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Abstract Some tephra fallout deposits show an increase of mass and thickness at distances from the
source >100 km (areas of secondary mass maximum, ASMM) which demonstrates distal enhanced
sedimentation from volcanic plumes. We explore development of the ASMMs during the 1992 August and
September Mount Spurr eruptions, USA, by combining field data on the spatial distribution of mass and grain
size with (1) simulations of individual particle settling through a homogeneous and horizontally stratified
atmosphere and (2) mesoscale models of the three-dimensional wind field that include the effect of the
underlying topography. The crosswind and downwind variations of deposit characteristics indicate that the
increase of sedimentation at the ASMMs is not formed solely because of preferential settling of small ash
particles (<125 μm), as commonly assumed in aggregation models. Instead, ASMM grain sizes correspond to
the fine modes of the bimodal total grain size distributions. There also appears to be a link between the
ASMM and the topography: the mass local minima occur across the windward flank of 2 km high mountain
ranges, while the ASMMs spread on the leeward flank. Mesoscale models of the three-dimensional wind field
show vertical oscillations in the wind over mountainous regions which may enhance mechanisms of en
masse sedimentation (aggregation, hydrometeor formation, and particle boundary layers), as well as strong
spatial variations of the horizontal wind field in the lower troposphere. Our study demonstrates the
importance of using grain size, as well as mass, data to constrain the complex processes responsible for
particle sedimentation from volcanic plumes.

1. Introduction

Explosive volcanic eruptions inject large amounts of fragmented material (tephra) into Earth’s atmosphere,
which are subsequently dispersed by the winds. Dispersion and sedimentation of tephra plumes through
the atmosphere can disturb aviation airspace (Kueppers et al., 2014; Webley, 2015) and destroy crops and
infrastructure on the ground and cause adverse respiratory effects (e.g., Horwell & Baxter, 2006; Jenkins
et al., 2015; Wilson et al., 2015). A critical aspect of volcanology is thus to understand the physical processes
controlling the atmospheric path of tephra, which depends strongly on the plume depletion during disper-
sion, that is, the fallout of tephra to the ground (e.g., Bursik et al., 1992; Sparks et al., 1992). New field and
experimental evidence demonstrates that the sedimentation mechanisms controlling plume depletion can
be complex. In particular, the fall of individual particles through the atmosphere at their terminal velocity only
partially describes the settling behavior of tephra (e.g., Del Bello et al., 2017), while additional collective sedi-
mentation processes such as aggregation (e.g., Bagheri et al., 2016; Taddeucci et al., 2011) and en masse col-
lapse of gravitational instabilities (e.g., Carazzo & Jellinek, 2012, 2013; Durant et al., 2009; Manzella et al., 2015)
can be significant.

Sedimentation of tephra on the ground forms cone- to sheet-like fallout deposits that thin exponentially over
several hundreds of kilometers (e.g., Pyle, 1989; Walker, 1981). However, several sheet-like tephra fallout
deposits show a local increase of mass and thickness at distal locations (Brazier et al., 1983; Brown et al.,
2012; Carey & Sigurdsson, 1982; Hildreth & Drake, 1992; Sarna-Wojcicki et al., 1981), hereafter referred to as
areas of secondary mass maximum (ASMM). There are clear ASMMs in fallout deposits from the 1932 eruption
of Quizapu, Chile (Hildreth & Drake, 1992; Larsson, 1937), the 18 May 1980 Mount St. Helens eruption, USA
(Sarna-Wojcicki et al., 1981), the 3 June 1991 Unzen eruption, Japan (Watanabe et al., 1999), the August
and September 1992 Spurr eruptions, USA (McGimsey et al., 2001), and an ~9.75 ka Chaitén eruption, Chile
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(Watt et al., 2015). There are also complex distal depositional patterns sometimes considered to be ASMMs,
such as in the 1991 Hudson, Chile (Scasso et al., 1994), 1991 Pinatubo, Philippines (Wiesner et al., 2004), and
2008 Chaiten, Chile, fallout deposits (Watt et al., 2009). The presence of ASMMs in fallout deposits indicates
that enhanced deposition of tephra can occur locally after the plume has spread to great distances
(>100 km). This demonstrates unambiguously that sedimentation of tephra is not solely controlled by the fall
of individual particles through a constant atmosphere. Understanding the mechanisms producing ASMMs
can thus bring valuable insights into particle sedimentation processes and improve physical models of vol-
canic plume dispersion and depletion.

Here we explore a range of processes that can affect the dispersion and sedimentation of volcanic
plumes and assess their importance in the formation of ASMMs. We focus on the 1992 August and
September eruptions of Mount Spurr, Alaska, which produced exceptionally well documented fallout
deposits and conspicuous ASMMs at distances greater than 150 km from vent (McGimsey et al.,
2001). Processes of ash deposition for both eruptions have previously been modeled by Durant and
Rose (2009) assuming single spherical particles falling through an atmosphere considered as a stack
of homogeneous horizontal layers. They showed that this simple approach overestimates the settling
distance of fine ash compared to the observed grain size in the deposits. They explain the discrepancy
using thermodynamic modeling of the September plume, which indicates that ice-coated ash hydrome-
teors could have formed near the tropopause, allowing for later sublimation and en masse sedimenta-
tion from the plume base (Durant & Rose, 2009). The September Spurr ASMM has also been reproduced
numerically using the tephra transport and sedimentation models FALL3D and Ash3d (Folch et al., 2010;
Mastin et al., 2016), both of which include ash aggregation. Confirmation of complex ash deposition
during the Spurr eruptions comes from shape analyses and terminal fall velocity measurements in
the laboratory on a tephra sample from the distal end of the ASMM of the August deposit, which show
that particles with a wide range of shape, density, and terminal velocity settled at a single location
(Riley et al., 2003).

Here we extend these studies using crosswind and downwind variations of both mass and grain size within
the deposits. Like Durant and Rose (2009), we use both numerical simulations of individual particle settling
through a simplified and horizontally stratified atmosphere; our approach differs in exploring the effects of
particle shape on settling velocity. We also model the three-dimensional wind field at the mesoscale to assess
the impact of the underlying topography on atmospheric turbulence and particle transport. We then use
these results to assess the effects of different scenarios of distal enhanced sedimentation on the character-
istics (location and grain size) of the ASMMs. We conclude that in contrast to existing models of particle
aggregation, all grain sizes present in the plume at the relevant distance from vent are contributing to the
mass increase on the ground and that both the total grain size distribution (TGSD) generated at the vent
and topography-induced perturbations of the wind field may play important, and often ignored, roles in con-
trolling depositional patterns of tephra.

2. Models of Aggregation, ASMM Formation, and Impact on Deposit Trends
2.1. Aggregation Models for ASMM Formation

The first conceptual and semiempirical model of ASMM formation was developed to explain the trends in the
fallout deposit from the 18 May 1980, Mount St. Helens (MSH) eruption, where a clear ASMM is located
~300 km from the vent (Sarna-Wojcicki et al., 1981). Bimodal grain size distributions were also observed in
the ASMM, which suggested that the two features were related (Brazier et al., 1983; Carey & Sigurdsson,
1982). Early numerical simulations of the dispersion and sedimentation of the MSH plume reproduced the
lateral mass variation of the deposit along the axis by assuming that all fine ash (i.e., particles<63 μm in size)
aggregated in clusters falling individually at a velocity of 0.35 m/s (Carey & Sigurdsson, 1982). Based on this
study, and the real-time observations of 250 to 500 μm clumps falling from the MSH plume ~400 km from
vent (Sorem, 1982), Brazier et al. (1983) suggested that the fine grain size mode was generated by ash settling
as aggregates that formed the ASMM. Brazier et al. (1983) extended this analysis to other fall deposits and
concluded that grain size bimodality in individual samples from fall deposits is due to a single process—
aggregation—and suggested that ASMMswould be observed inmore fallout deposits if they were documen-
ted more distally.
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The idea that aggregation causes ASMMs is now widespread (e.g., Brown et al., 2012). We illustrate this con-
ceptual model by examining the expected variations of bothmass per unit area (MpuA) and the proportion of
fine ash (<63 μm, i.e., >4Φ as Φ = �log2(particle diameter in millimeters)) along the fallout deposit axis
(Figure 1). In the ideal context of (1) a unimodal source grain size distribution and (2) individual particle sedi-
mentation from a volcanic plume spreading in a constant wind field, an exponentially thinning deposit is pro-
duced (Figure 1a). The proportion of fine ash increases linearly with distance and reaches 100% after the
plume is entirely depleted in particles coarser than 63 μm. Under the same conditions, aggregation will cre-
ate an ASMM only if the aggregates generated in the dispersing plume are restricted to a narrow range of size
and density that causes them to fall in a limited area rather than spreading through the deposit (Figure 1b).

The inferred link between aggregation and ASMM formation has led to a practice of using mass distributions
(MpuA) within deposits to calibrate models of ash aggregation (e.g., Carey & Sigurdsson, 1982; Cornell et al.,
1983; Costa et al., 2010; Folch et al., 2010; Mastin et al., 2016). The September deposit of the Spurr eruption
has been a particular focus of such studies in recent years. For example, Mastin et al. (2016) use the Spurr
deposit to calibrate an empirical ash aggregation scheme, which attributes all fine ash and 50% of the 3Φ
(125 μm) size class to aggregates with a narrow Gaussian size distribution (tests standard deviation of 0,
0.1, 0.2, and 0.3 Φ and means from 1.9 to 3.1Φ) and density of 600 kg/m3. The best fit to the Spurr deposit,
which corresponds to an aggregate size distribution with mean = 2.4Φ and standard deviation = 0.1Φ,

Figure 1. Schematic of the variations of mass and fine ash content (i.e., particles <63 μm in size) in fallout deposits expected for different atmospheric and source
conditions, and different sedimentation behaviors. The blue and red dotted lines represent the variations of MpuA (left axis) and proportion of fine ash (right axis),
respectively. The cartoons in the background represent schematically the settling of particles from a spreading volcanic plume.
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substantially underestimates MpuA along the dispersal axis; the same approach to the 1980 MSH deposit
strongly underestimates the distal ash load. A sophisticated wet aggregation scheme was introduced by
Costa et al. (2010) and applied to the September Spurr deposit by Folch et al. (2010). The best fit of the simu-
lations to MpuA data from the Spurr deposit is for aggregates with component grains with a fractal dimen-
sion of 3 (which is the maximum possible value, corresponding to a size distribution that can completely
fill a space) and falling velocity of 0.29 times that of a nonporous sphere of the same diameter as the aggre-
gate. This scheme predicts that only 23, 22, 32, 54, and 45% of the particles 125, 63, 32, 15.6, and 8 μm in size
will form aggregates in the 2Φ class (250–500 μm) for this eruption, and so some very fine ash falls as indivi-
dual particles. The inclusion of this aggregation scheme in the model generates a prominent ASMM and sub-
stantially improves agreement with the overall set of deposit MpuA data points, although the misfit for some
individual locations is worse with aggregation.

Observational evidence shows that both in the field (Bagheri et al., 2016; Bonadonna et al., 2002; Sorem, 1982;
Taddeucci et al., 2011) and in the laboratory (Gilbert & Lane, 1994; James et al., 2002, 2003; van Eaton et al.,
2012), wet and dry clustering mechanisms actually generate a wide range of aggregate types, shapes, sizes,
and densities. Although there is no reason to expect that all aggregate types will be produced during a single
eruption (e.g., Brown et al., 2012), generation of only a single class of aggregates (in terms of size, density, and
shape) is also highly unlikely (e.g., Bonadonna et al., 2002). In fact, models that assume aggregates of a single
(Folch et al., 2010) or very limited (Mastin et al., 2016) range in size and/or density should produce an abrupt
and distal increase of MpuA that correlates directly with an increase in the proportion of fine ash (Figure 1b).
Moreover, where not all particles in a given size class are included in the aggregates, sedimentation should
resume as settling of individual particles, and the transition from aggregate to individual particle should pro-
duce an abrupt decrease of MpuA, closing the ASMM (Figure 1b). From a grain size perspective, particles that
are included in aggregates should show some premature deposition relative to their calculated settling velo-
cities, and these particle sizes should be in the deposit beyond the ASMM in accordance with single-particle
settling (but in diminished quantity compared to without aggregation). In particular, the proportion of fine
ash should decrease abruptly beyond the ASMM limit of aggregation-assisted settling before increasing with
distance (Figure 1b). Consequently, in ASMMs produced only by model aggregation processes, the propor-
tion of fine ash should follow the mass variations within the ASMM. Assessing the accuracy of such models
thus requires comparison not only of modeled and observed MpuA but also of grain size data at individual
locations in the deposit. Importantly, a recent study shows that incorporation of grain size data into an inver-
sion scheme also improves mass estimates, even when aggregation is not important (White et al., 2017).

2.2. Additional Contributions to ASMM Formation

As illustrated above, ASMMs not only provide insights into the distal dispersion and sedimentation behavior
of volcanic plumes but can also improve our understanding of ash aggregation. Here we turn the question
around, to examine mechanisms of ASMM formation that may be independent of aggregation.
Interestingly, numerical simulations of the September 1992 Spurr eruption produce an ASMM at about the
right distance from source without including aggregation, although in this case the modeled ASMM is defi-
cient in mass relative to the observations (Folch et al., 2010). Here the ASMM forms as a consequence of the
total grain size distribution (TGSD) of the eruption, which is bimodal because of enrichment in fine ash (Rose
& Durant, 2009). Interestingly, other deposits with bimodal TGSDs also show ASMMs, including that of 1980
MSH, where bimodality, aggregation, and ASMMs were originally linked (Brazier et al., 1983; Carey &
Sigurdsson, 1982). In this case, the grain size bimodality of the deposit results from mixing of ash contribu-
tions from two different sources (fine-grained coblast and coarser vent-derived plumes) (Eychenne et al.,
2015). These examples highlight mechanisms other than aggregation alone that can both enhance distal
tephra sedimentation and produce ASMMs.

To illustrate the effects of different enhanced sedimentation mechanisms on ASMM formation and deposit-
wide patterns of grain size variations, we consider how the ideal depositional pattern in Figure 1a would be
affected by (1) variations in initial conditions and (2) different dispersion and sedimentation scenarios. The
case of a bimodal TGSD is shown in Figure 1d. Here simplistically, each grain size mode is assumed to produce
a mass mode at the depositional distance corresponding to the settling of individual grains of that size; the
maximum size mode will therefore create the ASMM. In this example, the proportion of fine ash should
increase smoothly with distance at a rate that depends on the rate of grain size change for Φ > 4. En
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masse sedimentation is another suggested mechanism of premature fine ash deposition (Carazzo & Jellinek,
2013; Manzella et al., 2015) and ASMM formation (Durant & Rose, 2009; Durant et al., 2008). The latter has
been attributed to microphysical processes of ice coating ash in a moist atmosphere followed by sublimation
or melting of the hydrometeors, which can trigger rapid en masse sedimentation of the gravitationally
unstable lower portion of the cloud (Durant & Rose, 2009; Durant et al., 2009). Enmasse sedimentation should
cause a rapid release of all particle sizes locally present in the plume to form an ASMM with a wide size range
and a rapid increase in the proportion of fine ash coincident with the ASMM (Figure 1c). A final mechanism for
ASMM formation is topography-induced perturbation of the wind field that increases upward wind velocities
on windward sides of mountains and downward wind velocities on lee sides (Jiang & Doyle, 2004; Watt et al.,
2015). Such perturbations of wind velocities can retain tephra in suspension on the windward sides of moun-
tains while enhancing tephra sedimentation on the lee sides (Poulidis et al., 2017; Watt et al., 2015). In this
case, we would expect the deposited mass of tephra to decrease rapidly upwind of an ASMM, for the
ASMM to be located downwind of a topography high, and for the proportion of fine ash to increase within
the ASMM (Figure 1e).

3. Background on the 1992 Mount Spurr Eruptions and Field Data

Mount Spurr is an ice-capped, andesitic stratovolcano located 130 kmwest of Anchorage in the southern part
of the Alaska Range. After 10 months of gradually increasing seismic activity, three subplinian eruptions
occurred in 1992 at the satellite flank vent of Crater Peak, on 27 June, 18 August, and 16–17 September.
Each eruption lasted for 3.5 to 4 h and generated small volume pyroclastic density currents (PDCs) (Miller
et al., 1995) and eruptive columns rising to ~14 km above sea level (asl) observed by radar (Rose et al.,
2001, 1995). The August and September eruptions were observed in detail (McGimsey et al., 2001; Miller
et al., 1995; Rose et al., 2001; Schneider et al., 1995). The 18 August eruption started at 16:42 Alaska
Daylight Time (ADT) and waned after 20:00 ADT (Rose et al., 2001). The September event started at 00:03
ADT on 17 September and lasted until ~03:40 ADT (McGimsey et al., 2001; Rose et al., 2001). Satellite infrared
(IR) images indicate that during the 30 to 40 h following the start of the eruption, the September plume
advected downwind more quickly than the August one, with average speeds of 39 and 16 m/s, respectively
(Schneider et al., 1995).

Narrow (30 to 50 km wide) and elongated fallout deposits with dense-rock equivalent volumes of 14 and
15 × 106 m3 were produced by the August and September eruptions (McGimsey et al., 2001). The deposits
extend toward the east southeast and east northeast, respectively, across the Cook Inlet Basin and the eastern
mountain ranges (Chugach and Talkeetna Mountains; Figure 2). The ASMMs appear at distances greater than
150 km from vent, a distance at which a clear minimum of MpuA is reached (Figure 2). The proximal deposits
contain two types of basaltic andesite clasts—tan and gray pumice—making up a total juvenile content
>90% (Neal et al., 1995). Each deposit consists of a lower tephra layer rich in tan pumices (60–80%) compris-
ing more than two thirds of the thickness and an upper layer dominated by gray pumices (90% in the August
deposit and 65% in the September deposit) representing one third of the thickness (Gardner et al., 1998). Tan
and gray pumices differ in their density (1.5 ± 0.2 and 2.1 ± 0.3 g/cm3, respectively, for clasts 16–4 mm in size)
and their vesicularity (41.7 ± 8.0% and 23.0 ± 9.6%) (Gardner et al., 1998). Distal ash from site 44 in the August
deposit located 265 km from source (Figure 2) is dominated by particles with 20–40% vesicularity containing
plagioclase and pyroxene microlites; smaller microlite-rich glass shards comprise 44% of the studied sample
(Riley et al., 2003).

TheMpuA of tephra was carefully measured by U.S. Geological Survey (USGS) researchers throughout the fall-
out deposits up to 400 km from vent during the week following each eruption (Figure 2) (McGimsey et al.,
2001). There were no reports of observations of aggregates falling during the eruptions or preserved within
the deposits (McGimsey et al., 2001). The grain size of several samples (27 in the August deposit and 21 in the
September deposit, Figure 2) was analyzed by sieving and laser diffraction (Durant & Rose, 2009; McGimsey
et al., 2001; Rose et al., 2001). We used the grain size data from McGimsey et al. (2001) and Durant and Rose
(2009), except for August sample 44 whose grain size data come from Rose et al. (2001); the grain size distri-
bution reported in Durant and Rose (2009) for this sample is inconsistent with the regional trend and mea-
surements in Rose et al. (2001) and Riley et al. (2003). The TGSDs were reconstructed by Durant and Rose
(2009) and are bimodal with fine modes between 3 and 5Φ (125–32 μm; Figure 3).
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4. Simulation Methods
4.1. Simulations of Individual Particle Settling

We simulate the sedimentation of individual particles through the atmosphere in the meteorological condi-
tions of the 18 August and 16–17 September 1992 using the theoretical settling scheme of Ganser (1993) for
nonspherical particles. This scheme is increasingly applied in numerical models of volcanic plume dispersion
and sedimentation, including the model NAME of the London Volcanic Ash Advisory Center (e.g., Beckett
et al., 2014, 2015). It is different than the Durant and Rose (2009) model that used a drag coefficient after
Brown and Lawler (2003) suitable for spherical particles only.

Here the particle Reynolds number (Re), drag coefficient (Cd), and terminal fall velocity (Vt), are expressed
as follows:

Re ¼ Vt D ρað Þ
μa

(1)

Cd ¼ 24
Re K1

1þ 0:1118 Re K1K2ð Þ0:6567
� �

þ 0:4305 K2

1þ 3305
Re K1K2

(2)

Figure 2. Maps of the tephra fall deposits from the 18 August and 16–17 September 1992 Mount Spurr eruptions, Alaska, showing the locations where the MpuA of
tephra deposited was measured (numbered dots) and the isomass lines (black curves) in g/m2 as drawn by the USGS (McGimsey et al., 2001). The yellow dots
represent sites where the deposit was also sampled and the grain size measured. The red sample numbers indicate those that we designate as on axis.
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Vt ¼
4 g D ρp � ρa

� �
3 Cd ρa

0
@

1
A

1=2

; (3)

where D is the particle diameter, ρa the density of the atmosphere, μa the dynamic viscosity of the atmo-
sphere, and ρp the density of the particle. K1 and K2 are Ganser’s shape factors, defined as

K1 ¼ 3
1þ 2 ψ�0:5

(4)

K2 ¼ 10 1:8148 � logψð Þ0:5743½ �; (5)

where ψ is the 3-D sphericity of the particle.

Figure 3. Cumulative grain size distributions of samples from the (a) 18 August and (b) 16–17 September 1992 Mount Spurr fallout deposits. The distribution curves
are color coded by their distance from vent (see legends on the right of the plots). The filled and open symbols represent samples located close to and off the
deposit axis, respectively. The samples located in the ASMMs are highlighted by black symbols on the plots. The samples underlined on the right legends have
bimodal grain size distributions. (c and d) Total grain size distributions of the 18 August and 16–17 September 1992Mount Spurr fallout deposits, respectively. TGSDs
are after Durant and Rose (2009).
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Sedimentation is simulated from the height of plume dispersion (12 km for both eruptions) (Neal et al., 1995;
Rose et al., 2001), which corresponds roughly to the altitude of the tropopause (Rose et al., 2001). The tropo-
sphere is divided into 1 km thick layers, in which temperature (T, in kelvin), pressure (P), ρa, and μa are
assumed constant. These parameters are calculated following the International Standard Atmosphere model,
using an exact solution to the hydrostatic equation for a column of air, the perfect gas law, and the
Sutherland law:

T ¼ T0 � L h (6)

P ¼ P0
T
T0

� �5:256

(7)

ρa ¼
P
R T

(8)

μa ¼
1:458�10�6 T3=2

T þ 110:4
; (9)

where T0 and P0 are the temperature and pressure at sea level (288.2 K and 101.29 × 103 Pa, respectively), L is
the lapse rate for the troposphere (6.5 K/km), h is the altitude, and R is the gas constant for air
(287 m2 s�2 K�1). Given that Re depends on Vt and on the air properties, Re, Cd, and Vt are calculated itera-
tively in each atmospheric layer. Vt of a particle thus varies with the altitude (Figures S2c and S2d in the sup-
porting information). Particles are advected horizontally by the wind (Figures S2a and S2b in the supporting
information), assuming a constant wind speed and direction in each atmospheric layer and neglecting the
vertical component of the wind. Similar to Durant and Rose (2009), we implemented observed horizontal
wind data in the simulations using atmospheric soundings collected at Anchorage International Airport at
the time closest to the eruption time: 16:00 ADT on 18 August (42 min before the start of the August eruption)
and 04:00 ADT on 17 September 1992 (4 h after the start of the September eruption) (Figure S3 in the sup-
porting information).

We simulate the sedimentation of tan and gray pumices, 16 mm to 4 μm in size, with different values of
sphericity (see Figure S4 in the supporting information for examples of shapes covered by the range of
sphericity explored). Based on density profiles observed in many tephra fallout deposits (Bonadonna &
Phillips, 2003; Cashman & Rust, 2016; Eychenne & Pennec, 2012), we assume that the density of tan and gray
pumices increases linearly with grain size in Φ between Φ = �4 (16 mm), where ρp is taken as 1.5 and
2.1 g/cm3 for tan and gray pumices, respectively, and Φ = 3 (125 μm), where the density reaches the solid
density (ρp = 2.6 g/cm3 for both pumice types) and remains constant (Figure S5 in the supporting
information). The threshold grain size for the change in density trend is taken at 125 μm by comparison
to the densities of particles from the 2006 Tungurahua fallout deposit (Eychenne & Pennec, 2012), which
has a similar composition and microlite content to the Spurr pumices (Wright et al., 2012). The effect of a
different density profile has also been explored (see Figures S5 and S6 in the supporting information).

4.2. Mesoscale Modeling of the Atmospheric Wind Field

The complex 3-D wind field is simulated at the mesoscale with the National Center for Atmospheric Research
(NCAR) Clark-Hall cloud-scale model (Clark et al., 1996). This model has been used to simulate fire events
(Coen, 2013), aircraft-damaging turbulence phenomena (Clark et al., 2000), rainfall development (Thielen
et al., 2000), and microphysical processes accompanying cloud seeding (Wobrock et al., 2001). The meteoro-
logical model is nonhydrostatic and uses the an-elastic form of the continuity equation. It comprises the
prognostic equations for wind field, temperature, water vapor, and all forms of cloud/precipitation hydrome-
teors. A special feature of the model is the use of a terrain-following vertical coordinate, which allows simula-
tion of detailed airflow over complex and steep terrain (Clark, 2003). To initialize the model and to force its
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lateral boundaries, the atmospheric fields of wind, temperature, humidity, and pressure were taken from the
European Centre for Medium-Range Weather Forecasts (ECMWF)-ERA-interim database for the 18 August
and 17 September 1992. The NCAR Clark-Hall cloud-scale model accounts for topography-induced
buoyancy perturbations of the stratified atmosphere, which can create regions of turbulence in the upper
troposphere and lower stratosphere (Eckermann & Preusse, 1999) and alter the wind field locally in the low
atmospheric layers (Jiang & Doyle, 2004).

5. Results
5.1. Grain Size and Mass Variations in the 1992 Mount Spurr Fallout Deposits

The fallout grain size distributions follow similar spatial trends in the August and September deposits
(Figures 3 and 4). The mean size decreases consistently with distance from vent, with the samples close to
the deposit axis showing a coarser mean than the off-axis samples (Figure 4). The deposit becomes better
sorted (the sorting parameter σ decreases) to ~50 km from vent. Samples are extremely well sorted between
~50 and 100 km from vent (Figures 3 and 4), across the area corresponding to the wide valley of the Cook
Inlet Basin (Figures 2 and 4). Beyond 100 km, σ increases due to an enrichment of the deposit in fine ash
(Figure 4). Individual samples with bimodal grain size distributions are observed in the August deposit
(Figure 3a) at variable distances from vent; they are not restricted to the ASMM. No bimodal samples are
observed in the September deposit, where the sampling was sparser. The bimodal distributions are decon-
volved as a coarse and a fine subpopulation using DECOLOG 5.0 (Bellotti et al., 2010; Caballero et al., 2014)
(Figure S1 in the supporting information).

The August and September fallout deposits are characterized by a distal increase in mass with an amplitude
of ~2,300 and 3,400 g/m2, respectively, corresponding to the ASMMs (Figure 5). After reaching a minimum
140 to 160 km from vent in the August deposit and 140 to 170 km from vent in September, the MpuA attains
a secondary maximum between 170 and 300 km from vent in the August deposit and between 180 and
350 km from vent in September. In both deposits, the mass minimum occurs across the windward flank of
a 2 km high mountain range (Chugach and Talkeetna Mountains; Figure 2), while the maximum spreads
across the leeward flank (Figures 5a and 5b).

Figure 4. Variations of the mean (left axis) and sorting (akin to standard deviation; right axis) parameters of the bulk (i.e., non-deconvolved) grain size distributions of
samples from the (a) 18 August and (b) 16–17 September 1992 Mount Spurr fallout deposits. The topography profiles along the deposit axis are represented, and on-
and off-axis samples are distinguished. Mean and sorting are defined after Folk and Ward (1957).
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The fallout deposits lack fine ash (<63 μm) to ≤140 km from vent (Figures 5c and 5d), a distance that corre-
sponds to the foothills of the Chugach and Talkeetna Mountain ranges, where fine ash is first found on the
ground. Beyond this location, the proportion of fine ash increases steadily (although with some scatter) with
distance, across both the local minima and the ASMMs (Figures 5c and 5d). The proportion of ash <125 μm
follows the same trend as the fine ash (<63 μm; Figure 6) and is thus not spatially correlated with the MpuA
variations or ASMMs. The proportion of ash <63 μm starts to increase just before the local mass minima,
about 100 km closer to the vent than the ASMMs. While MpuA decreases away from the ASMMs (both down-
wind and crosswind), the proportion of ash<63 μm (and<125 μm) keeps increasing downwind, with no sys-
tematic crosswind trend. This indicates that the distal increase in sedimentation causing the ASMMs does not
result from preferential settling of ash <63 μm (or <125 μm) compared to coarser grain sizes, in contrast to
predictions of aggregation models for ASMM formation (see section 2 and Figure 1b).

5.2. Settling Behavior of Individual Particles

For sphericity values ranging from 0.9 to 0.6, the settling model for individual particles reproduces the mean
of the unimodal grain size distributions over the first 100 km of the fallout deposits (Figure 6). The density
difference between tan and gray pumices makes relatively little difference to the modeled deposition. A
break in slope in the grain size trend with distance is observed at ~50 km from vent in both the field andmod-
eled data. The absence of fine ash on the ground in this area is consistent with this model prediction. In the
August deposit, the settling model also explains the coarse subpopulations of the bimodal samples between
100 and 250 km from vent (Figure 6a). The fine ash observed in the deposits (as part of a fine subpopulation in
the August bimodal distributions or as part of the unimodal distributions), in contrast, appears much closer to

Figure 5. Variation of MpuA with distance from vent, within the (a and c) 18 August and (b and d) 16–17 September 1992 Mount Spurr fallout deposits. The topo-
graphy profiles along the deposit axes are represented in Figures 5a and 5b. Figures 5c and 5d are expanded plots (red boxes) of Figures 5a and 5b and represent
the proportion of fine ash (grains finer than 63 μm) on the right axis (gray crosses). Minima and maxima in the MpuA profiles are highlighted in the plots and
determined from the on-axis MpuA variations, with the minima and maxima taken as the areas where MpuA< 1500 g/m2 andMpuA> 2,000 g/m2, respectively. The
thin gray lines represent the along the axis linear interpolation of the isomass lines as drawn by McGimsey et al. (2001) and represented in Figure 2.
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the vent than model predictions for nonspherical particles (Figure 6), concurring with the findings of Durant
and Rose (2009) based on spherical particles. Our simple modeling approach does not account for turbulence
and mesoscale motions that would help the finest particles to travel even farther (Beckett et al., 2015).
Although the scarcity of grain size data in the September deposit (Figure 6b) makes it more difficult to
assess the capacity of the model to reproduce the field data, we can safely infer that, as with the August
case, the model of individual particle settling explains well the field sedimentation pattern for grains larger
than ~100 μm.

5.3. Three-Dimensional Atmospheric Wind Field

The wind fields modeled by our mesoscale simulations of the atmosphere during the August and September
Spurr eruptions reveal complex 3-D patterns (Figures 7 and S9 in the supporting information). The wind field
is strongly affected by topography, with strong vertical oscillations generated by the steep topographic var-
iations characteristic of the mountainous regions of Alaska (Figures 7a and 7b). The vertical oscillations pro-
pagate to the stratosphere, creating a highly turbulent troposphere mostly located above the topography.
Between 2 and 4 km asl, the horizontal wind field is also variable, with wind channeled toward the north

Figure 6. Comparison of simulated versus observed grain size variation in the (a) 18 August and (b) 16–17 September 1992
Mount Spurr fallout deposits. The mean (after Folk & Ward, 1957) of unimodal samples (triangles), as well as coarse (circles)
and fine subpopulations (dots) deconvolved from the bimodal distributions, are represented. The on-axis samples
(Figure 2) are represented as closed symbols. The curves represent the settling distances of individual particles of various
shapes in the local wind field at the time of the eruptions, for tan (continuous lines) and gray pumices (dashed lines).
The gray crosses represent the proportion of ash <125 μm in size (right axis), with on-axis samples as bold crosses. The
topography profiles along the deposit axes are represented, as well as the secondary minima and maxima in mass (same
representation as in Figure 5).
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and northeast in the Cook Inlet Basin and a decrease of the wind speed in the basin west of the Talkeetna
mountains (Figures 7c–7f). The September wind field (Figures 7b, 7d, and 7f) is characterized by higher
velocities (both vertical and horizontal) than in August, which produces a more turbulent atmosphere.
Strong contrasts in horizontal wind velocities in the low troposphere (2 to 4 km asl) are manifested as
moderate winds in the Cook Inlet Basin and stagnant areas on the lee side of the Talkeetna mountains
(Figures 7b and 7d).

6. Discussion
6.1. Sedimentation Behavior During the Mount Spurr Eruptions

The results of our individual particle settling simulations show that during the Mount Spurr eruptions, ash
coarser than 100 μm settled predominantly as individual grains (Figure 6) and was progressively depleted
from the plume, leading to an increased proportion of fine ash depositing with distance (Figures 3, 5, and 6).
A different type of settling mechanism appears to control the sedimentation of fine ash, which reached
the groundmuch closer to the vent than predicted by individual particle settling (Figure 6), as has been docu-
mented in a number of other fallout deposits (e.g., Brazier et al., 1983; Engwell & Eychenne, 2016; Rose &
Durant, 2009). As discussed above, numerous processes can explain the observed accelerated transfer of fine
ash toward the ground, including aggregation (e.g., Brown et al., 2012; Rose & Durant, 2011; Taddeucci et al.,
2011; van Eaton et al., 2012) and other collective sedimentation behaviors such as en masse settling in con-
vective instabilities (Carazzo & Jellinek, 2012; Manzella et al., 2015), hydrometeor-enhanced sedimentation
(Durant & Rose, 2009; Durant et al., 2009), and entrainment of fine ash in the wake of settling coarser

Figure 7. Horizontal (arrows) and vertical (colored areas) wind patterns in the Alaska region downwind of Mount Spurr on 18 August and 17 September 1992, about
4 h after the eruptions started. The wind field is simulated at the mesoscale with the NCAR Clark-Hall cloud-scale model (Clark et al., 1996) using meteorological
data from the ECMWF-ERA-interim database. (a and b) Vertical profiles along a west to east cross section through the mountains. (c and d) Maps of the wind pattern
at 2 km asl. (e and f) Maps of the wind pattern at 4 km asl. The arrow length and direction represent the speed and xy direction of the horizontal component of
the wind, respectively. The vertical component of the wind is color coded (see legend), with positive and negative velocities corresponding to upward and downward
winds, respectively. The scales for vertical and horizontal wind velocities are the same in Figures 7c and 7d than Figures 7e and 7f. The black and gray lines in
Figures 7c–7f represent the east-west traverse represented in profiles (Figures 7a and 7b) and the plume trajectories, respectively. Additional maps representing the
wind field at 6 and 8 km asl are presented in Figure S9 in the supporting information.
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grains (Del Bello et al., 2017; Di Muro et al., 2008; Eychenne et al., 2015; Lovell & Rose, 1991). But does the
accelerated sedimentation of fine ash cause the formation of the ASMMs in the Spurr fallout deposits?

To answer this question, we compare the simplified depositional patterns illustrated in Figure 1 to observa-
tions of mass and grain size distributions in the two Spurr deposits. Importantly, there is no apparent correla-
tion between mass and proportion of fine ash within the Spurr ASMMs (Figures 5 and 6), as would be
expected if a size-selective sedimentation process (i.e., enhancing preferentially the settling of fine ash)
had caused the distal deposition increase (see section 2 and Figure 1b). Instead, we observe a gradual enrich-
ment in fine ash with distance that initiates just before the mass minima and continues beyond the ASMMs,
which reflect a local MpuA increase (Figures 5 and 6). These data suggest that the mechanism responsible for
the increased settling affected the sedimentation of both fine ash and coarser particles in a way that
modulated the distance and rate at which all the suspended material reached the ground (Figures 4 and 5).
We thus conclude that while enhanced fine ash sedimentation processes might have been occurring
during the Spurr eruptions, we find no evidence that they produced aggregates with a unique set of charac-
teristics that would have been necessary to trigger the ASMM formation. To constrain the origin(s) of the
ASMM and explain the observed decoupling of MpuA and proportion of fine ash, we explore alternative pro-
cesses affecting particle sedimentation, including (1) changes in horizontal wind velocity at the tropopause
during the course of the eruption, (2) the heterogeneity of particle size, shape, and density documented
within the ASMM, (3) the bimodality of the source grain size, and (4) complex 3-D wind patterns related to
topography-induced perturbations.

6.2. Effect of Horizontal Wind Variations

Fallout deposits represent accumulation of material integrated over the duration of tephra emission.
Atmospheric conditions change through time and can thus modify the settling distance of similar material
(settling velocity) emitted at different times. This alone can complicate the lateral mass variations of
fallout deposits.

Satellite images of downwind spreading of the August plume show that during the first 40 h of dispersion,
the plume front traveled more than 2,000 km at an average speed of 16 m/s (Schneider et al., 1995). The
detached plume passed over the sampling area (~400 km extent) in less than 20 h (Schneider et al.,
1995). The elongated and narrow shape of the fallout deposit (Figure 2) suggests a high wind speed at
the altitude of dispersion. A high-velocity layer (25 to 27 m/s) was located at an altitude of about 11 km
asl at 16:00 ADT on 18 August (42 min before the eruption started; Figure S3 in the supporting information).
It weakened (to 14–16 m/s) but persisted to 04:00 ADT on the morning of 19 August (~11 h after the erup-
tion started) and strengthened again (to 20–25 m/s) by 16:00 ADT on the same day (~23 h after the
eruption started). Simulations using the weakest wind profile (04:00 ADT on 19 August) show a significant
impact of wind changes on particles finer than 63 μm (Figure S7 in the supporting information). Compared
to transport in the 18 August 16:00 ADT wind field, 63 μm and 30 μm individual particles would settle ~60
and 250 km closer to the vent, respectively, at the lower wind speeds (Figure S7 in the supporting
information). At 21:11 ADT, ~4.5 h after the eruption started and ~1 h after it stopped, satellite infrared
(IR) images show a plume still connected to the vent extending ~400 km toward the southeast, with an
optically opaque core indicating high particle concentrations and/or presence of material coarser than
15 μm in diameter (Rose et al., 2001; Schneider et al., 1995). This indicates that substantial deposition must
have occurred while the winds weakened, which could explain some of the fine ash within the
depositional area.

To explore whether the change in wind velocity could have produced the ASMM, we add observations from
September, which also occurred at the time of a high-velocity wind layer. The wind speed averaged 37 m/s at
an altitude of about 12 km at 04:00 ADT on 17 September (~4 h after the eruption started); by 16:00 ADT on
the same day (~16 h after the eruption started) wind speeds persisted at 30 m/s but at altitudes that
decreased 10 to 12 km (Figure S3 in the supporting information). The plume front ultimately traveled more
than 3,500 km at an average speed of 39 m/s and the detached plume passed over the sampling area in less
than 10 h (Schneider et al., 1995). We assume that such small wind changes had very little effect on the
transport of the September plume within the depositional area and cannot explain the formation of the
ASMM in this deposit. From this we conclude that the August ASMM may also require additional
depositional mechanism(s).
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6.3. Effect of Particle Characteristics

Pyroclasts transported in volcanic plumes are more texturally and morphologically complex than depicted in
our settling model, which could affect the distal sedimentation pattern. Fully characterizing the diversity of
texture and shape in a tephra sample, and determining the effect of these variations on the settling behavior
of the particles, is challenging. Riley et al. (2003) proposed an original approach by measuring, in the labora-
tory, the settling velocity (Vt) of particles from August sample 44 (Riley et al., 2003; Rose et al., 2001), which
was collected on axis at a distance of 265 km from vent in Wells Bay, that is, at the distal end of the ASMM
(Figures 2, 3, and 6). They used a Roller air elutriation device, which sorts particles into Vt groups by modulat-
ing the air flow rate injected in a tube holding the sample. Riley et al. (2003) distinguished vesicular from
dense grains and measured the size and shape of representative grains in each Vt group (Figure 8a).

The Vts measured in sample 44 span a wide range of velocities corresponding to particles ranging from 4 to
130 μm in size (measured as circle-equivalent diameter CE; Figure 8). Overall, vesicular particles have lower
Vts than dense ones without an obvious link to their shape (see measurements of 2-D roughness and spheri-
city in Figure S8 in the supporting information). Our settling simulations using the 18 August 16:00 ADT wind
field predict that vesicle-free particles 85–100 μm in size (depending on the sphericity) would reach the
ground at the location of sample 44 if they were falling individually (Figure 6). We calculated Vt for these par-
ticles in sea level atmospheric conditions (comparable to Vt measured in the laboratory), which is ~0.4 m/s
(Figure 8a). According to theory, particles with Vt > 0.4 m/s should have settled closer to the vent, while par-
ticles with Vt < 0.4 m/s should have settled farther away. The predominant grain size mode at ~100 μm
(coarse grain size mode in Figure 8b) is consistent with the grain sizes expected to reach this distance as indi-
vidual particles (Figure 8a), especially when considering variations in sphericity (Figure 8a) and particle den-
sity (Figure S6). Settling of particles in the grain size distribution mass-based mean (Folk & Ward, 1957) at
~24 μm requires accelerated sedimentation, which cannot be explained by changes in wind speed through
time (see modeled Vt for sphericity 0.8 in the 19 August 04:00 ADT weak wind field in Figure 8a). These find-
ings are consistent with the conclusions drawn from Figure 6, which show that individual settling can explain

Figure 8. (a) Mean circle-equivalent (CE) diameter of dense (filled diamonds) and vesicular particles (open diamonds)
measured in the Vt groups identified within tephra sample 44 (Figure 2) of the 18 August 1992 Mount Spurr fallout
deposit (data after Riley et al., 2003). The stars represent theoretical Vt at sea level (equivalent conditions to the laboratory)
for the particles predicted to reach the ground at the location of sample 44 (265 km from vent) by our individual
particle settling scheme for different sphericity values in the strong wind field of August 18 16:00 ADT. For a sphericity of
0.8, Vt at sea level was also recalculated for particles expected to reach the location of sample 44 in a weak wind field
(August 19 04:00 ADT wind profile; see Figure S3). (b) Cumulative grain size distribution of sample 44 (after Rose et al.,
2001), including the mean of the bulk grain size distribution and the modes of the coarse and fine subpopulations
(Figure S1 in the supporting information).
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only the sedimentation behavior of particles ≥100 μm. Below this threshold, the settling location of the par-
ticles is not controlled by the Vt of individual grains, from which we conclude that their size, shape and tex-
ture did not play a primary role in the sedimentation process.

6.4. Effect of the Bimodality of the Source Grain Size

While only a limited number of individual tephra samples show bimodality (Figures 3 and S1 in the support-
ing information), the TGSDs of both the August and September Mount Spurr fallout deposits are polymodal
(Durant & Rose, 2009). The August TGSD has a coarse mode between 4 and 1 mm and a finemode at 125 μm
(Figure 3c), while the September TGSD has two coarse modes at 8 and 1 mm and a fine mode at 63 μm
(Figure 3d). The coarse modes comprise grain sizes found within the first 50 km of the deposits (Figure 6).
The fine mode of the August TGSD corresponds to the mean of the coarse grain size subpopulation found
in the August ASMM, while the fine mode of the September TGSD corresponds to the mean of the unimodal
grain size distributions found in the September ASMM (Figure 6). This suggests that the increased sedimen-
tation at the ASMMs could have been generated, at least in part, by an overrepresentation of some grain sizes
in the plume (i.e., the fine modes of the TGSDs). This could explain why the numerical simulations of the
September eruption by Folch et al. (2010) produced an ASMM at about the right location without including
aggregation. It is important to note, however, that TGSDs are reconstructed by weighting individual grain size
distributions by the mass of tephra deposited close by (Durant & Rose, 2009). Consequently, local increases of
MpuA that generate ASMMs may produce TGSD with an artificial overrepresentation of the grain sizes found
in the ASMMs. That said, the distribution of sampling sites of the Spurr deposits (Figure 2) extends well out-
side of the ASMMs and thus supports the idea that the erupted TGSD, particularly the location andmagnitude
of the fine mode, should be considered in models of ash sedimentation.

The importance of the TGSD for tephra dispersion and sedimentation underlines the importance of under-
standing the mechanisms that generate polymodal source grain size distributions. At Spurr, the origin of
the bimodality of the TGSD is not known. The fine modes are often related to a secondary process of frag-
mentation, such as comminution in pyroclastic density currents (PDCs) (Bernard & Le Pennec, 2016; Jones
et al., 2016), which can produce significant fine ash enrichment in some fallout deposits (Bonadonna et al.,
2002; Eychenne et al., 2012; Eychenne et al., 2015). The August and September eruptions, however, produced
only small volume PDCs (<3 km runout distances) (Miller et al., 1995) and are thus unlikely sources of abun-
dant fine ash. Another possibility is fine ash production by particle attrition during transport in the volcano
conduit and the eruptive column, which can also generate a fine peak in TGSDs (Jones & Russell, 2017).
We would expect attrition to create particles with sizes that are commensurate with textural heterogeneities
of the pumice. The fine modes do not correspond, however, to the sizes of the phenocrysts or the microlites
observed within lapilli and ash (Gardner et al., 1998; Riley et al., 2003), although the presence of two distinct
pumice types (with varying crystallinity and vesicularity) suggests that the polymodality may arise from het-
erogeneities in the eruptedmagma. Additionally, seismicity accompanying the Spurr eruptions suggests rela-
tively deep magma storage (~10 km) (Roman et al., 2004) and consequently the potential for protracted
postfragmentation magma transport within the conduit.

6.5. Effect of Topography on Atmospheric Circulations

The locations of the Spurr ASMMs appear to be correlated with topography, with the local minima occurring
on the windward flank of 2 km high mountain ranges and the maxima spreading across the leeward flank
(Chugach Mountains in the August deposit and Talkeetna Mountains in September; Figures 2, 5a, and 5b).
Directly upwind of both mountain ranges is the Cook Inlet Basin, where all tephra samples are extremely well
sorted and lack particles finer than 125 μm (Figures 4 and 6). Sedimentation of fine ash starts at the foothills
of the mountains (Figure 5), despite higher horizontal wind velocities in September than in August
(Figure S3). These findings suggest a relationship between ash deposition and topography.

The mesoscale models of the atmospheric wind field (Figures 7 and S9 in the supporting information) high-
light the importance of topography-induced atmospheric flow perturbations on the formation of ASMMs
during the 1992 Spurr eruptions. Resulting vertical wind velocities of >1 m/s are significantly larger than
Vts of particles <100 μm (Figure 7); Vt measurements in sample 44 show that particles smaller than
140 μm have Vt < 0.6 m/s (Figure 8). This comparison suggests that these vertical wind variations can affect
tephra settling. Along both plume trajectories (Figures 7c–7f and S9 in the supporting information), the
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strongest oscillations of the vertical wind component are located above the complex topography of the
mountain ranges. Such oscillations generate turbulence in the troposphere that can promote particle mixing
and electrostatic aggregation of ash (Schumacher & Schmincke, 1995). Turbulence can also increase the Vt of
individual small particles as a result of the effect of inertia on the interaction of the particles with turbulence
in an ambient flow (Maxey, 1987; Maxey & Corrsin, 1986). These oscillations are stronger in more rapid wind
fields (see August versus September vertical wind field; Figure 7). Efficient mixing may also aid hydrometeor
development and facilitate en masse sedimentation due to hydrometeor sublimation (Durant & Rose, 2009).
It can also promote entrainment of fine particles in the wakes of coarser grains (Lovell & Rose, 1991) and
development of gravitational instabilities by maintaining concentrated clouds with limited sedimentation
until they collapse and settle all particle sizes in particle-rich fingers (Carazzo & Jellinek, 2013). The correlation
between the locations of these highly turbulent atmospheric zones (in relation to topography) and the loca-
tion of enhanced deposition on the ground suggests that such processes were possible and helps to explain
the wide range of particle sizes and Vts found in the ASMMs (Figures 7 and S9c and S9d in the
supporting information).

We conclude that topographically generated turbulence can accelerate the transfer of particles toward the
low atmospheric layers (by mechanisms that include but are not limited to aggregation), where particle sus-
pension or deposition is then strongly controlled by the atmospheric circulations. In fact, we note that 3-D
simulations of the September plume dispersion and sedimentation (Folch et al., 2010) defined the atmo-
sphere with a WRF model that accounts for complex topography, and therefore, that topographic effects
may have added to the effects of the bimodal TGSD to produce the ASMM, even without aggregation.

7. Conclusion

The crosswind and downwind variations of mass and grain size within the 1992 August and September
Mount Spurr fallout deposits indicate that the ASMMs did not result from preferential settling of fine
(<100 μm) ash relative to coarser grain sizes. Moreover, aggregation processes usually invoked to explain
the formation of ASMMs cannot satisfactorily explain their occurrence in the Spurr deposits. Simulations of
individual but nonspherical particle settling through a homogeneous and horizontally stratified atmosphere
indicates that enhanced settling at ASMMs affected the sedimentation of both fine ash and coarser particles.
We show that the temporal variations of the wind field during eruption are not sufficient to generate the
ASMMs. Measurement of the particle fall velocities in a sample from the August deposit shows that the tex-
ture and morphology of the particles had only a minor effect on settling within the ASMM. In contrast, the
bimodality of the source grain size could have produced the ASMMs, as the fine modes correspond to the
grain sizes found at these locations. We also observe a link between the deposit characteristics and the topo-
graphy: in both deposits, the mass local minimum occurs across the windward flank of a 2 km high mountain
range, while the local maximum (i.e., the ASMM) spreads across the leeward flank; both deposits also exhibit a
change in sorting characteristics across themountains. Mesoscale models of the three-dimensional wind field
highlight the oscillations of the vertical wind field caused by topography; these oscillations can promote par-
ticle mixing, aggregation, and aid formation of hydrometeors and resulting deposition via gravitational
instabilities and by wake capture.

Importantly, this work shows that the formation of ASMMs is not always directly related to processes of
enhanced sedimentation of fine ash. The pronounced Spurr ASMMs are likely the consequence of a combi-
nation of factors, including the original polymodality of the TGSD and enhanced tephra sedimentation due to
topography-induced perturbations of the wind field. Such topography effects may also play an important
role in the formation and longevity of ash-hydrometeors and should be explored in relation to enmasse sedi-
mentation processes of volcanic plumes due to hydrometeor sublimation (Durant & Rose, 2009; Durant
et al., 2009).

This work also highlights that using mass distributions in ASMMs to constrain aggregation processes without
considering grain size characteristics (e.g., Folch et al., 2010; Mastin et al., 2016) may limit our understanding
of the ensemble of processes that likely control ash sedimentation. We finally stress the value of combining
particle transport modeling with detailed deposit observations, including not only mass depositional pat-
terns on the ground but also detailed studies of grain shape, size, density, and, importantly, direct measure-
ment of Vts. Finally, we emphasize that including grain size—and not solely the mass—model evaluation of
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fallout deposits is necessary to fully assess the quality of the sedimentation scheme. Recent modeling work
has shown that such approach reduces the uncertainty on the simulation results (White et al., 2017).
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