Selective mitochondrial DNA degradation following double-strand breaks - Université Clermont Auvergne Accéder directement au contenu
Article Dans Une Revue PLoS ONE Année : 2017

Selective mitochondrial DNA degradation following double-strand breaks

Résumé

Mitochondrial DNA (mtDNA) can undergo double-strand breaks (DSBs), caused by defective replication, or by various endogenous or exogenous sources, such as reactive oxygen species, chemotherapeutic agents or ionizing radiations. MtDNA encodes for proteins involved in ATP production, and maintenance of genome integrity following DSBs is thus of crucial importance. However, the mechanisms involved in mtDNA maintenance after DSBs remain unknown. In this study, we investigated the consequences of the production of mtDNA DSBs using a human inducible cell system expressing the restriction enzyme PstI targeted to mitochondria. Using this system, we could not find any support for DSB repair of mtDNA. Instead we observed a loss of the damaged mtDNA molecules and a severe decrease in mtDNA content. We demonstrate that none of the known mitochondrial nucle-ases are involved in the mtDNA degradation and that the DNA loss is not due to autophagy, mitophagy or apoptosis. Our study suggests that a still uncharacterized pathway for the targeted degradation of damaged mtDNA in a mitophagy/autophagy-independent manner is present in mitochondria, and might provide the main mechanism used by the cells to deal with DSBs.
Fichier principal
Vignette du fichier
hal-01693945.pdf (3.93 Mo) Télécharger le fichier
Origine : Fichiers éditeurs autorisés sur une archive ouverte
Loading...

Dates et versions

hal-01693945 , version 1 (26-01-2018)

Identifiants

Citer

Amandine Moretton, Frédéric Morel, Bertil Macao, Philippe Lachaume, Layal Ishak, et al.. Selective mitochondrial DNA degradation following double-strand breaks. PLoS ONE, 2017, 12 (4), pp.e0176795. ⟨10.1371/journal.pone.0176795⟩. ⟨hal-01693945⟩
285 Consultations
106 Téléchargements

Altmetric

Partager

Gmail Facebook X LinkedIn More