(S). These STS also have a
finite number of paths (at worst equal to the number of traces in FTraces(Sua)).
The complexity of Algorithm 1 is proportional to O(mk +mlog(m) +m+ T +
tmc)) with t the number of filtered traces of Sut, m the number of production
events, k the number of inference rules, c the highest number of columns in any
matrix M[b] and T the transition number of R(S) (in the worst case).

4.2 Online passive testing
The strong disadvantage of offline passive testing concerns the fault detection

delay, which may be long since the traces of Sut are collected during a fixed period
of time and next analysed. In contrast, in online mode, production events of Sut
are picked up on the fly and conformance is directly checked. Online passive
testing can be assimilated to just-in-time fault detection in such a way that users
are notified as soon as possible. Nonetheless, this testing mode brings out several
issues, which did not appear previously:

— as production events are received one after one, traces cannot be anal-
ysed to remove those including repetitive patterns. Instead of focusing on
FTraces(Sut), we shall consider the complete traces of Sut (CTraces(Sut)).
Hence, implementation relations are re-written with CTraces(Sut);

— the traces in CTraces(Sut) are composed of repetitive patterns, but the
model generation approach removes repetitive patterns in the STS R(S).
Therefore, a comparison between CTraces(Sut) and TracesPass(R(S)) is
no more possible. To define implementation relations, we have to consider
an augmented STS of R(S), which also encodes the traces composed of the
repetitive patterns of Pattern(R(S)). We denote this STS extension with
SR (and the extensions of its derived models R(S)R and D(S)R);

— the passive tester algorithm is now conceived on the ”checker state” prin-
ciple [LCH+06], which means that, for every trace t of Sut, it maintains
a checker state on the STSs R(S)R and D(S)R by constructing their runs
that have the same event sequence as t. These runs are updated every time
new production events are observed from Sut. They allow the detection of
possible failure traces.

These modifications also require that a production system under test can be
modelled by a LTS Sut compatible with a STS R(S) inferred from Sua :
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Figure 7 – STS extension SR

Definition 16 Let R(S) be a STS obtained from Sua and Sut be a production sys-
tem. We denote that Sut is compatible with R(S) iff Pattern(Sut) = Pattern(R(S)).

4.2.1 Implementation relations

We still consider two implementation relations to define conformance between
a STS R(S) and a compatible production system Sut. Both relations are still
founded upon the concept of partial trace inclusion. However, this inclusion is
now established between the complete traces of Sut (CTraces(Sut)) and the traces
of the STSs R(S)R and D(S)R.

Given a STS R(S), obtained from a production system Sua, a repetitive pattern
p ∈ Pattern(R(S)) is a sequence of events that appeared several times in a trace
of Sua. To recover the traces composed of repetitive patterns, we augment R(S)
with loops of transitions labelled by p. Figure 7 illustrates this extension. Let
p = a1(α1)...ak(αk) be a repetitive pattern of Pattern(R(S)). In reference to the
definition of the filtered traces, there exist transitions from a location l to l′ in
R(S) labelled with events and guards that accept every valued event of p (solid
transitions in Figure 7). The extension of R(S) comes down to adding a loop by
doubling the last transition in order to target l again. With this loop, we recover
the runs and the traces composed several times of the repetitive pattern p. This
STS extension is defined as:

Definition 17 Let S be a STS set inferred from a production system Sua, and
Pattern(S) be its set of repetitive patterns.

SR is the STS extension < LS, l0S, VS, V 0S, IS, ΛS, →SR> such that →SR is
obtained by the following inference rules:
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l
(a(p),G)−−−−−→S l′

l
(a(p),G)−−−−−→SR l′

l
(a1(p1),G1)...(ak−1(pk−1),Gk−1)−−−−−−−−−−−−−−−−−−→S lk−1

(ak(pk),Gk)−−−−−−→S l′,
a1(α1) . . .ak(αk) ∈ Pattern(S), α j |= G j(1≤ j ≤ k)

lk−1
(ak(pk),Gk)−−−−−−→SR l

We also denote R(S)R and D(S)R the STS extensions of R(S) and D(S).

Now, we can revisit the two implementation relations used in offline mode.
From these, we define two relations denoted ≤ct and ≤mct as they are formalised
on the complete traces of Sut.

Definition 18 (Implementation relations ≤ct , ≤mct) Let R(S) be a STS inferred
from Sua and Sut be the system under test, compatible with R(S).

Sut ≤ct R(S) =de f CTraces(Sut)⊆ TracesPass(R(S)R)
Sut ≤mct R(S) =de f CTraces(Sut)⊆ TracesPass(D(S)R)

Comparison between the conformance definitions in offline and online
modes: although the relations ≤ f t and ≤ct (resp. ≤m f t and ≤m f t) sound simi-
lar, they exhibit some distinct properties and are actually complementary:

1. ≤ct is written with the complete traces of Sut, instead of its filtered traced
for ≤ f t . As a consequence, more traces of Sut are considered with ≤ct .
This implementation relation should reveal more faulty implementations;

2. yet, these complete traces are not filtered on the exit points of Sut. As pre-
sented early for CTraces(Sua), CTraces(Sut) may hold irrelevant traces,
which capture abnormal product life spans within the production system
(a product manually removed for instance). As a consequence, the on-
line passive tester should return more possible failure traces. Hence, more
traces will have to be manually analysed after the testing step. Naturally,
this is time consuming.

4.2.2 Online passive tester Algorithm

The online passive tester takes as input the STS R(S) and receives produc-
tion events from Sut in a synchronous and ordered manner (assumptions given in
Section 3). We have chosen to reduce the processing time of the passive tester
by designing a parallel algorithm. The received production events are processed
among multiple monitor instances, which aim at checking whether both relations
≤ct and ≤mct hold. The receipt of the production events and the management of
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the monitor instances are done by Algorithm 2, which represents the front-end of
the online passive tester.

Algorithm 2 starts by generating D(S) and the STS extensions R(S)R, D(S)R.
Then, it continuously receives production events from Sut. This flow of incoming
events is distributed across different instances of the procedure Monitor. A mon-
itor has to build a trace with respect to the trace identification (variable pid) and
to check whether ≤ct and ≤mct hold for this trace. In line 5 of Algorithm 2, if
there already exist two Monitor instances m1 and m2 previously launched for the
assignment pid := v, then the received event is forwarded to them. At this point,
there should be two instances of Monitor running the same algorithm per pid, i.e.,
per product being manufactured. On the contrary, if this event is the first event of
a trace of Sut, Algorithm 2 launches two new Monitor instances, one with the STS
R(S)R and the other one with D(S)R respectively for ≤ct and ≤mct (lines 8-11). If
a Monitor instance has returned a non-empty trace set T (lines 12-17), composed
of possible failure traces, then Algorithm 2 produces either the verdict Fail≤ct or
Fail≤mct , which involves that ≤ct or ≤mct does not hold. As for the offline passive
tester, it also returns the possible failure trace sets T1 or T2, which can later be
analysed.

Algorithm 2: The Front-end of the passive tester
input : R(S)
output: Trace sets T1, T2 ”Fail≤ct ”,”Fail≤mct ”

1 Build D(S), R(S)R,D(S)R ;
2 Monitors =∅;
3 while receive (a(α)) do
4 (pid := v) = α(pid);
5 if ∃(m1 = Monitor((pid := v),R(S)R) ∈Monitors and m2 = Monitor(pid := v,D(S)R) ∈Monitors) then
6 forward (a(α)) to m1 and m2;

7 else
8 launch t1 = Monitor((pid := v),R(S)R);
9 launch t2 = Monitor((pid := v),D(S)R);

10 Monitors = Monitors∪{t1, t2};
11 send (a(α)) to t1 and t2;

12 if m1 = Monitor((pid := v),R(S)R) ∈Monitors has returned T 6= /0 then
13 T1 = T1 ∪T ; return ”Fail≤ct ”;
14 Monitors = Monitors\{m1};

15 if m2 = Monitors((pid := v),D(S)R) ∈Monitors has returned T 6= /0 then
16 T2 = T2 ∪T ; return ”Fail≤mct ”;
17 Monitors = Monitors\{m2};

The procedure Monitor takes as inputs a pid and a STS S (either R(S)R or
D(S)R). It is is based upon a forward checking approach and builds runs of the
STS S with respect to the received production events until no more run can be
constructed or until a deadlock state of Sut is observed. It starts by covering the
STS S given as input from its initial state q0 = (l0S,V 0S). An index number,
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initially set to 0 is added to this state. As stated in the definition of the STS
reduction, any trace t of R(S) is obtained by following one of its paths b and by
assigning values to variables with respect to one column of the matrix M[b]. This
index, put with a run r, is used to keep track of this column number throughout the
building of the run r. Whenever an event a(α) is received (line 4), the procedure
Monitor concatenates a(α) to trace, which stands for the current trace of Sut. It
constructs, from the set Run, the new set of runs Runs′ of S that have the same
production events as trace by calling the weak complies with procedure. Two
kinds of results may emerge from weak complies with:

1. if Runs′ is empty (lines 9,10), this means that the STS S has no run having
the same valued event sequence as trace. In this case, Monitor has built
a trace of Sut starting from one of its entry points that is not a trace of S.
Consequently, there exists a trace of CTraces(Sut), which does not belong
to TracesPass(S), with S either equal to R(S)R or D(S)R. This trace is thus
a possible failure trace either for≤ct or≤mct . It is returned to the front-end
of the passive tester;

2. otherwise (lines 11,12), the algorithm stores the new set of runs into Run
and waits for the next event until no more production event is received, i.e.,
until a deadlock state of Sut is detected (lines 13,14). Deadlock states are
detected when no event is received after a given period of time. This delay
can be manually set, but it can also be automatically found by analysing the
timestamps found in the traces of the system under analysis Sua. If a dead-
lock state is detected, the procedure Monitor has constructed a trace of Sut,
capturing a behaviour that starts from an entry point of Sut and that fin-
ishes in one of its deadlock states. Hence, this is a trace of CTraces(Sut).
The procedure checks if there exists a run r in Runs such that r ends by
a Pass state. If not, this entails that the trace of Sut does not belong to
TracesPass(S), with S either equal to R(S)R or D(S)R. Once more, this
trace is a possible failure trace either for≤ct or≤mct , and is returned to the
front-end of the passive tester.

Given the set Runs of runs of S, the procedure weak complies with aims at
building the set of runs Runs′ of S having the same production event sequence
as trace. It takes every run (r,c) of Run with r finished by a state (l,v) and l a
location of S. It also takes the last received production event a(α). The procedure
covers the transitions labelled by a(p) and starting by l to build the runs of Runs′.

For a transition l
a(p),G,A−−−−−→ l2, with the guard G referencing a matrix M[b] Nbl×Nbc

(line 19):

1. if (r,c) = (q0,0), the production event a(α) is the first one received from
Sut. For each column cp of the matrix M[b], if v∪α satisfies the guard
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M[b][k,cp] (M[b][k,cp](v∪α) true, line 22), then a new run r2 is constructed
and added to Runs′. The state q0 = (l0,V 0) is updated to set the variable
c[b] to the value cp. This variable identifies the column number of M[b].
r2 = q0a(α)qnext is composed of the received production event and of the

state qnext reached after the firing of the transition l
a(p),G,A−−−−−→ l2 from the

state q0 = (l0,V 0);

2. otherwise (lines 27-31), the matrix column is given by the index c in the
couple (r,c). If v∪α satisfies the guard M[b][k,c], the run r is completed
with a(α)qnext with qnext = (l2,A(v∪α)), the state reached after the firing

of the transition l
a(p),G,A−−−−−→ l2 from the state (l,v).

1 Procedure Monitor((pid := v), STS S is
2 Runs = {(q0,0) | q0 = (l0S,V 0S)};
3 trace = /0;
4 while receive a(α) do
5 trace = trace.a(α);
6 Runs′ = /0;
7 foreach (r,c) ∈ Runs do
8 Runs′ = Runs′ ∪weak complies with(a(α),(r,c));

9 if Runs′ == /0 then
10 T = T ∪{trace}; return T ;

11 else
12 Runs = Runs′;

// no more receipt -> deadlock detected
13 if ∀(r,c) ∈ Runs, r ends with q = (l,v) and l /∈ Pass then
14 return {trace};

15 Procedure weak complies with(a(α),(r,c),S) is
16 Runs′ = /0;
17 r = q0a1(α1)q1 . . .q with q = (l,v) and l ∈ LS;

18 for l
a(p),G,A−−−−−→ l2 ∈→S do

19 G = M[b][k,c[b]], with M[b] the matrix Nbl×Nbc;
20 if (r,c) == (q0,0) then
21 foreach cp between 1 to Nbc do
22 if M[b][k,cp](v∪α) true then
23 q0 = (l0,(V 0∧ (c[b] = cp)));
24 qnext = (l2,v2 = A(α∪ v));
25 r2 = q0a(α)qnext ;
26 Runs′ = Runs′ ∪{(r2,cp)};

27 else
28 if G = M[b][k,c](v∪α) true then
29 qnext = (l2,v2 = A(α∪ v));
30 r2 = ra(α)qnext ;
31 Runs′ = Runs′ ∪{(r2,c)};

32 return Runs′;
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Soundness, termination and complexity of Algorithm 2:
The soundness of Algorithm 2 is captured by the following proposition, whose
sketch of proof is given in Annex:

Proposition 10
1. Sut ≤ct R(S) =⇒ Algorithm 2 does not return ”Fail≤ct”, ”Fail≤mct”;

2. Sut ≤mct R(S) =⇒ Algorithm 2 does not returns ”Fail≤mct”.

Algorithm 2 terminates upon condition that the number of production events,
observed from Sut, is finite. Indeed, the procedure Monitor builds runs while re-
ceiving events by covering the states of the underlying LTS semantics of the STS
given as input (either R(S)R or D(S)R). If n is the number of locations of the STS,
the state number K of the LTS semantics is equal to K = n ∏

(v∈I)
card(Dv). This

state number may be huge, but this corresponds to the worst case. Algorithm 2
builds D(S) with two inference rules. The complexity of this step is proportional
to O(T ) with T the transition number of R(S). The generation of the STS exten-
sions is O(T ) as well. Algorithm 2 launches two Monitor instances per product
being constructed within the production system. If p if the number of products,
the whole complexity of Algorithm 2 is O(pK +T ).

5 Evaluation
We evaluate in this section the benefits brought by Autofunk and its and limi-

tations. We shall express its usability degree with the following criteria:
— C1 (Accuracy/precision): are models accurate w.r.t a real production sys-

tem? Do we always obtain the same results? Does the tool return Pass
verdicts when the system under test is identical to the one used to infer
models?

— C2 (Efficiency/Effectiveness): can a production system be tested in reason-
able time? Does Autofunk detect faults? Does it help reduce the testing
phase complexity?

— C3 (Scalability): can Autofunk take as inputs large trace sets and still build
models and test systems in reasonable time?

Initially, while the Autofunk implementation, we executed functional tests in a
controlled environment to check how Autofunk builds models and if it can detect
faults. In a sense, these functional tests partially evaluate the criteria C1 and C2.
Sua is materialised by a set of twenty traces constructed manually and composed
of ten production events. The functional tests aimed to check that Autofunk al-
ways provides the expected STSs. Then, other functional tests were used to check
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Exp. #
Days

# Events Card(Traces (Sua)) N M # FTraces
Subsets

# R(Si) Time (min)

A1 1 660,431 16,602 2 3 4,822 332 1
A2 1,310 193
B1 8 3,952,906 66,880 3 3 28,555 914 9
B2 18,900 788
B3 6,681 51
C1 11 3,615,215 61,125 3 3 28,302 889 9
C2 14,605 681
C2 7,824 80
D1 11 3,851,264 73,364 2 3 35,541 924 9
D2 17,402 837
E1 20 7,635,494 134,908 2 3 61,795 1,441 16
E2 35,799 1,401
F1 23 9,231,160 161,035 2 3 77,058 1,587 24
F2 43,536 1,585

Table 1 – Results of 6 experiments on model inference

that Autofunk detects faults. To materialise Sut, we kept the same trace set on
which we injected faults. We considered the removal/addition of events, of pa-
rameters and of repetitive patterns. The functional tests seeded the tester module
of Autofunk with this trace set and checked that the faults were detected.

This preliminary phase does not completely answer to the previous questions
though. This is why Autofunk was installed inside a real production system (on
a Linux machine with 12 Intel(R) Xeon(R) CPU X5660 @ 2.8GHz and 64GB
RAM) to assess under what real circumstances these criteria are fulfilled. This
system is a workshop (part of a whole factory), in which two main operations
are performed: tire assembling (assembling the components onto a tire building
drum) and curing (applying pressure to the tire in a mold). It is composed of 3
entry points starting 3 main assembly lines split into a large set of sub-lines to
reach devices and operators. Tires can be placed in storage areas in which they
may stay several days up to some weeks, or go out of the workshop through 3
exit points. For confidentiality reasons, we cannot provide more details about the
system neither a plan of its layout.

5.1 Empirical setup and results
We collected production events from this system by considering several (col-

lection) delays to build models: 1, 8 11, 20 and 23 days.
Table 1 summarises the observed results. The third column gives the num-

ber of production events recorded on the system. The next column shows the
trace number obtained after the parsing step. N and M represent the number of
entry and exit points. The column Trace Subsets shows how FTraces(Sua) is
segmented per entry point into subsets and the number of traces included in each
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Exp. Sut Card
(Traces(Sua))

Card
(FTraces(Sut))

Pass≤ f t Pass≤m f t Time (min)

1 Sut1 = Sua 61,125 61,125 100% 100% 17
2 Sut2 updated from

Sua
61,125 25,047 98% 98% 10

3 Sut3 6= Sua 61,125 2,075 3% 30% 4

Table 2 – Results of 3 experiments on passive testing

subset. For instance, in the second experiment, three entry points are detected,
hence, FTraces(Sua) is partitioned into three subsets, which give birth to the
same number of STSs. The trace numbers, given in this column, also correspond
to the numbers of paths generated in the first STSs. The eighth column, # R(Si),
represents the number of paths found in each reduced STSs R(S1), ...,R(Sn), with
n the number of entry points. Finally, execution times are rounded and expressed
in minutes in the last column.

Based on the recommendations given by the Michelin engineers, we chose
to keep as reference model Sua the one obtained in Experiment C. It expresses
the system functioning, manufacturing the same product (same tire reference) and
it includes the correct number of entry and exit points of the real system. This
model was then used to passively test a modified version of the production system
in order to detect regressions.

Afterwards, we collected three trace sets from the production system for test-
ing purposes (offline mode) at different periods of time to mostly cover different
cases. These experiments are presented in Table 2. The second column shows
different kinds of system under test: Sut1 that was the same as Sua, Sut2 that
was slightly updated from Sua with new application versions, and Sut3 that was a
system much older than Sua and hence very different (older application versions,
perhaps other devices, etc.). Column 3 gives the sizes of the trace sets used to
infer models, column 4 the sizes of the trace sets collected from the systems under
test. The two next columns show the percentage of pass traces w.r.t. the relations
≤ f t and ≤m f t . The last column indicates the execution time for the testing phase.

5.2 Evaluation
5.2.1 C1 (Accuracy/precision)

To answer the questions concerning these criteria, we firstly focused on model
generation. We extracted the values of columns 4 and 7 in Table 1 to depict the
stacked bar chart illustrated in Figure 8(a). This chart shows, for each experiment,
the proportion of filtered traces kept to build models, over the initial number of
traces in Traces(Sua). The first limitation of Autofunk takes effect in Experi-
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ment A. Indeed, only 37% of the initial traces are kept to build models. There are
two reasons for this. In one day, too few traces are gathered for using K-means
with success. In this trace set, there is not a clear separation between the entry/exit
points and the others. Therefore, K-means may return wrong point clusters. In this
situation, entry and exit points have to be manually given by an engineer. This is
what happened in Experiment A. The second reason concerns the collection delay
itself. During one day, most of the recorded traces do not start or end at real entry
or exit points of the production system, but rather start or end somewhere within
assembly lines. Indeed, the workshop contains storage areas where products can
stay for a while, depending on the production campaigns or needs for instance.
That is why, on a single day, so many incomplete traces are filtered. With more
production events, such a phenomenon is limited because these storage delays are
absorbed in the period of time considered to collect production events. With the
other experiments, the ratios of traces removed from the initial set Traces(Sua)
vary between 20 % to 30 %. After some inspections, we observed that, among
these traces, around 15 % to 25% appear to be traces composed of repetitive pat-
terns of events. The other traces capture abnormal behaviours of the production
system, e.g., unexpected removal of products, device interruptions, etc. and are
deleted according to the clusters of entry / exit points given by K-means. We
observed that these ratios are acceptable, and few traces expressing normal be-
haviours of the production system are deleted. But the trace filtering could still
be refined with more inference rules or with another cluster analysis technique.
For instance, Table 1 revealed strange behaviours not taken into consideration by
Autofunk. In experiments B and C, three entry points are detected whereas two
are found in the others. Actually, the real production system has three entry points
whose two are mainly used. The third one is employed to equilibrate the produc-
tion load between this system and a second one located close to it in the same
factory. Depending on the period, this entry point may be more or less solicited,
hence the difference between experiments B, C and experiment D.

The generated models from FTraces(Sua) are accurate in the sense that the
normalised traces of the models are equal to the normalised traces of Traces(Sua)
(Proposition 9). Regarding the testing phase, we measured accuracy with the first
experiment of Table 2. The system under test is here exactly identical to the
original production system Sua. This experiment shows that the passive tester
yields the expected test verdicts, hence no fault were detected (no regression).
Indeed, both relations ≤ f t and ≤m f t are satisfied. Finally, for a given trace set,
if the traces are analysed in a different order, we still obtain the same results,
because traces and STS paths are analysed/compared separately by the algorithms
of Autofunk. K-means also computes the same clusters from the same trace set.

We can conclude that the accuracy and precision of Autofunk depends on the
amount of traces collected to build models and on the delay considered to get
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(a) Proportions of filtered traces (b) Memory consumption vs execution time

(c) Model inference: Execution time vs Nb
events

(d) Passive testing: Execution time vs Nb
events

Figure 8
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these traces. The larger the trace set is and the longer the production events are
collected, the more accurate the models are without any loss of precision. Oth-
erwise, the main danger is that K-means might return wrong sets of entry/exit
points, which have to be manually given. The best delay for collecting production
events depends on the system behaviour. With the production system taken for
experimentation, this delay has been set against the storage area functioning. We
observed that if events are collected during 7 days or more, we obtain accurate
and precise results.

5.2.2 C2 (Efficiency / Effectiveness)

One of the purposes of Autofunk is to automate the testing stage and to quickly
return the possible failure traces when non conformance is detected so that they
can be later analysed by engineers to diagnose the cause of the non conformance
detection (failure, correct behaviour not found in the model, new behaviour ob-
tained after system updates).

Tables 1 and 2 show that Autofunk builds models and gives test verdicts in
reasonable time. With production event sets collected during one day up to one
week (experiments A, B, C, and D), models are inferred in less than 10 minutes.
Experiment C in Table 1 corresponds to a typical use of Autofunk for Michelin.
Models are generated after 9 minutes from production events collected during 11
days (more than three millions of events).

In Table 1, the difference of STS path numbers between the columns 7 and
8 clearly shows that our STS reduction approach is efficient. For instance, with
experiment C, we reduce the STSs by 96.7%. In other words, 96% of the original
behaviours are packed into matrices. These results mainly stem from our choice
to design a context-specific state merging process. It is manifest that these ratios
should vary with other kinds of systems. Experiment 2 in Table 2 also corresponds
to a typical use of Autofunk for testing. The model were generated from traces
collected during 11 days. Traces of the system under test Sut2 were collected
during 5 days. It took only 10 minutes to check whether Sut is conforming to the
STSs inferred from Sua with respect to ≤ f t and ≤m f t .

Experiment 2 in Table 2 shows that Autofunk is effective to detect faults: Sut2
was slightly updated from Sua and the tool detected that 98% of the traces are pass
traces, the remaining 2% are new behaviours that never occurred before. Here,
engineers have to manually analyse the possible failure traces to check if these
are the consequence of system failures or of new features of Sut2 not present in
Sua. 2% means 500 traces, which remains a significant trace amount to inspect.
Nonetheless in our manufacturing context, this is still valuable. Before Autofunk,
engineers had to manually test the whole system by hand: around several hun-
dreds of scenarios were executed and the resulting traces also had to be manually
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inspected. Autofunk can test a production system by automatically inspecting
thousands of its traces in some minutes. It analyses more the system under test
than manual testing, it remains for engineers to manually check a small subset of
traces (only those capturing behaviours not found in the model). Such information
is essential for Michelin engineers so that they can quickly focus on the potential
defects of the system under test. In this example, we observed that almost half of
the possible failure traces were caused by unexpected manual interventions done
by operators (tires were taken from one position and placed elsewhere). Around a
hundred of traces captured new behaviours of Sut2 not possible in Sua. None of
them revealed real failures in this case.

The third experiment illustrates an abnormal use of our framework. The de-
facto usage of our framework is to build models from a production system Sua,
which should be older than an new or updated system Sut. Here, the traces of Sut3
were collected long before collecting those of Sua used for inferring models. Sut3
were indeed a four month older system whose CIM2 applications were different
than those of Sua. In this situation, Sua and Sut3 can be seen as quite distinc-
tive production systems. Autofunk still detects non-conformance and provides
possible failure traces quickly. Unsurprisingly, both implementation relations are
unsatisfied. Only 3% of the traces of Sut3 are pass traces w.r.t. ≤ f t . This means
that only 60 traces of Sut3 exactly match the behaviours captured by the inferred
models. With the second implementation relation ≤m f t , the pass trace ratio is in-
creased to 30%. The second relation shows that roughly a third of the traces of
Sut3 have the same sequences of events as the traces found in the STSs, but the
parameter values (which can be found in other traces) are different. Hence, the
second relation shows that 27% of the pass traces appear to be realistic scenarios.
This helps focus on the traces having unknown sequences of actions or actions as-
sociated with unknown parameters, for which the likelihood of failure detection is
the highest. Indeed, Michelin engineers confirmed that these traces often capture
system defects.

These experiments revealed that Autofunk is efficient since models and possi-
ble failure traces are provided in reasonable time. It can detect non-conformance
when the system under test includes behaviours not present in the model and help
focus on the unknown behaviours detected from Sut. However, when Sua and Sut
have many differences, it detects non-conformance but returns so much possible
failure traces that it may become difficult to inspect all of them.

C3 (scalability)

The motivations behind this work and collaboration are to generate models for
testing from large sets of production events and to do this as quick as possible
so that models may be also used for other purposes, e.g., to diagnose unexpected
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stops or failures in the production system. The results given in Tables 1 and 2 re-
veal that our framework can take up to millions of production events and still build
models quickly (less than half an hour). Experiment F handled almost 10 millions
of events in less than half an hour to build two STSs including around 1,600 paths.
As the parsing step is yet not parallelised, it took up to 20 minutes to open and
parse around 1,000 files (number of Michelin log files for this experiment). This
is a technical issue that needs to be addressed in the future.

The columns 3 and 8 of Table 1 are confronted in the graph of Figure 8(c)
to summarise the performances of our framework, and how fast it infers models
(experiments B, C and D run in about 9 minutes). Likewise, the columns 4 and 7
of Table 2 give the graph of Figure 8(d). The linear regressions depicted in these
figures reveal that the overall framework scales well despite the current production
event parsing implementation, by means of the parallelisation of the Autofunk
algorithms (STS generation and reduction, trace comparison of the tester).

The memory consumption peak occurs in Autofunk in the beginning of the
model inference stage. Every production event is currently loaded in memory
and may lead to a memory saturation problem. We compared execution time and
memory consumption in Figure 8(b). Memory consumption tends to follow a log-
arithmic trend line because we partially fixed the memory consumption problem
by optimising the object representation, but it is not future-proof. This is an im-
plementation limitation, which needs to be addressed in a next version. At the
moment, it has been considered acceptable by Michelin.

6 Conclusion
This paper has proposed Autofunk, a fast and scalable framework combining

model generation, expert systems and passive testing to generate formal models
and test production systems. Given a large set of production events obtained from
a first production system, Autofunk quickly generates STSs, which can be used
for passively testing other production systems. Conformance is formally defined
with four implementation relations between the system under test and the inferred
STSs. The preliminary results obtained by the offline testing method are encour-
aging, and Michelin engineers see a real potential in this framework.

Nevertheless, many aspects need to be investigated and improved in the future.
Firstly, our context-specific STS reduction does not appear to be generalisable
while keeping the same performance. Another more general solution, which lim-
its over-approximation, is to guide the model inference with the computation of
quality metrics [TNM+13]. At the moment, these approaches are time-consuming
though and can only be applied to small systems because the models are incre-
mentally re-generated from scratch to improve the metrics. In Autofunk, another
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future direction would be to build sub-models of a production system. By now,
we consider a whole workshop as a production system to infer models. Focusing
on specific locations of a workshop would allow to build smaller models with a
generalisable model inference approach. Another future work would be to focus
on fault diagnosis. Our preliminary results show that, in normal usage, it still re-
mains a big set of possible failure traces to analyse (we mentioned 2% with our
experimentations). Even though the possible failure trace set remains large, Auto-
funk eases the work of Michelin engineers by highlighting the traces to focus on.
We observed that the larger the trace set of Sua is, the less under-approximated
the model is, and the less possible failure traces we have after testing. Yet, the
design of an automatic diagnosis method could be beneficial to reduce the cost of
analysing possible failure traces.

Finally, the generated models could also be used for other purposes, such as
the generation of documentation, data mining, or predictive maintenance. The
main objective of predictive maintenance ([Mob90]) is to decide when to maintain
a system according to its state. Maintenance could be here scheduled by mining
STSs and particularly the parameter matrices.

A Proof of Proposition 6(sketch)
Proof Sut ≤ f t R(S), implies
∀t ∈ FTraces(Sut) : t ∈ TracesPass(R(S)) (Proposition 13)
Let t = a1(α1)...am(αm) ∈ FTraces(Sut), such that t ∈ TracesPass(R(S))
∃r = (l0R(S),V 0R(S))a1(α1)...am(αm)(Pass,vm) ∈ RunsPass(R(S)) (Definition 4),
implies

∃b= l0R(S)
(a1(p1),G1,A1)...(am(pm),Gm,Am)−−−−−−−−−−−−−−−−−−−→Pass∈→R(S), with Mat(b)=M[b] the ma-

trix Nbl ×Nbc of p, (1 ≤ c ≤ Nbc) such that ∀(1 ≤ j ≤ m) : G j = M[b][ j,c],
(α j∪ v j−1) |= M[b][ j,c] (Definition LTS semantics and 4)
Furthermore, (Definition 15) implies,

∀b = l0R(S)
(a1(p1),G1,A1)...(am(pm),Gm,Am)−−−−−−−−−−−−−−−−−−−→ Pass ∈→R(S), ∃b′ = l0D(S)

(a1(p1),G′1,A
′
1)...(am(pm),G′m,A

′
m)−−−−−−−−−−−−−−−−−−−→ Pass ∈→D(S) with G′j =

∧
x∈p j

(Pro jx(M[b][ j,1])∨·· ·∨

Pro jx(M[b][ j,Nbc]))
Consequently, ∀(1≤ j≤m),∃(1≤ c≤Nbc) : (α j∪v j−1) |=G j,(α j∪v j−1) |=G′j,
implies
t ∈ TracesPass(D(S)), implies
Sut ≤m f t R(S)
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B Proof of Proposition 9 (sketch)
The proposition can be separated into three points:
1. Sut ≤ f t R(S) =⇒ Algorithm 1 returns ”Pass≤ f t”.
2. Sut ≤m f t R(S) =⇒ Algorithm 1 returns ”Pass≤m f t”.
3. Sut ≤ f t R(S) =⇒ Algorithm 1 returns ”Pass≤ f t”, ”Pass≤m f t”.
For each point, Algorithm 1 relies on the procedure

complies with:

Proposition 11 Let t ∈ FTraces(Sut) be a trace and R(S) be a STS inferred from
Sua.

t ∈ TracesPass(R(S))) =⇒ the function complies with(t,R(S)) returns true.

Proof
t ∈ TracesPass(R(S)) implies

∃b = l0R(S)
(a1(p1),G1,A1)...(am(pm),Gm,Am)−−−−−−−−−−−−−−−−−−−→ Pass such that t ∈ TracesPass(b) (Defini-

tions LTS semantics and 4).
Let t = a1(α1) . . .am(αm). The procedure complies with(t,R(S)):

— seeks for b= l0R(S)
(a1(p1),G′1,A

′
1)...(am(pm),G′m,A

′
m)−−−−−−−−−−−−−−−−−−−→Pass , and M[b], the matrix

Nbl×Nbc of b, such that G′j = M[b][ j,c[b]] with (1≤ c[b] ≤Nbc),(1≤ j≤
m) (lines 12-14),

— and checks that ∃(1 ≤ c ≤ Nbc),∀(1 ≤ j ≤ m),α j |= M[b][ j,c] (lines 15-
21).

The procedure complies with seeks for b such that t ∈ TracesPass(b) and returns
true (line 19) if such b exists.

∃b = l0R(S)
(a1(p1),G1,A1)...(am(pm),Gm,Am)−−−−−−−−−−−−−−−−−−−→ Pass such that t ∈ TracesPass(b), implies

complies with(t,R(S)) returns true (line 19).

Proof
Proof of 1):

Sut ≤ f t R(S) implies
FTraces(Sut)⊆ TracesPass(R(S)) (Proposition 13), implies
∀t ∈ FTraces(Sut) : t ∈ TracesPass(R(S)), implies
∀t ∈ FTraces(Sut) : the function complies with returns true (Proposition 11), im-
plies
The set T 1 is empty (Algorithm 1 lines (3,4)), implies
Algorithm 1 returns ”Pass≤ f t” (line 7).

Proof of 2):
Sut ≤m f t R(S) implies
FTraces(Sut)⊆ TracesPass(D(S)) (Proposition 8), implies
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∀t ∈ FTraces(Sut) : t ∈ TracesPass(D(S)), implies
∀t ∈ FTraces(Sut) : the function complies with returns true (Proposition 11), im-
plies
The set T 2 is empty (Algorithm 1 lines (5,6)), implies
Algorithm 1 returns ”Pass≤m f t” (line 9).

Proof of 3):
Sut ≤ f t S =⇒ Sut ≤m f t S (Proposition 6), implies
Algorithm 1 returns ”Pass≤ f t”,”Pass≤m f t”.

C Proof of Proposition 10(sketch)
The proposition can be separated into two points:
1. Algorithm 2 returns ”Fail≤ct” =⇒ ¬(Sut ≤ct R(S)R).
2. Algorithm 2 returns ”Fail≤mct” =⇒ ¬(Sut ≤mct R(S)R).
For each point, Algorithm 2 relies on the procedures Monitor and weak complies with,

which build traces and runs of R(S)R and D(S)R. To prove 1. and 2., we firstly con-
sider the following proposition on the procedures Monitor and weak complies with:

Proposition 12 Let t ∈Traces(R(S)R) and a(α) a valued event received by Monitor.
a) t.a(α)∈Traces(R(S)R) =⇒ ∃(r,c)∈RUNS: weak complies with(a(α),(r,c))

returns RUNS′ 6= /0;
b) RUNS = {(r,c) | Traces(r) = t and r ∈ Runs(R(S)R)} is an invariant.

Proof
1) Let t = /0. At the initialisation of Monitor, RUNS= {(q0,0) | q0 =(l0R(S),V 0R(S))}
a)

a(α) ∈ Traces(R(S)R) implies

∃b = l0R(S)R
a1(p1),G,A−−−−−−→ l1, with M[b] the matrix Nbl×Nbc and (1 ≤ cp ≤ Nbc),

such that a = a′, G = M[b][1,cp] and (V 0R(S)R ∪α) |= M[b][1,c[b]]
(V 0R(S)R ∪α) |= M[b][1,c[b]] implies
the procedure weak complies with (lines 23-27) builds (r2,cp) such that r2 =
q0a(α)(l2,
A(V 0R(S)R ∪α)) and RUNS′ 6= /0.

b)
Both procedures Monitor and weak complies with build all the (r2,cp) in RUNS′

such that ∀(q0,0)∈ RUNS (line 7), ∀l0R(S)
a′(p′),G,A−−−−−−→ l (line 18), ∀(1≤ cp≤Nbc)

(line 21), Traces(r2) = (a,α) and r2 ∈ Runs(R(S)).
RUNS is replaced by RUNS′ (line 13), hence, the invariant holds.

2) Let t = a1(α1)...a j(α j) and RUNS= {(r,c) |Traces(r)= t and r∈Runs(R(S)R)}
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a)
t.a(α) ∈ Traces(R(S)R) implies
∃r′ = q0...(l,v)a(α)(l2,v2) ∈ Runs(R(S)R) : Traces(r) = t.a(α), implies

∃l a1(p1),G,A−−−−−−→ l2 ∈→R(S)R:, a1 = a′ and (v∪α) |= G.
Furthermore, ∃(r,c) ∈ RUNS such that Traces(r) = t.
(v∪α) |= G implies

for l
a1(p1),G,A−−−−−−→ l2, the procedure weak complies with builds r2 = r(a,α)(l2,v2)

and RUNS′ holds (r2,c) (lines 29-32).
Consequently, RUNS′ 6= /0

b)
Both procedures Monitor and weak complies with build all the (r2,c) in RUNS′

such that ∀(r,c)∈ RUNS with r = q0...q = (l,v) (line 7), ∀l a1(p1),G,A−−−−−−→ l2 (line 18),
Traces(r2) = t.a(α) and r2 ∈ Runs(R(S)) (lines 28-31).
RUNS is replaced by RUNS′ (line 13), hence, the invariant holds.

By induction on the trace length ( j ≥ 0) and 1), 2), it is then proved that
Proposition 12 holds.

Now, we can consider Proposition 10 and the two points stated before.
Proof

Proof of 1):

Algorithm 2 returns ”Fail≤ct” implies
the procedure Monitor has returned T1 6= /0, implies
the procedure Monitor has built a trace trace ∈ Traces(Sut) and (

— ∀(r,c)∈RUNS, r ends with q= (l,v) and l /∈Pass (Procedure Monitor,line
13), or

b) ∀(r,c)∈RUNS, weak complies with(a(α),(r,c)) returns /0 (Procedure Mon-
itor,lines 9,10).

)
a)

∀(r,c) ∈ RUNS : r ends with q = (l,v) and Traces(r) = trace ∈ Traces(R(SR))
(Proposition 12)
l /∈ Pass(Procedure Monitor, line 13), implies
trace /∈ TracesPass(R(S)R).
Furthermore, trace = a1(α1)...am(αm) ∈ Traces(Sut) with: α1 includes an as-
signment (point := val) denoting an entry point of Sut (Algorithm 2, line 9) and
a deadlock state of Sut has been detected (Procedure Monitor, line 13), implies
trace ∈CTraces(Sut) (Definition 6).
Consequently, ∃t ∈CTraces(Sut), t /∈ TracesPass(R(S)R).
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b)
∀(r,c)∈RUNS, weak complies with(a(α),(r,c)) returns RUNS′= /0 =⇒ trace /∈
Traces(R(S)R) (contrapositive of a) in Proposition 12), implies
∃trace ∈ Traces(Sut) : trace /∈
TracesPass(R(S)R).
Furthermore, trace = a1(α1)...am(αm) ∈ Traces(Sut) and α1 includes an assign-
ment (point := val) denoting an entry point of Sut (Algorithm 2, line 9).
Let t ′ ∈ (ΣR(S))

∗, such that trace.t ′ ∈ CTraces(Sut). (∃t ′ such that t ′ leads to a
deadlock state of Sut).
trace /∈ TracesPass(R(S)R), implies
trace.t ′ /∈ TracesPass(R(S)R).
Consequently, ∃t = trace.t ′ ∈CTraces(Sut), t /∈ TracesPass(R(S)R).

With a) or b), Algorithm 2 has built a trace t ∈CTraces(Sut), t /∈TracesPass(R(S)R)
=⇒ ¬(Sut ≤ct S).

Proof of 2):
Same as 1) except that the set RUNS in the procedure Monitor is initialised with
D(S)R. RUNS = {(q0,0) | q0 = (l0D(S)R,V 0D(S)R)}.
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