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Relating the physical properties of volcanic rocks to the characteristics of ash generated by experimental abrasion
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Interactions between clasts in pyroclastic density currents (PDCs) generate volcanic ash that can be dispersed to the atmosphere in co-PDC plumes, and due to its small size, is far-travelled. We designed a series of experiments to determine the effects of pyroclast vesicularity and crystal content on the efficiency and type of ash generated by abrasion. Two different pyroclastic materials were used: (1) basaltic-andesite pyroclasts from Fuego volcano (Guatemala) with ~26-46% vesicularity and high groundmass crystallinity and (2) tephri-phonolite Avellino pumice (Vesuvius, Italy) with ~55-75% vesicularity and low groundmass crystallinity.

When milled, both clast types produced bimodal grain size distributions with fine ash modes between 4 and 5φ (32-63µm). Although the vesicular Avellino pumice typically generated more ash than the denser Fuego pyroclasts, the ash-generating potential of a single pyroclast was independent of density, and instead governed by heterogeneous crystal and vesicle textures. One consequence of these heterogeneities was to cause the vesicular Avellino clasts to split in addition to abrading, which further enhanced abrasion efficiency. The matrix characteristics also affected ash shape and componentry, which will influence the elutriation and transport properties of ash in the atmosphere. The experimental abrasion successfully replicated some of the characteristics of natural co-PDC ash samples, as shown by similarities in the Adherence Factor, which measures the proportion of attached matrix on phenocrysts, of both the experimentally generated ash and natural co-PDC ash samples. Our results support previous studies, which have shown that abrasion is an effective mechanism for generating fine ash that is similar in size (~5φ; 30µm) to that found in co-PDC deposits. We further show that both the abundance and nature (shape, density, components, size distribution) of those ash particles are strongly controlled by the matrix properties of the abraded pyroclasts.

Introduction

Efficient fragmentation of bubbly melt into a dispersion of gas and pyroclasts can generate a large proportion of volcanic ash [START_REF] Walker | Generation and dispersal of fine ash and dust by volcanic eruptions[END_REF]. Most commonly, the process is fuelled by magma overpressure, which generates the explosivity that transforms magma into pyroclasts, often with fractal size distributions [START_REF] Rust | Permeability controls on expansion and size distributions of pyroclasts[END_REF][START_REF] Turcotte | Fractals and fragmentation[END_REF]. Ash can also form, however, by 'secondary fragmentation' [START_REF] Gonnermann | Magma Fragmentation[END_REF] within the volcanic conduit [START_REF] Dufek | Granular disruption during explosive volcanic eruptions[END_REF][START_REF] Jones | Primary and secondary fragmentation of crystal bearing intermediate magma[END_REF], in the thrust region of a volcanic plume (Cioni et al., 2014) or during transport in pyroclastic density currents (PDCs; [START_REF] Dufek | In situ production of ash in pyroclastic flows[END_REF][START_REF] Eychenne | Causes and consequences of bimodal grain-size distribution of tephra fall deposited during the August 2006 Tungurahua eruption (Ecuador)[END_REF]).

Here we focus on secondary fragmentation in PDCs, where the energetic flow of gas and rock facilitates abrasion and comminution between clasts, as evidenced by the abundance of rounded pumice clasts in PDC deposits (e.g. [START_REF] Manga | Rounding of pumice clasts during transport: field measurements and laboratory studies[END_REF]. These processes generate fine ash, which is important because it affects PDC runout [START_REF] Dufek | In situ production of ash in pyroclastic flows[END_REF] and can become buoyant and form a co-PDC plume that disperses the fine fraction into the atmosphere (Engwell et al., 2016;[START_REF] Sparks | Volcanic plumes[END_REF]. These ash particles are hazardous for human health and aviation [START_REF] Gudmundsson | Ash generation and distribution from the April-May 2010 eruption of Eyjafjallajokull[END_REF][START_REF] Horwell | Grain-size analysis of volcanic ash for the rapid assessment of respiratory health hazard[END_REF], and can add substantially to the fine ash fraction of the grain size distribution created by primary fragmentation; for this reason, it is important to anticipate the contribution of ash generated in PDCs to the total ash budget produced by an eruption. Previous studies show that the amount of ash generated by abrasion in PDCs will depend on a variety of factors such as the material in the PDC, the flow conditions and background eruptive behaviour (e.g., [START_REF] Gravina | Fluidization and attrition of pyroclastic granular solids[END_REF][START_REF] Kueppers | Abrasion in pyroclastic density currents: Insights from tumbling experiments[END_REF][START_REF] Manga | Rounding of pumice clasts during transport: field measurements and laboratory studies[END_REF]. Here we analyse the effects of pyroclast vesicularity and crystal content on the efficiency and type of ash generated by abrasion. We take an experimental approach, following previous studies that imitate abrasion in PDCs [START_REF] Kueppers | Abrasion in pyroclastic density currents: Insights from tumbling experiments[END_REF][START_REF] Manga | Rounding of pumice clasts during transport: field measurements and laboratory studies[END_REF][START_REF] Mueller | Lab-scale ash production by abrasion and collision experiments of porous volcanic samples[END_REF]. We extend these studies by using variably crystalline starting material and by quantifying the amount of ash generated, as well as the ash size, componentry and shape, as these parameters influence the particle settling behaviour and therefore both elutriation and transport potential in the atmosphere [START_REF] Coltelli | Characterization of shape and terminal velocity of tephra particles erupted during the 2002 eruption of Etna volcano, Italy[END_REF].

Background

Secondary fragmentation in PDCs has the potential to alter the total grain size distribution (TGSD) of an eruption [START_REF] Rose | Fine ash content of explosive eruptions[END_REF]. Specifically, the small mean grain size of co-PDC ash (typically <63 µm; [START_REF] Engwell | Chapter 4 -Contribution of Fine Ash to the Atmosphere From Plumes Associated With Pyroclastic Density Currents[END_REF][START_REF] Marti | Reconstructing the plinian and co-ignimbrite sources of large volcanic eruptions: A novel approach for the Campanian Ignimbrite[END_REF] increases the power law exponent of the grain size distribution [START_REF] Jones | Primary and secondary fragmentation of crystal bearing intermediate magma[END_REF]. These small ash particles can travel long distances in the atmosphere [START_REF] Engwell | Physical characteristics of tephra layers in the deep sea realm: the Campanian Ignimbrite eruption[END_REF], such that co-PDC ash is often the furthest travelled ash from large ignimbrite-forming eruptions [START_REF] Engwell | Chapter 4 -Contribution of Fine Ash to the Atmosphere From Plumes Associated With Pyroclastic Density Currents[END_REF]. Consequently, understanding ash formation by secondary processes, such as abrasion in PDCs, is key for predicting the ash size distribution and ash dispersion potential of future PDC-generating eruptions.

The typically smooth shapes of pumice clasts in PDCs, regardless of distance of transport, indicate that clast rounding and, by inference, peak ash production, is rapid and takes place close to the vent [START_REF] Manga | Rounding of pumice clasts during transport: field measurements and laboratory studies[END_REF]. Experiments have replicated the rounding of pumice clasts observed in PDC deposits and the change in clast shape during abrasion has been related to the amount of ash generated in the flow [START_REF] Dufek | In situ production of ash in pyroclastic flows[END_REF][START_REF] Manga | Rounding of pumice clasts during transport: field measurements and laboratory studies[END_REF]. Importantly, these experiments found that the maximum extent of clast rounding is not simply a function of the mass removed by abrasion. In fact, peak clast rounding can occur when clasts have lost between 15% and 60% of their initial mass. The broad range in the mass loss indicates that the peak ash production must be related, to some extent, to the properties of the abrading material.

The effect of clast vesicularity on the efficiency of ash generation has also been examined experimentally [START_REF] Kueppers | Abrasion in pyroclastic density currents: Insights from tumbling experiments[END_REF][START_REF] Mueller | Lab-scale ash production by abrasion and collision experiments of porous volcanic samples[END_REF], with low-density (vesicular) clasts generating more ash than denser (less vesicular) clasts when subjected to the same duration of milling in a rock tumbler. Here we suggest, however, that the differences in ash production are controlled not only by differences in vesicularity, but also by the crystal content (size, shape and abundance of phenocrysts and microlites). As PDC components from different volcanoes are extremely varied in both vesicularity and crystal content, both properties must be assessed to anticipate the ash-generating potential of a specific PDC.

Experiments have shown that the shape of ash is also altered by abrasion [START_REF] Jones | Primary and secondary fragmentation of crystal bearing intermediate magma[END_REF]. In an experimental study using a ball mill, [START_REF] Jones | Primary and secondary fragmentation of crystal bearing intermediate magma[END_REF] found that increased milling duration produced ash particles with higher axial ratios (more equant shapes), which indicates the progressive rounding of ash grains, as well as increased removal of matrix from phenocrysts and phenocryst fragments [START_REF] Freundt | Abrasion in pyroclastic flows[END_REF][START_REF] Jones | Primary and secondary fragmentation of crystal bearing intermediate magma[END_REF]. From this perspective, it is possible that the shape and internal texture of ash generated by abrasion could be used to distinguish it from ash generated by the primary fragmentation of the magma. Field studies of the Latera Volcanic Complex, Italy, have shown that sanidine crystals in the PDC deposit have fewer boundary irregularities than crystals of the same grain size in the fall deposit [START_REF] Taddeucci | Particle size-density relationships in pyroclastic deposits: inferences for emplacement processes[END_REF]. Similarly, a preliminary assessment by Liu et al. (2015a) of Tambora ash suggests that co-PDC ash particles have grain boundaries with reduced roughness compared to fall-deposit ash of the same grain size.

The phenocryst content should also affect the efficiency of ash generation by abrasion, as crystals can influence fracture and breakage patterns in pyroclasts [START_REF] Wawersik | A study of brittle rock fracture in laboratory compression experiments[END_REF]. However, the effect of phenocrysts is not clear. Crystals may either resist erosional processes such as abrasion in mass flows, or conversely, may introduce planes of weakness, especially if they have platy textures or have been fractured by the initial brittle fragmentation [START_REF] Bindeman | Fragmentation phenomena in populations of magmatic crystals[END_REF][START_REF] Thomson | Estimating rock compressive strength from Rock Abrasion Tool (RAT) grinds[END_REF]. For instance, experiments show that crystal-rich pyroclasts from Mount Unzen are more resistant to abrasion than less crystalline samples [START_REF] Kueppers | Abrasion in pyroclastic density currents: Insights from tumbling experiments[END_REF]. Similarly, crystal-bearing Medicine Lake pumice abraded more slowly than crystal-free, texturally homogenous Taupo pumice of similar density [START_REF] Manga | Rounding of pumice clasts during transport: field measurements and laboratory studies[END_REF]. What still is unclear, however, is the effect of a heterogenous distribution of phenocrysts and microlites, such as localised dense zones within a pumice clast, on the characteristics of ash generated by abrasion.

Also unexplored is the effect of groundmass crystallinity (i.e. microlite content) on the resistance of pyroclasts to abrasion. Hydrous mafic (basalt, basaltic andesite) magmas, in particular, experience extensive groundmass crystallization during rapid magma ascent in the conduit (e.g., [START_REF] Shea | Kinetics of cooling-and decompression-induced crystallization in hydrous mafic-intermediate magmas[END_REF]. The products of these eruptions also have total grain size distributions (TGSDs) with less fine ash than their microlite-free counterparts [START_REF] Durant | Sedimentological constraints on hydrometeor-enhanced particle deposition: 1992 Eruptions of Crater Peak, Alaska[END_REF][START_REF] Jones | Primary and secondary fragmentation of crystal bearing intermediate magma[END_REF][START_REF] Rust | Permeability controls on expansion and size distributions of pyroclasts[END_REF][START_REF] Turcotte | Fractals and fragmentation[END_REF], which suggests that microlites affect primary fragmentation. We expect the role of groundmass crystallinity in secondary fragmentation processes to be four-fold. First, microlite-rich samples also have low vesicularities, which would suggest that they should resist abrasion. Second, these samples have thick bubble walls, so that even if they abrade, the ash particles should be larger than in low crystallinity, high vesicularity samples. Third, analogue and numerical experiments [START_REF] Oppenheimer | Gas migration regimes and outgassing in particle-rich suspensions[END_REF][START_REF] Parmigiani | Bubble accumulation and its role in the evolution of magma reservoirs in the upper crust[END_REF][START_REF] Parmigiani | Pore-scale mass and reactant transport in multiphase porous media flows[END_REF] show that groundmass crystals aid formation of gas pathways, which could control patterns of breakage. Finally, the crystal content of the resultant ash influences ash shape, as crystalline ash is typically blocky and lacks the perimeter concavities caused by abundant vesicles (Liu et al., 2015).

In this study, we test the efficiency of secondary ash generation by abrasion as a function of both vesicularity and crystallinity (phenocrysts and groundmass) of starting pyroclasts. We use samples from a violent Strombolian eruption of basaltic andesite Volcan Fuego, Guatemala, and from the Plinian Avellino eruption of tephra-phonolite from Vesuvius volcano, Italy. Informed by previous studies [START_REF] Kueppers | Abrasion in pyroclastic density currents: Insights from tumbling experiments[END_REF][START_REF] Manga | Rounding of pumice clasts during transport: field measurements and laboratory studies[END_REF] we expected that the low density (high vesicularity) Avellino pumice would generate more ash than the high density (low vesicularity) Fuego pyroclasts. To test this hypothesis, we characterised the size, shape, vesicularity and crystallinity of the products both prior to and following abrasion experiments to dissect the links between the crystallinity, ash generation and ash shape. We then compare experimental and natural ash particles to assess the reliability of ash shape as an indicator of fragmentation process.

Volcan de Fuego (2012 eruption)

Volcan de Fuego is a stratovolcano located along the Central American volcanic arc in Guatemala. It produces frequent discrete violent Strombolian blasts with small ash plumes (<10km) and lava flows.

Occasional 'paroxysms' of heightened activity generate Vulcanian to sub Plinian eruption columns and PDCs [START_REF] Rose | Nature and significance of small volume fall deposits at composite volcanoes: Insights from the October 14, 1974 Fuego eruption, Guatemala[END_REF]. The material used in our experiments is from a paroxysmal eruption in September 2012, which was more explosive than typical Strombolian activity [START_REF] Chigna | Reporte de la erupcion del volcan fuego 13 septiembre 2012[END_REF].

The eruption produced a block and ash flow that we sampled ~6km from the vent on a field campaign in March 2016. The deposit is massive, poorly sorted and contains large blocks of basaltic andesite.

We assume that the material is geochemically similar to basaltic-andesite explosive products from the 1974 eruption of Fuego [START_REF] Chesner | Geochemistry and evolution of the Fuego volcanic complex, Guatemala[END_REF] as no geochemical analyses have been carried out on the 2012 eruptive products. This assumption is supported by the similarity of the phase assemblage to the 1974 material, and the lack of compositional differences between magma erupted in 1974, 1999and 2003[START_REF] Berlo | A tale of two magmas, Fuego, Guatemala[END_REF]. Major element analyses of the 1974 pyroclasts show an average silica content of 56.5 wt% and a total alkali content (Na 2 O + K 2 O) of ~5.6 wt% [START_REF] Chesner | Geochemistry and evolution of the Fuego volcanic complex, Guatemala[END_REF].

Additional material from Volcan de Fuego used in this study includes 2012 ash that was sampled from the top of a small block and ash flow. The ash represents the dilute portion of the PDC that settled out after the emplacement of the dense basal layer and is termed "PDC-surge" ash henceforth. The 3φ (177-125µm) fraction of this PDC-surge ash was imaged by E. Liu (personal comm). As a reference, we also analyse fall deposit ash generated during a paroxysm of Fuego in 2016 (sampled by E. Liu).

2.2 Pomici de Avellino (3.9ka B.P.) An eruption of Somma-Vesuvius, Italy in 3.9ka B.P produced the Pomici de Avellino (PdA) deposit [START_REF] Sulpizio | Discriminating the long distance dispersal of fine ash from sustained columns or near ground ash clouds: The example of the Pomici di Avellino eruption (Somma-Vesuvius, Italy)[END_REF]. It was a large explosive eruption characterised by three distinct eruptive phases: an opening Plinian phase followed by a column collapse phase and a final phreatomagmatic phase (Sulpizio et al., 2010a). The stratigraphy is split into eruption units EU1 to 5 [START_REF] Cioni | Pyroclastic deposits as a guide for reconstructing the multi-stage evolution of the Somma-Vesuvius Caldera[END_REF]. The products used in our experiments are from a PDC from EU3 that was generated during the column collapse phase. The PDC from this phase (EU3pf) was directed to the north, had a short runout (<10km) compared to the later EU5 PDCs (>20km, Sulpizio et al., 2010b) and is described as 'poorly sorted massive to stratified lapilli and ash' (Sulpizio et al., 2010b). Analyses of Avellino EU3 glasses by Sulpizio et al. (2010b) yield an average silica content of 55.6 wt% and a total alkali content of 12.8 wt%, classifying the products as tephri-phonolite.

No distinct co-PDC or surge ash layer is found in the Avellino EU3 deposit (Sulpizio et al., 2010a).

Instead, ash from the matrix of the dense part of the EU3pf deposit was sampled to compare to our experimentally generated ash and to examine the results of natural abrasion during transport in the flow.

Methods

Characterisation of starting materials

3.1.1. Density Juvenile clast densities were measured using the methodology of [START_REF] Houghton | A vesicularity index for pyroclastic rocks[END_REF].

Removable paraffin film of known density was used to seal the clasts for the density measurements which enabled clasts of known density to be later used in the abrasion experiments. The density distributions of the Fuego and Avellino clasts in the -3φ (8-16mm) size range that we used as starting material are shown in Figure 1. The mean densities of the Fuego and Avellino pyroclasts are 1.92 gcm - 3 and 0.97 gcm -3 , respectively. Each sample was divided into three sub-samples for the abrasion experiments (Fig. 1): one with a density close to the average of the bulk juveniles (AD), one with lower than mean density (LD) and the third with a higher than mean density (HD). This was done to test whether LD clasts (high vesicularity) generate more ash than the HD (low vesicularity) clasts. To track the change in shape of the large clasts (e.g., [START_REF] Manga | Rounding of pumice clasts during transport: field measurements and laboratory studies[END_REF], the clasts in each sub-sample were placed on a light board in order of ascending density and photographed before and after each abrasion experiment.

Dense rock equivalent (DRE) densities are required for calculating vesicularity. The Avellino DRE density used was 2.42 gcm -3 (Balcone-Boissard et al., 2012). The DRE density for Fuego was approximated from a dense juvenile, measured at 2.79 gcm -3 [START_REF] Houghton | A vesicularity index for pyroclastic rocks[END_REF].

Vesicularity

The vesicularity 'V D ' was calculated using the DRE densities of Avellino and Fuego lavas and the measured juvenile densities (e.g., [START_REF] Houghton | A vesicularity index for pyroclastic rocks[END_REF]Fig. 1). The average V D calculated for Fuego was 31.2% and 59.6% for Avellino.

We also measured the vesicularity from polished thin sections of juvenile clasts (-3φ), as imaged using a Hitachi S-3500N Scanning Electron Microscope (SEM) at the University of Bristol in backscattered electron (BSE) mode. Imaging the clasts at several magnifications ensured the optimum resolution for subsequent image analysis of both vesicles and crystals [START_REF] Shea | Textural studies of vesicles in volcanic rocks: An integrated methodology[END_REF]. Vesicularity and bubble number density (BND) were calculated from BSE images using FOAMS, a MATLAB™ based program [START_REF] Shea | Textural studies of vesicles in volcanic rocks: An integrated methodology[END_REF] that converts 2D BSE images into a 3D representation of the vesicularity, 'V F '. The average vesicularity of four Fuego juvenile clasts was 32.4%, which is similar to the average measured V D . It was not possible to determine an accurate V F for the EU3pf pumice using FOAMs because of the heterogeneity of the vesicle population. The measured V F of pumice from the EU3 fall deposit is 56.1% [START_REF] Voarino | Insights into fragmentation and column collapse triggers : A study of juvenile density and vesicle textures from the Pomici di Avellino steady plinian phase Brennus Voarino[END_REF], which is similar to the V D value of 59.6%. This, together with the close agreement of V D and V F for Fuego, gives us confidence in the robustness of the density measurements.

Crystal Content

The phenocryst content of the starting materials was quantified using the BSE images acquired for vesicularity. Additional high magnification (1500x) BSE images were used to quantify the microlite content of the samples. Crystal identities were checked by energy dispersive spectroscopy (EDS) spot analyses on the SEM, after which the BSE grey scale value of each phase was used to map the phase distribution. The abundance of each phenocryst phase and the ratio of microlites to glass in the groundmass on a vesicle-free basis were determined with ImageJ.

Abrasion Experiments

The abrasion experiments were carried out using a planetary ball mill manufactured by Retsch Ltd. The Retsch Ltd PM 100 model has a vertical axis of rotation. This differs from studies in which a rock tumbler was used [START_REF] Kueppers | Abrasion in pyroclastic density currents: Insights from tumbling experiments[END_REF][START_REF] Manga | Rounding of pumice clasts during transport: field measurements and laboratory studies[END_REF], where the rotation axis was horizontal.

Typically, the Retsch planetary ball mill is used to generate very fine powders due to the milling efficiency that results from high centrifugal forces generated at high milling speeds [START_REF] Mio | Effects of rotational direction and rotation-torevolution speed ratio in planetary ball milling[END_REF].

We did not want complete pulverisation of the samples, therefore short milling times were used (4-5 mins). Additionally, the agate milling balls that encourage high energy impacts across the milling jar [START_REF] Lu | Simulation of ball motion and energy transfer in a planetary ball mill[END_REF] were excluded, which means that the milling produces only clast-to-clast and clast-tojar-wall interactions. We assume that friction at the jar walls is minimal due to the small mass of a single clast and the smooth nature of the agate lined jar [START_REF] Kueppers | Abrasion in pyroclastic density currents: Insights from tumbling experiments[END_REF] and that the abrasion is driven mainly by clast interactions (both frictional sliding and impacts).

Sub-samples with an initial grain size of -3φ (8-16mm) were used in the abrasion experiments. This ensured that all post-milling material smaller than the starting grain size was generated in the experiment. The number of clasts in each experiment was limited by the size of the grinding jar and the availability of material in the -3φ fraction (Table 1). The grinding jar was sealed, placed on the rotating base and milled for 4 minutes with a rotation rate of 450 rpm (Fig. 2). Two additional Avellino abrasion experiments were carried out to investigate the effect of varying the starting grain size and the addition of a lithic component (sample Av31b and Av3AG, respectively; Table 1).

Our aim is to simulate processes occurring as clasts are transported in a PDC. The equivalent transport distance (x) of the milling,
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is ~425m for our experiments, with l being the inner milling jar circumference, t is the milling time in mins and v is the rotation rate in rpm [START_REF] Kueppers | Abrasion in pyroclastic density currents: Insights from tumbling experiments[END_REF]. The speed at the wall of the rotating jar (= x / t) was ~6.5km/hr which is an order of magnitude lower than typical PDC ground velocities (e.g., [START_REF] Cole | Deposits from dome-collapse and fountain-collapse pyroclastic flows at Soufrière Hills Volcano[END_REF]. However, the velocities of the clasts relative to each other during milling, are much higher due to the planetary ball mill configuration (>20km/h, [START_REF] Lu | Simulation of ball motion and energy transfer in a planetary ball mill[END_REF] and more comparable to the internal velocities in a natural PDC.

Characterisation of experimental products

Grain size distributions (GSDs)

The milled samples were manually dry-sieved from -3 to 3 phi (φ), with half phi sieving performed where possible. The size distribution of the fine material (>2φ, <250µm) was quantified using a Mastersizer 3000™ by Malvern Instruments Ltd in the School of Geographical Sciences at the University of Bristol. The fine and coarse fractions were combined to produce a GSD for each experiment using the overlap in the 3φ size fraction (e.g., [START_REF] Jones | Primary and secondary fragmentation of crystal bearing intermediate magma[END_REF].

Sample preparation and analysis conditions

After milling, grains from each size fraction were mounted and polished separately to ensure that all ash particles could be imaged at the same magnification (Liu et al., 2015a). When imaging the ash mounts, the objective was to balance the resolution of the images and the number of grains imaged.

Typically, we found that at a working distance of ~ 15mm, an accelerating voltage of 15 or 20kV and 200x magnification gave an optimum resolution (~ 1560 pixels/mm). Automated grid images, typically made up of 20-60 individual images, were stitched together using the ImageJ stitching plugin. The collated images contain 400-1000 grains with 30,000-60,000 pixels per grain. The ash componentry was then assessed from the BSE grid images with grains classified as free crystals, crystals with attached melt or matrix, groundmass grains, vesicular glass or pure glass.

Post-abrasion analysis of large clasts

The largest clasts (-3 and -2φ) remaining after the abrasion experiments were photographed and their size and shape compared with the original clasts of the same sub-sample. It was not possible to match each individual clast pre-and post-abrasion, therefore we amassed the shape data for all the sub-samples of each starting material and compared the average change in shape. We used the metric form factor 'FF' (Liu et al., 2015;termed 'R' in Manga et al., 2011) to measure shape, where FF = 1 represents a perfect circle (Table 2): FF = 4π*area of particle/ (perimeter of particle) 2 .

(2)

The results of the shape analysis, particularly whether the FF increased (rounded) or decreased, informed our choice of which remaining clasts to mount for vesicularity and crystallinity characterization. As both starting materials were sampled from PDC deposits, the clasts had already experienced some degree of natural abrasion. The change in FF of the larger clasts from pre-to postabrasion could therefore represent the effect of further transport in a natural flow.

Ash shape analysis

The BSE grid images gathered for componentry analysis were also used to measure particle shape.

Images were first cleaned and converted to a binary form, then ash shape was measured using an ImageJ macro from Liu et al. (2015a). The natural ash samples from Fuego and Avellino (Table 1) were sieved, the 3φ fraction imaged, and the cross-sectional shape measured using the same approach used for the experimentally generated ash. For comparison purposes, the resolution of the BSE images of the experimental ash was reduced to match the Fuego PDC-surge ash images (~390 pixels/mm, E. Liu, personal comm.), as convexity is sensitive to perimeter resolution. This was done by reducing the image size in ImageJ, which resamples the original image using bilinear interpolation (Ferreira and Rasband, 2012). The image analysis and shape measurements were then repeated using the lower resolution images. Table 2 outlines the key shape parameters used in this study. Grains classified as 'crystals with attached matrix' in the componentry analysis were further analysed to determine the 'Adherence Factor'

(AF; [START_REF] Jones | Primary and secondary fragmentation of crystal bearing intermediate magma[END_REF]: AF = (area of matrix) / (area of matrix + area of crystal).

(
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Values of AF close to 1 reflect a large proportion of attached matrix. This measurement required further manipulation of the BSE grid images to enhance the grey scale contrast between attached matrix and crystal.

The projected area of the experimental ash particles was measured using Morphologi G3SE™ by Malvern Instruments Ltd, an Optical Particle Analyser (OPA) located in the Laboratoire Magmas et Volcans, Clermont-Ferrand, France. Morphologi homogeneously disperses dry particles onto a glass plate using compressed air. The ash is then imaged and basic size and shape parameters of individual grains are measured using the same metrics in Table 2 [START_REF] Leibrandt | Towards fast and routine analyses of volcanic ash morphometry for eruption surveillance applications[END_REF]. We analysed the 3φ fraction of Fuego sample F3a and Avellino sample Av31a (Table 1) to compare with the results of the 2D shape analysis. The 4φ (74-63 µm) fraction of these samples was also analysed to compare the shape measurements made across the two grain size fractions. The 4φ fractions were sieved by quarter phi increments, cleaned with ethanol and dried prior to analysis to ensure that very fine material was removed.

For each starting material and grain size, a standard operating procedure (SOP) was designed. The light source (diascopic or episcopic), magnification, focus, threshold and the area of the dispersion to scan were set manually [START_REF] Leibrandt | Towards fast and routine analyses of volcanic ash morphometry for eruption surveillance applications[END_REF]. We concluded that the best resolution was provided by using a 5x optic with diascopic light (light from below) to obtain the 2D projected area of the ash shape. Once the SOP was defined, each analysis took 30-40 minutes depending on the scanning area.

Following the automated analysis, the Morphologi software (Malvern) generates an output file of the shape and grain size data. The 3φ size fraction produced grain counts of 3000-7000, and the 4φ analyses contained over 10 000 grains per sample. The output files required cleaning due to the imperfect nature of the imaging and automated dispersion (see Fig. S1). Grain counts in the 4φ fraction were reduced to a sub-sample of 6000 randomly selected grains before the anomalous grains were removed. This ensured the same degree of manual error in the datasets of each grain size fraction.

Results

Sample characterisation

On a vesicle-free basis, Fuego pyroclasts have ~35% phenocrysts, but the phenocryst content ranges from 41% in a HD clast to 30% in a LD clast. The phenocrysts are dominantly plagioclase and olivine with sizes of 0.3-4mm. The average microlite content is ~40% in the groundmass (on vesicle-free basis)

and comprises plagioclase (dominant), clinopyroxene, oxides and olivine. There is minor variability, but no significant difference in the microlite crystallinity between the high-and low-density subsamples.

The vesicle size distribution (VSD) varies with density in the Fuego pyroclastic starting material. We prepared and imaged LD, AD (average density) and HD Fuego pyroclasts (Fig. 3) to analyse with FOAMS [START_REF] Shea | Textural studies of vesicles in volcanic rocks: An integrated methodology[END_REF]. There is a general trend of larger vesicle sizes and thicker bubble walls with increasing density. The modal vesicle size of the HD clasts (Table 1) is 1-0φ (0.5-1mm), with no vesicles <5φ (0.031mm) (Fig. 3d,h). LD clasts have a substantial fraction of bubbles (by area and by number) <2φmm (0.25mm) and a modal vesicle size between 3-2φ (Fig. 3a,b). Some LD clasts have a small number of large vesicles (>0φ) which account for a large area fraction (Fig. 3b,f). These clasts with large vesicles (Fig. 3b) also have more glomerocrysts and higher groundmass crystallinity than other LD clasts (Fig. 3a). From examining a small number of LD clasts ( 6), it appears the two types of LD textures (Fig. 3e,f) occur in equal proportion in the Fuego pyroclasts.

The average (vesicle-free) phenocryst crystallinity of the Avellino pyroclasts is ~12%, ranging from 8% in an LD pumice clast to a maximum of 20% in an HD pumice clast. The phenocrysts in the Avellino pumices are 0.2-1.5mm in size and dominantly sanidine and nepheline with minor amphibole, vesuvianite and clinopyroxene. The microlite content on a phenocryst and vesicle-free basis is 7-13%, and comprises sanidine, nepheline and minor skeletal leucites [START_REF] Voarino | Insights into fragmentation and column collapse triggers : A study of juvenile density and vesicle textures from the Pomici di Avellino steady plinian phase Brennus Voarino[END_REF]. Spatial variations in microlite content include microlite-rich areas that are most frequent in the HD clasts (Fig. 4a andb).

There are also fragments of thermally recrystallised limestone embedded in the pumice associated with large vesicles, which likely result from volatile release due to thermal decomposition of carbonate minerals (Fig. 4c, e.g. [START_REF] Jolis | Skarn xenolith record crustal CO2 liberation during Pompeii and Pollena eruptions, Vesuvius volcanic system, central Italy[END_REF][START_REF] Sottili | Constraints on magma-wall rock thermal interaction during explosive eruptions from textural analysis of cored bombs[END_REF]. Leucite microlites and the dense microliterich areas appear to be unique to the dense mode of the EU3pf deposit [START_REF] Voarino | Insights into fragmentation and column collapse triggers : A study of juvenile density and vesicle textures from the Pomici di Avellino steady plinian phase Brennus Voarino[END_REF].

Grain size distributions

All post-abrasion grain size distributions (GSDs) are bimodal, with most of the resultant ash ≤ 125µm (≥3φ; Fig. 5). Details of the GSDs differ, however, in that the fine mode lies at 4φ (63-90µm) in the Fuego experiments and 5φ (32-45µm) in the Avellino experiments. Moreover, the Avellino clasts generally produce more ash than the Fuego clasts. Cumulative grainsize distributions for all experiments are shown in Figure 6, where the y-axis represents the starting grain size (-3φ). These distribution profiles highlight another consistent difference between Fuego and Avellino samples. The relatively flat profiles of the Fuego GSDs across the intermediate grain size fractions (-1 to 3φ) shows negligible formation of ash of intermediate size. In contrast, the Avellino GSDs do not have flat profiles between -1 and 3φ, meaning that milling generated particles across a wide range of grain sizes.

Overall, the Fuego milling experiments generated less ash than the Avellino experiments. In detail however, the response of individual Fuego pyroclasts to abrasion varies. The expected result was that the high density (low V D ) sub-samples would generate the least ash and the low density (high V D ) the most. For example, experiment F3a behaved as expected: >60% of the material generated in the LD experiment was smaller than -3φ, whereas <16% of the material in the HD experiment was smaller than -3φ. However, most experiments did not show this behaviour: there are other Fuego experiments where LD sub-samples (highest V D ), do not generate the highest proportion of ash (e.g., F2a; Fig. 5c).

Similarly, the HD sub-samples, which contain clasts with high crystal contents (both phenocrysts and microlites) and low V D , are not always the most resistant to abrasion.

Crystal-poor, high vesicularity Avellino experiments consistently have a smaller proportion of the material remaining in the -3φ fraction than the experiments with crystal-rich, vesicle poor Fuego material. This indicates more efficient abrasion and ash generation for pyroclasts with low crystallinity and high vesicularity. We still see variability in the amount of ash generated, however. In one extreme, LD sub-sample Av31a yields <10% of mass remaining in the starting grain size, while milling of the AD (average density) sub-sample generated less ash (>40% of the material remaining in the starting size) than the HD sub-sample (Fig. 5d).

Abrasion products

Shapes of large clasts

The median form factor (FF) of all large (-3 and -2φ) clasts increased after milling (Fig. 7), reflecting the expected clast rounding due to abrasion [START_REF] Manga | Rounding of pumice clasts during transport: field measurements and laboratory studies[END_REF]. Although the median FF values increase, post-abrasion clast shapes are variable. At the same time, some experiments show an increase in the number of grains in the -3 and -2φ grainsize fractions (see Table 1; Fig. 7). For example, milling of Av33a HD caused the number of large clasts to increase from 7 to 9. Both the range in FF values and the increase in particle number can be explained by splitting, rather than solely abrasion, of clasts.

Splitting of clasts also explains the low (outlier) FF measurements in the Avellino data (Fig. 7) that indicate an increase in clast angularity. The Fuego ash ranges from 0.39-0.96 SLD and 0.50-0.95 CVX. The Avellino ash covers an even wider spectrum, with SLD ranging from 0.22 to 0.97 and CVX from 0.21-0.97.

Componentry analysis of the same particles (Fig. 10, Fig. S3) helps to explain the shape parameter range. Fuego ash is dominated by variably crystalline matrix fragments, with >50% of the grains being groundmass grains that have CVX and SLD values of ~0.75 -0.9. Conversely, Avellino ash comprises predominantly free crystals and vesicular grains, the former having very high CVX and SLD values, and the latter marking the low CVX and SLD extremes.

The differences between the shape parameters measured by ImageJ and Morphologi reflect the differences between cross-sectional area and projected area (Liu et al., 2015a). Lower and more varied values of convexity and solidity are measured using BSE images and ImageJ due to the ability to measure small-scale roughness. The most extreme ash shapes measured by both methods (lowest values of CVX and SLD) are the vesicular grains that characterize the microlite-poor Avellino samples. The free crystals, in contrast, yield the highest SLD and CVX values (>0.95 in Fig. 8 and >0.8 in Fig. 9) using both methods, and thus provide an approximate measure of the free crystal content of individual ash samples.

Natural ash samples

Two natural Fuego ash samples were analysed for their shape (Fig. 11a,b). The Fuego 2016 fall ash contains more grains with lower SLD and CVX values than the experimental or natural PDC-surge ash (Fig. 11). Similar to the experimental Fuego ash, the natural fall and surge ash show a range in microlite textures with an average microlite content of ~41%, comparable to the crystallinity measured from Fuego pyroclasts used in the experiments.

The CVX-SLD density plot of the natural PDC-surge and experimental Avellino ash (Fig. 11c) shows a slight increase in the number of low SLD and CVX values in the experimental ash compared to the natural ash. An important difference between the two samples is the presence of holocrystalline ash grains in the natural ash, which comprise ~29% of the components (Fig. 11f). They are the remnants of lithics that were incorporated into the Avellino PDC.

Adherence Factor

Experimental ash from both Fuego and Avellino contained numerous ash grains that were classified as 'crystals with attached matrix' (Fig. 10). We quantified the amount of matrix attached to each imaged crystal in the 3φ size class using the 'Adherence Factor' (AF; Eq. 3). As shown in Figure 12, the Avellino and Fuego samples show contrasting AF distributions. Avellino ash samples yield the lowest AF values, whereas the Fuego samples, show a wide range of AF values. For comparison, we also include the results of milling experiments on Soufriere Hills Volcano (SHV) pumice [START_REF] Jones | Primary and secondary fragmentation of crystal bearing intermediate magma[END_REF] which has intermediate values of vesicularity and crystallinity, and correspondingly intermediate AF trends.

Discussion

The abrasion experiments show that, for the same duration of milling, the Avellino pumice generated more ash than the denser Fuego juvenile material (Figs. 5 and6). This supports the results of [START_REF] Kueppers | Abrasion in pyroclastic density currents: Insights from tumbling experiments[END_REF], who found that material of lower density and higher vesicularity generates more ash when abraded. However, the results are less straightforward when the starting material is examined in the context of density-designated sub-samples from the same eruption. This means that density alone cannot be used to predict the behaviour of material subjected to abrasion. Moreover, our experiments show that ash shape, size and componentry vary both within and between samples. As these parameters determine the transport properties of secondary ash particles, understanding controls on these properties is critical for predicting the contributions of co-PDC ash to distal ash clouds.

Effects of pyroclast textural heterogeneity on abrasion

Fuego pyroclasts

The vesicle size distribution (VSD) of pyroclasts influences the TGSD generated by primary fragmentation (Liu et al., 2015b;[START_REF] Rust | Permeability controls on expansion and size distributions of pyroclasts[END_REF]. The VSD of pyroclasts may also affect the extent of secondary fragmentation because vesicles affect brittle rock strength [START_REF] Heap | The influence of porosity and vesicle size on the brittle strength of volcanic rocks and magma[END_REF] and form zones of weakness that may control patterns of breakage. Sub-samples in the Fuego experiments, in particular, display a wide range in the amount of ash generated, which likely reflects VSD variations in the Fuego starting material (Fig. 3). If clasts abrade by fracturing at the weakest point, which typically will be the thinnest part of a vesicle wall, then the low vesicle number density and increased thickness of the bubble walls in the HD samples explains the resistance to abrasion of the HD clasts.

The average bubble wall thickness may also control the size of the abraded ash particles (typically 4φ, or ~63 µm, in Fuego LD samples).

Not all Fuego LD clasts generated a large proportion of ash when abraded (Fig. 5c), however. To address this discrepancy, we imaged two post-milling LD clasts of similar density: one that recorded a 25% decrease in projected area with visible rounding (Fig. 3a) and one that recorded only a 2% decrease in projected area and showed a decrease in FF post-milling, rather than the expected increase (Fig. 3b).

The clast that did not round (Fig. 3b) has a smaller modal vesicle size, elevated microlite crystallinity and a greater number of phenocrysts, glomerocrysts and large vesicles compared to the LD clast that did round (Fig. 3a). Here the few large vesicles (~0.5mm; Fig. 3b) allow the non-rounded clast to retain a low density, whilst the high crystallinity (both glomerocrysts and microlites) controls its resistance to abrasion. It seems likely that the relative proportions of these two clast types in the LD sub-samples explains the range in ash production rates. The importance of heterogeneities in ash generation means that our individual experiments with a small number of clasts are not representative; however, the limited set of clasts allows us to explore the differences in sub-samples by isolating individual clasts, monitoring their behaviour post-milling and attributing differences in behaviour to differences in vesicularity and crystal content.

Avellino pyroclasts

The Avellino experiments consistently generated a higher proportion of ash than the experiments with denser Fuego pyroclasts. Interestingly, however, the HD sub-samples generated more ash than the AD sub-samples in two of the Avellino experiments, contrary to the expectation that high density (low vesicularity) clasts would be most resistant to abrasion [START_REF] Kueppers | Abrasion in pyroclastic density currents: Insights from tumbling experiments[END_REF]. Sectioning of selected clasts shows that the EU3pf pumice is highly heterogeneous in both vesicularity and crystal content, particularly in the HD clasts. For example, HD clasts can contain microlite-rich zones that have a high number density of microlites and low vesicularity relative to the surrounding melt (Fig. 4a, b; [START_REF] Voarino | Insights into fragmentation and column collapse triggers : A study of juvenile density and vesicle textures from the Pomici di Avellino steady plinian phase Brennus Voarino[END_REF], textural features that should make these zones relatively resistant to abrasion, leading us to further question the high proportion of ash generated by two of the HD sub-samples.

The -2φ fraction of the EU3pf deposit has a bimodal density distribution, unlike the -3φ fraction, with a secondary dense mode created by clasts with relatively high microlite content [START_REF] Voarino | Insights into fragmentation and column collapse triggers : A study of juvenile density and vesicle textures from the Pomici di Avellino steady plinian phase Brennus Voarino[END_REF]. To test the response to abrasion of microlite-rich clasts, we carried out an additional abrasion experiment using the dense Avellino pumices from the -2φ fraction (sample Av31b in Table 1). The resulting GSD (Fig. 6c) shows that the clasts were less abraded than the -3φ clasts even when milled for an extra minute, confirming that the increased microlite content of the -2φ strongly enhances their resistance to abrasion. However, the extremely microlite-rich zones (Fig. 4), were only present in two out of five HD clasts imaged post-abrasion. Therefore, rather than limiting abrasion, the HD clasts which have elevated microlite content or contain dense zones could increase abrasion by acting as resistant grains that abrade the more vesicular clasts. This is analogous to the scenario where a lithic component (i.e. more resistant lithology) incorporated in PDCs encourages efficient abrasion [START_REF] Bernard | The milling factory: Componentry-dependent fragmentation and fines production in pyroclastic flows[END_REF]. This may be one explanation for the unexpected behaviour of some HD subsamples (Fig. 5,6).

Additional heterogeneities in Avellino clasts include xenoliths of altered limestone, which generate cavities in the surrounding melt by decarbonation (Fig. 4c). These cavities introduce internal weaknesses that may promote clast splitting rather than abrasion (see section 5.2).

The heterogeneities observed within the Fuego and Avellino pyroclasts are typical of the textural heterogeneity found in natural PDC material (e.g. [START_REF] Bernard | The milling factory: Componentry-dependent fragmentation and fines production in pyroclastic flows[END_REF][START_REF] Gardner | Tephra-fall deposits from the 1992 eruption of Crater Peak, Alaska: implications of clast textures for eruptive processes[END_REF].

Importantly we have shown that textural heterogeneity within a density class from a single eruption can influence pyroclast resistance to abrasion. The demonstrated sensitivity of clast abrasion to internal heterogeneities means that density alone cannot be used to predict the efficiency of ash production by abrasion within a PDC.

Enhanced ash production due to clast splitting

The increase in the post-milling clast count in the -2φ and -3φ fractions (Table 1) indicates that some clasts split during the abrasion experiments. Clast splitting can facilitate further abrasion, as it increases the total surface area and number of sharp corners that control abrasion [START_REF] Manga | Rounding of pumice clasts during transport: field measurements and laboratory studies[END_REF]. The Avellino experiments showed the most evidence for splitting during milling, with the clast number almost doubling (from 7 to 12 clasts) in one sub-sample (Av32a AD sample; Table 1). In these experiments, the large proportion of material in the -2φ grain size (expected for splitting of -3φ grains), as well as the abundance of ash in the intermediate grainsizes (-1φ to 2φ; Fig. 5), suggest that splitting was a dominant, rather than occasional, process. The post-abrasion range in FF values and the frequency of outlying FF values (Fig. 7) also provide evidence of splitting. The HD sub-sample of Av33a provides a particularly striking example of the hypothesis that splitting of Avellino clasts aids efficient ash generation. Here the largest clast completely disintegrated (extensive splitting), which increased ash generation across the intermediate (-1φ to 2φ) grain sizes compared to the other Avellino HD subsamples (Fig. 6b).

Our data further suggest that internal weaknesses that encourage splitting (such as large vesicles or cavities formed by decarbonation) are exploited rapidly, so that over time, splitting becomes far less common. This means that after long milling times (as in [START_REF] Manga | Rounding of pumice clasts during transport: field measurements and laboratory studies[END_REF], rounding of all fragments makes the products of splitting indistinguishable from clasts that experienced only abrasion. If we had used longer milling times for our experiments, the effects of splitting may have been masked by continual abrasion of the split clasts. In a natural setting, initial splitting of clasts may add to the early maximum in ash production by comminution between clasts as the splitting exposes rough surfaces that are readily available for progressive abrasion [START_REF] Dufek | In situ production of ash in pyroclastic flows[END_REF].

Enhanced ash production due to the interaction of pyroclasts with variable resistance

A recent study of PDC deposits from Tungurahua volcano in Ecuador [START_REF] Bernard | The milling factory: Componentry-dependent fragmentation and fines production in pyroclastic flows[END_REF] found that old lava clasts incorporated within the flow caused early splitting of pristine juvenile components (termed 'grinding'), due to the increased strength of the lava. This interpretation is supported by our supplementary Avellino experiment, Av3AG (Table 1). Here adding an agate ball to the grinding jar (analogous to adding a resistant lithology) enhanced ash production, particularly in the intermediate grain size fractions (Fig. 6c). The study of the Tungurahua PDC deposits further indicates that initial splitting (or 'grinding') of the juvenile clasts generates a 'milling factory' that produces small juvenile fragments that are available to abrade [START_REF] Bernard | The milling factory: Componentry-dependent fragmentation and fines production in pyroclastic flows[END_REF]. This is consistent with our results showing that initial breakage of clasts (-3 or -2φ) will enhance further ash production by abrasion (see section 5.2).

Taken together, these observations suggest that the presence (in PDCs) of mixed lithologies with different strengths encourages a productive milling factory, making block-and-ash flows prone to ash production. Large volume PDCs (ignimbrites), in contrast, tend to be pumice-dominated, with minor contributions of lithic fragments (e.g., [START_REF] Sparks | Products of ignimbrite eruptions[END_REF]. Therefore, enhanced splitting and abrasion due to grinding by a resistant lithic component could be less important in pumice-dominated flows than in flows with a higher lithic content. Our experiments also suggest, however, that even a small proportion of lithics will enhance ash production.

Controls of the starting materials texture on the characteristics of the ash produced

Ash grainsize

The fine modes of GSDs produced by abrasion experiments are 5φ for Avellino and 4φ for Fuego. The difference in the fine modes reflects the different starting materials used. Thin vesicle walls provide preferential places for rocks to fracture (e.g., [START_REF] Heap | The influence of porosity and vesicle size on the brittle strength of volcanic rocks and magma[END_REF]. If abrasion is caused by breakage of juvenile clasts at vesicle walls, the size of the ash generated will be limited by the bubble wall thickness, which explains the coarser mode (4φ) of the ash generated by the (thick walled) Fuego experiments.

Fracturing and breakage of volcanic rocks can also occur in the absence of vesicles. In this case it is likely that the high crystallinity (~40%) of the Fuego groundmass will prevent extensive breakage of particles into smaller grainsizes as microlites likely increase the strength of the groundmass [START_REF] Heap | The strength of heterogeneous volcanic rocks: A 2D approximation[END_REF].

Ash componentry

The experimental GSDs show that the crystallinity and vesicularity of the starting material exert strong controls on the amount and size of ash generated by abrasion. The starting material properties also strongly influence the physical attributes of the resulting ash. For example, the abundance of vesicular ash grains is controlled by the minimum vesicle size in the starting material (Liu et al., 2015b). For this reason, the Fuego 3φ (175-125 µm) ash lacks vesicular grains because the dominant vesicle size in Fuego clasts is >100µm in diameter (Figs. 3 and 10). Avellino ash of the same grain size, in contrast, contains a high proportion of vesicular grains because the average vesicle size in the pumice is smaller than the ash size (Fig. 10).

The crystal content of the ash reflects the crystallinity of the starting materials. The Fuego 3φ ash comprises >90% crystalline particles (free crystals and crystal-rich groundmass) compared to ~70% crystalline particles in the Avellino 3φ ash (mostly phenocrysts with or without attached matrix).

However, the proportion of free crystals in the Avellino ash is higher than in the Fuego ash. This could be the result of efficient liberation of crystals from the surrounding matrix during abrasion (Fig. 12)

and/or breakage of larger crystals along cleavage planes [START_REF] Jones | Primary and secondary fragmentation of crystal bearing intermediate magma[END_REF]. Without analysing ash componentry in other grain size fractions, however, it is not possible to determine the primary origin of the free crystal fragments or the abundance of free crystals in the whole ash sample.

Experimental milling (abrasion) can also reduce the amount of matrix adhered to crystals (the Adherence Factor, AF) of ash particles [START_REF] Jones | Primary and secondary fragmentation of crystal bearing intermediate magma[END_REF]. The Adherence Factor trends shown in Figure 12 clearly distinguish the Fuego ash (higher proportion of high AF) from the Avellino ash (mostly low AF values). The different AF trends reflect different textures in the starting material, most importantly, the vesicularity of the matrix surrounding the crystals. For example, the low vesicularity and thick bubble walls in the Fuego clasts (Fig. 3) means the maximum amount of matrix that can be attached to a crystalline ash particle is greater than for the Avellino pumice, thus explaining the higher AF values. Another factor that could influence the AF is the variable thermal contraction of components during cooling which can create curvilinear fractures separating crystals from the glass [START_REF] Andronico | Contrasting styles of Mount Vesuvius activity in the period between the Avellino and Pompeii Plinian eruptions, and some implications for assessment of future hazards[END_REF]. These fractures would help liberate crystals from the melt increasing the occurrence of crystals with a minor amount of attached matrix and therefore a low AF.

Ash Shape

It has been suggested that co-PDC ash might have more uniform shapes than fall ash due to the smoothing of grain boundaries by abrasion (Liu et al., 2015a;[START_REF] Taddeucci | Particle size-density relationships in pyroclastic deposits: inferences for emplacement processes[END_REF]. This was illustrated by Tambora co-PDC ash, which had a higher convexity (CVX) than fall ash with the same solidity (SLD), consistent with an abrasion-induced decrease of the roughness of grain perimeters during transport within PDCs (Liu et al., 2015a). The analysis was based, however, on a limited number of 2φ (350-500µm) ash particles [START_REF] Maria | Quantitative discrimination of magma fragmentation and pyroclastic transport processes using the fractal spectrum technique[END_REF]. Here we assess the extent to which finegrained ash generated by experimental abrasion records similarly high convexity values as the result of rounding.

The highest density of data points for both Avellino and Fuego ash (the 50% contour encloses approximately half of the data) plot with CVX and SLD >0.9 (Fig. 8). However, the Avellino projected area shape analysis extends to lower CVX and SLD values (~0.87) than for Fuego ash (~0.9). This difference reflects the componentry, with the vesicular grains in the Avellino ash having low CVX and SLD. The different SLD and CVX ranges for Avellino and Fuego ash are more pronounced in the cross-sectional shape analysis, shown in Figure 9. This demonstrates the ability of this method to distinguish particles characterised by contrasting internal structures rather than using the projected shape (Morphologi). We therefore conclude that not all ash formed by abrasion will record high convexity values, particularly when grains are vesicular. These data also show that the morphological changes undergone by lapilli and ash can be decoupled during milling in PDCs, with larger clasts rounding but newly generated ash having highly irregular shapes. This is particularly apparent in the Avellino experiments where lapilli clasts exhibit pronounced rounding (Fig. 7) but the ash generated preserves the initial textures of the starting material (high vesicularity) resulting in extremely irregular ash shapes (Fig. 9).

Shape and componentry have been linked using BSE images (Liu et al., 2015a); here we extend this to projected area (Morphologi) images using simple componentry classifications that allowed us to relate CVX and SLD shape parameters to ash componentry in the 3φ grainsize (Fig. 8). We can also use the shape data to infer componentry from CVX-SLD plots (Fig. S2). From these data, it appears that the vesicular clast content of the 4φ Avellino ash is higher than for the 3φ grainsize. This is contrary to expectation, as the proportion of vesicular fragments typically decreases with grain size when the bubble diameter approaches the average particle diameter. It is possible that this effect is not apparent between 3 and 4φ due to the small modal vesicle size in the Avellino pumice and/or there may be fewer free crystal grains in the 4φ size fraction. This comparison, and our interpretation of the results, demonstrates the dependency of componentry on grain size and builds on the conclusions of Liu et al.

(2015b) that multiple grain sizes should be characterised for shape and componentry where feasible.

Furthermore, the differences between results from the two methods of shape analysis -BSE and Morphologi -demonstrate that caution is required when comparing datasets collected by different methods and protocols (e.g. Liu et al., 2015a).

Comparison between experimental results and natural settings

The shapes of ash particles produced by experimental and natural processes are not identical. Ash from a Fuego pyroclastic surge deposit, for example, has higher values of solidity and convexity than the experimentally generated ash (Fig. 11). This is likely explained by the short duration of our experiments, the experimental conditions of room (rather than high) temperature and the uniformity (in size and density) of the starting material. Interestingly, although the experimental ash does not exactly replicate the natural PDC-surge ash properties (Fig. 11b), the morphologies of the two ash samples are more similar to each other than to ash produced by primary fragmentation (fall ash from Fuego 2016), which records a much larger range of CVX and SLD values (Fig. 11a). This suggests that the abrasion experiments have successfully produced ash with shapes that replicate the shape characteristics of naturally abraded ash.

Ash from the PDC matrix of the Avellino EU3pf deposit also has higher values of SLD and CVX than the experimental products (Fig. 11c), consistent with more extensive milling in a PDC compared to the short experimental milling times. An additional difference between the natural and experimental Avellino ash samples is the large lithic component of the natural PDC-matrix ash (Fig. 11f). These fragments of lavas, skarn and wall rocks provide evidence for the presence and abrasion of resistant lithologies during PDC emplacement.

The most compelling similarities between the natural and experimental samples, are the Adherence Factor trends (Fig. 12), which closely match each other for both Fuego and Avellino. Moreover, the AF trend of the intermediate Soufriere Hills pumice (intermediate in both vesicularity and crystallinity)

demonstrates that AF can be used to distinguish abrasion products that have formed from starting materials with different physical properties, as the efficiency of matrix stripping is dependent on the vesicularity and microlite content of the matrix. Finally, experiments on Avellino pumice show that extensive abrasion within a PDC can produce abundant fine ash (mean size ~30-60µm). In natural mixed fallout deposits (deposits containing both fall and material generated in the PDC), the GSDs can be either uni-or bimodal depending on factors such as the distance from source and the positions relative to the primary dispersion axis [START_REF] Engwell | Chapter 4 -Contribution of Fine Ash to the Atmosphere From Plumes Associated With Pyroclastic Density Currents[END_REF]. With increasing distance from the vent, the GSD becomes unimodal converging on the fine mode as the size of the primary fall ash approaches the grain size of the ash generated by secondary processes, such as abrasion in PDCs. The fine mode of the GSDs produced by the abrasion experiments are 5φ for the Avellino and 4φ for the Fuego. This size range not only overlaps with natural co-PDC ash (mean of the fine subpopulations of bimodal samples), but may also explain the variations in co-PDC ash size from different source volcanoes. For example co-PDC (blast) ash from Mount St Helens has a mean size of 5-6φ, which contrasts with the 4φ mean of the highly crystalline Fuego samples [START_REF] Engwell | Chapter 4 -Contribution of Fine Ash to the Atmosphere From Plumes Associated With Pyroclastic Density Currents[END_REF].

The amount and size distribution of fine ash will be a key factor in the development of a co-PDC plume, which can transport ash to the atmosphere [START_REF] Woods | Dimensions and dynamics of co-ignimbrite eruption columns[END_REF]. Numerous co-PDC layers associated with large pumice-rich PDCs are found in the stratigraphic record, including eruptions from Somma Vesuvius and the nearby Phlegrean fields (e.g., [START_REF] Engwell | Physical characteristics of tephra layers in the deep sea realm: the Campanian Ignimbrite eruption[END_REF][START_REF] Sulpizio | Discriminating the long distance dispersal of fine ash from sustained columns or near ground ash clouds: The example of the Pomici di Avellino eruption (Somma-Vesuvius, Italy)[END_REF].

These deposits support our finding that crystal-poor pumice clasts, such as those that comprise the Avellino deposit, are susceptible to extensive secondary fragmentation and co-PDC plume formation, which can greatly enhance ultra-distal transport of fine ash.

In contrast, discrete co-PDC ash layers from block and ash flows, such as from Fuego, are much less common. Evidence of ash generation in such flows comes mainly from observation of the bimodality of the fallout deposit grainsize (e.g., [START_REF] Engwell | Chapter 4 -Contribution of Fine Ash to the Atmosphere From Plumes Associated With Pyroclastic Density Currents[END_REF][START_REF] Eychenne | Causes and consequences of bimodal grain-size distribution of tephra fall deposited during the August 2006 Tungurahua eruption (Ecuador)[END_REF]. Nonetheless, abrasion within block and ash flows can generate sufficient fine ash to increase their mobility, thus elevating their risk factor [START_REF] Cole | Pyroclastic flows generated by gravitational instability of the 1996-97 lava dome of Soufriere Hills Volcano, Montserrat[END_REF][START_REF] Fujii | The 15 September 1991 pyroclastic flows at Unzen Volcano (Japan): a flow model for associated ash-cloud surges[END_REF]. However, we suggest that the elevated groundmass crystallinity of constituent clasts will ultimately limit the smallest grain size that can be produced by abrasion, and the efficiency of ash generation. Therefore, crystal-rich material in block and ash flows produced by microlite-rich magma is less likely to produce a co-PDC plume with a large dispersal extent than low density, low crystallinity pumice flows.

Conclusions

Previous abrasion experiments have found that low density (high vesicularity) pyroclasts generate more ash than high density (low vesicularity) pyroclasts. Although generally true in our experiments, we found that the pyroclast density (vesicularity) alone is insufficient to predict how pyroclastic material will react to abrasion. The ash-generating potential of pyroclastic material is also controlled by the crystal content, as well as heterogeneities in bubble and crystal textures. Two key relationships were observed between the amount of ash generated and the crystal content. Firstly, experiments on microlite-rich pyroclasts from Fuego volcano showed that increasing the heterogeneity of the crystal population of a (relatively) low-density clast renders it more resistant to abrasion than a high-density clast with more uniform phenocryst and groundmass characteristics. Secondly, details of both the vesicle and crystal content of pyroclasts can encourage clasts to split rather than abrade. Increasing the frequency of clast splitting enhances the ash-generating potential because splitting creates new irregular surfaces that are susceptible to abrasion.

The vesicularity and crystal content of the starting material strongly influences the properties of the ash generated by abrasion, in addition to the amount of ash generated. Critically, high microlite crystallinity limits the generation of very fine ash, as shown by the lower abundance and larger size of the ash generated in the crystal-rich Fuego experiments (4φ) compared to the crystal-poor Avellino experiments (5φ). The vesicularity and crystal content of pyroclasts also controls the componentry of ash generated by abrasion, which in turn influences ash shape and, by extension, elutriation and transport (settling)

properties. Co-PDC ash with mixed componentry, (e.g. mainly free crystals and highly vesicular ash), poses a challenge to dispersion modelling as typically a single density measurement is required for dispersion models (e.g., [START_REF] Mastin | A multidisciplinary effort to assign realistic source parameters to models of volcanic ash-cloud transport and dispersion during eruptions[END_REF][START_REF] Witham | Comparison of VAAC atmospheric dispersion models using the 1 November 2004 Grimsvötn eruption[END_REF]. Moreover, the vesicular glass particles will be preferentially elutriated compared to crystals of the same size, due to their low density, altering the componentry of the ash that is dispersed from the PDC to the atmosphere as evidenced by crystal-enriched ignimbrite deposits [START_REF] Sparks | SIGNIFICANCE OF VITRIC-ENRICHED AIR-FALL ASHES ASSOCIATED WITH CRYSTAL-ENRICHED IGNIMBRITES[END_REF].

Abrasion can also alter ash shape. Ash produced in a PDC-surge deposit from Fuego preserves grains with reduced roughness compared to natural fall Fuego ash (e.g., Liu et al., 2015a). However, we did not detect reduced roughness of ash generated by abrasion of the highly vesicular Avellino ash. The Adherence Factor, which quantifies the amount of matrix adhered to (micro)phenocrysts, is most effective for distinguishing ash that has undergone different degrees of abrasion [START_REF] Jones | Primary and secondary fragmentation of crystal bearing intermediate magma[END_REF] We also have shown that AF can clearly distinguish ash from different starting materials due to the maximum amount of matrix that can be attached to a crystal which is determined by the vesicularity of the matrix. Efficient abrasion strips the matrix from ash grains and this process is more efficient in high vesicularity materials with low-crystallinity vesicular groundmass such as the Avellino pumice.

When compared to natural samples, the experimentally generated ash differed somewhat from the natural PDC-surge and PDC-matrix ash samples due to differences in abrasion conditions and the presence of xenoliths. However, the fine modes of the grainsize distributions produced by the milling are similar to the fine modal grainsizes measured in natural fallout deposits where co-PDC ash has been recorded [START_REF] Engwell | Chapter 4 -Contribution of Fine Ash to the Atmosphere From Plumes Associated With Pyroclastic Density Currents[END_REF]. This suggests the experimental abrasion is effectively replicating the natural process. [START_REF] Houghton | A vesicularity index for pyroclastic rocks[END_REF]. See Table 1 for the list of samples and experiments. The glass category refers to particles that are almost entirely vesicle-free and microlite-free glass.

Figures, captions and tables (for high quality figures please see separately uploaded pdfs):

Images of each component type can be found in Figure S3. Table 1 -Abrasion experiments and summary: sample names, experiment conditions and subsequent analysis. The 'sample characterisation' column lists the clasts that were 779 mounted for vesicularity and crystal content assessment. Some of the sample characterisation was before milling (BM clasts) and some was done after milling (AM clasts).
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The clast shape analysis column signifies the samples where the larger clasts were photographed, and their shape analysed. All experiments started with -3φ clasts solely and 781 lasted 4 minutes, apart from the two additional Avellino experiments Av31b and Av3AG. Av31b used starting material in the -2φ fraction and was milled for 5 minutes.
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Av3AG included one agate ball as a proxy for a lithic component. FUE003 are average density juveniles from the Fuego PDC deposit not used in the abrasion experiments.
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AV-16-01 is an Avellino fall pumice, also not used in the abrasion experiments [START_REF] Voarino | Insights into fragmentation and column collapse triggers : A study of juvenile density and vesicle textures from the Pomici di Avellino steady plinian phase Brennus Voarino[END_REF]. 
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 32 Projected area ash analysis from Morphologi Ash shape measurements of the 3φ AD sub-samples are shown in convexity (CVX) -solidity (SLD)plots in Figure8a, b (see Fig.S2for 4φ shape data). The shape data based on Morphologi images are concentrated at high-CVX and high-SLD values, as illustrated by the 20% contour of Fuego data, which plots between SLD values of 0.94-0.98 and CVX values of 0.95-0.98 for all the sub-samples. The same contour of the Avellino shape data plots between SLD and CVX values of ~0.95-0.98. In the extreme, however, the Avellino contour plots show a somewhat greater range, particularly in convexity. For example, the Avellino 90% contour extends to convexities of ~ 0.87, whereas the Fuego 90% contour does not reach below CVX = 0.90. Ash componentry was also evaluated using the Morphologi images, with categories designated as free crystal, vesicular, opaque (likely matrix dominated), crystal with attached melt or, in some cases, 'unknown'. The categorisation was done on a random selection of 500 grains per sample. The convexity and solidity values of these 500 grains are plotted in Figure8c, d. The Fuego ash comprises mostly free crystals and opaque grains. The free crystals (red diamonds) typically record the highest SLD and CVX; opaque grains have a broader range in SLD and CVX. In the Avellino samples, vesicular grains (green asterisks) are numerous and plot with lower SLD and CVX values than the rest of the grains, reflecting the irregular outlines of these particles. 4.3.3. Cross-sectional area (BSE) ash analysis BSE images of polished 2D sections provide a more nuanced measure of particle shape as well as details of the internal textures of individual grains(Liu et al., 2015a). Again, we plot CVX vs. SLD of 3φ grains from post-milling samples F3a and Av31a (Fig.9). As anticipated, SLD and CVX measured on 2D images of cross-sections are much lower and more varied than the projected area (Morphologi) results.Note the more limited number of grains analysed (lower n values) compared to Figure8are because sample preparation and BSE image acquisition are more time consuming than Morphologi analyses.

Figure 1 :

 1 Figure 1: Density histograms of the -3φ juvenile populations of both Fuego (a) and Avellino (b). The

Figure 2 :

 2 Figure 2: Summary of abrasion experiment apparatus. The Retsch Planetary Ball Mill PM100 consists

Figure 3 :

 3 Figure 3: Textural differences in vesicle populations between Fuego sub-samples from BSE-SEM

Figure 4 :

 4 Figure 4: Irregularities in vesicularity and crystal content within Avellino pumice. a.) An example of a

Figure 5 :

 5 Figure 5: Grain size histograms after 4 minutes of milling. The grey bar represents the starting grain

Figure 6 :

 6 Figure 6: Total grainsize distributions of all samples following 4 minutes of abrasion in a planetary ball

Figure 7 :

 7 Figure 7: Box plots of form factor (FF) measurements for all milling experiments of Fuego and Avellino

Figure 8 :

 8 Figure8: Morphologi shape analysis of F3a and Av31a AD 3φ ash using shape factors solidity and

Figure 9 :

 9 Figure 9: Results of ImageJ and BSE image analysis of a.) F3a and b.) Av31a 3φ AD sample ash at

Figure 10 :

 10 Figure 10: Componentry analysis from BSE images of a.) F3a and b.) Av31a 3φ (125-180 µm) ash.

Figure 11 :

 11 Figure11: Cross-sectional shape analysis of natural and experimental ash samples. a.) to c.) Kernel

Figure 12 :

 12 Figure 12: Adherence factor plot of the Avellino and Fuego milling experiments, the natural PDC-

  Avellino fall pumice not used in abrasion experiments, only vesicularity characterisation** 2 x clast 1 x clast * There were 7 clasts but one broke during loading prior to milling ** Imaging and FOAMS analysis carried out by Voarino, (2016).
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Table 2 -Shape parameters and definitions. This table only highlights key parameters used in this study, see Liu et al., (2015) for a comprehensive summary of shape factors and uses. Av31a HD Av31a AD Av31a LD SHV 0.5mins [START_REF] Jones | Primary and secondary fragmentation of crystal bearing intermediate magma[END_REF]SHV 1min Jones et al. 2016 F3a HD F3a AD F2a LD Avellino PDC-matrix ash Fuego PDC-surge ash