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Abstract 

The 7500 BP Socompa sector collapse emplaced 25 km3 of fragmented rock as a thin, but 

widespread (500 km2) avalanche deposit, followed by late-stage sliding of 11 km3 as Toreva blocks. 

Most of the avalanche mass was emplaced dry, although saturation of a basal shear layer cannot be 

excluded. Modelling was carried out using the depth-averaged granular flow equations in order to 

provide information on the flow behaviour of this well-preserved, long-runout avalanche. Results 

were constrained using structures preserved on the surface of the deposit, as well as by deposit 

outline and run-up (a proxy for velocity). Models assuming constant dynamic friction fail to 

produce realistic results because the low basal friction angles (1 to 3.5°) necessary to generate 

observed runout permit neither adequate deposition on slopes nor preservation of significant 

morphology on the deposit surface. A reasonable fit is obtained, however, if the avalanche is 

assumed simply to experience a constant retarding stress of 50-100 kPa during flow. This permits 

long runout as well as deposition on slopes and preservation of realistic depositional morphology. 

In particular the model explains a prominent topographic escarpment on the deposit surface as the 

frozen front of a huge wave of debris reflected off surrounding hills. The result that Socompa 

avalanche experienced a small, approximately constant retarding stress during emplacement is 

consistent with a previously published analysis of avalanche data. 
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Introduction 

Long-runout rock or debris avalanches are one of the most hazardous of geological 

phenomena (Melosh, 1990). During emplacement, the centre of mass follows a low-angle (<< 30°) 

trajectory, forming a thin, widespread deposit. Avalanches on Earth with volumes greater than 106 

m3 are generally of long-runout type. Long-runout avalanches are emplaced in a catastrophic 

manner, with observed or inferred velocities of 20-100 m s-1 and runouts reaching in some cases 

many tens of km. They occur both in terrestrial and marine environments by sudden mobilisation of 

large rock masses, either in volcanic or non-volcanic contexts. The ability of avalanches to travel 

large distances in a fluid-like manner is not well understood, apparently requiring greatly reduced 

dynamic friction, and a number of possible friction-reduction mechanisms have been proposed (see 

recent articles by Davies and McSaveney, 1999, Legros, 2002, and Collins and Melosh, 2003, and 

references therein).  

In this paper we use numerical modelling to place constraints on the flow dynamics of the 

long-runout avalanche that formed 7500 years ago by sector collapse of Socompa Volcano in 

northern Chile. The model solves the equations of motion for a granular flow and has the advantage 

of taking into account basal friction, internal friction and volumetric spreading behaviour in a 

rigorous manner. The modelling is constrained by deposit outline, run-up (a proxy for velocity), and 

structures preserved on the surface of the deposit when the avalanche ceased motion. In particular 

we seek to explain the formation of a high topographic escarpment that is a prominent feature of the 

avalanche deposit. The study provides some crude, but intriguing, constraints on the rheological 

behaviour of the avalanche during motion. 

 

Socompa avalanche 

Socompa avalanche in northern Chile (Fig. 1) has been described in papers by Francis et al. (1985), 

Wadge et al. (1995) and Van wyk de Vries et al. (2001), on which the following summary is based. 

It formed by gravitational collapse of the northwestern flank of the 6000-m-high stratovolcano, 
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leaving an amphitheatre 12 km wide at its mouth and with cliffs 300-400 m high. The avalanche 

flowed across a broad topographic basin northwest of volcano (Monturaqui Basin) to a maximum 

distance of 40 km, and covered 500 km2. The vertical drop from the volcano summit to the lowest 

point of the basin was 3000 m; at its northwestern limit the avalanche rode part way up a range of 

hills before being deflected to the northeast, forming a frontal lobe. The volume of rock transported 

is estimated to be about 25 km3, with another 11 km3 preserved as intact (‘Toreva’) blocks up to 

400 m high at the foot of the collapse scarp.  

The morphology of the avalanche deposit is perfectly preserved in the hyper-arid climate of 

the Atacama Desert (Fig. 1a). The margins are steep and well defined, with thicknesses ranging 

from 10 to 60 m (Wadge et al., 1995). In some places levees are present (labelled L on Fig. 1a). A 

zone of convergence and SE-verging thrusting called the ‘median escarpment’ (ME on Fig. 1a) 

separates the proximal part of the deposit, characterized by longitudinal surface ridges, from the 

distal part characterized by convoluted surface texture (Van wyk de Vries et al. 2001). A complex 

assemblage of surface structures, including normal faults, strike-slip faults, thrusts, and longitudinal 

and transverse ridges records the last increments of movement of the avalanche on a local scale. 

The 5-km-wide central zone (CZ on Fig. 1a) immediately north of the median escarpment is 

particularly rich in structures (Fig. 1a) and lies 30-60 m higher than neighbouring areas. 

Ignimbrites, gravels, sands and minor lacustrine evaporites from the subvolcanic Salin 

Formation dominate the avalanche sheet (Reconstituted Ignimbrite Facies; RIF ~ 80%). Brecciated 

lavas and volcaniclastic deposits from the edifice itself (Socompa Breccia Facies; SB) constitute ~ 

20 %, and are confined mainly to the upper levels of the deposit. The eastern half and outer margins 

of the deposit consists almost entirely of RIF, with a thin overlying layer of SB no thicker than a 

couple of metres, whereas the southwestern half is composed of RIF overlain by up to 15 m of SB 

(see fig. 10e).  

Most of the avalanche probably formed by a series of retrogressive failures that merged to 

form a single moving mass (Wadge et al., 1995). Spreading took place as a semi-rigid mass on a 
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basal layer of shearing RIF (Van wyk de Vries et al., 2001). The RIF behaved in a ductile fashion 

and must have been very weak mechanically to accomodate flow on slopes of 5° or less, as 

confirmed by the modelling presented below. The SB, on the other hand, behaved in a brittle 

fashion, breaking up passively as it rode on a layer of RIF lubricant. Perfect preservation of the 

avalanche margins, and the absence of distal mudflows, shows that any interstitial water was 

present in insufficient quantities to saturate the majority of the flowing debris. 

 

Numerical modelling of the avalanche 

Basic equations 

The assumption is made in our model that the bulk of the avalanche slid on a thin basal layer, so 

that the velocity gradient was essentially normal to the topography. This is commonly assumed in 

modelling granular flows (e.g., Savage and Hutter, 1989; 1991; Iverson, 1997; Iverson and 

Denlinger, 2001; Denlinger and Iverson, 2001; Heinrich et al., 2001; Patra et al., 2005), and is 

consistent with field evidence at Socompa and other long-runout avalanches (Shaller, 1991; 

Takarada et al., 1999; van Wyk de Vries et al., 2001).  

Using a topography-linked co-ordinate system (Fig. 2), with x and y parallel to the local 

ground surface and h perpendicular to it, the general depth-averaged equations of mass (eq. 1) and 

momentum (eqs. 2,3) conservation are: 
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where h is flow thickness,  ,u vu =  is flow velocity, is ground slope, T is retarding stress,  is 

the bulk density of the avalanche, kactpass is the earth pressure coefficient (ratio of ground-parallel to 

ground-normal stress), and the subscripts denote components in the x and y directions. 
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For a dry frictional material, the retarding stress is of the form: 

2

cos tanx bed

u
T h g

r
  

 
   

 

u

u
 [4] 

where bed is the angle of dynamic friction between the avalanche and the ground surface and pore 

fluid pressure is assumed to be negligible. Use of this law, even in cases of rapid granular flow, is 

justified by Savage and Hutter (1989). Shear cell tests show that the ratio of shear to normal stresses 

in a rapidly deforming granular material can be represented by an approximately constant dynamic 

friction coefficient, even if inter-particle collisions are important. The second term in brackets is the 

centrifugal stress, where r is the radius of curvature of the ground (Savage and Hutter, 1991). The y-

component of T is obtained by switching subscripts. 

Following Iverson and Denlinger (2001), the expression of kactpass used if the internal 

behaviour is frictional is : 
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where int is the internal angle of friction of the avalanche. This expression is valid if bed<int. The 

sign ± is negative (and kactpass active) where the local flow is divergent and is positive (and kactpass 

passive) where the local flow is convergent. If, on the other hand, bed≥int, then kactpass is given by: 
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Numerical scheme 

 The equations were solved using a shock-capturing numerical method based on a double 

upwind Eulerian scheme (Appendix 1). The scheme can handle shocks, rarefaction waves and 

granular jumps, and is stable even on complex topography and on both numerically ‘wet’ and ‘dry’ 

surfaces. Some numerical schemes require the ground ahead of the avalanche to be covered with a 

very thin artificial layer of avalanche material: a so-called numerically ‘wet’ surface (Toro, 2001).  
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In order to check the accuracy of our numerical scheme we performed tests to compare the 

numerical results with analytical solutions and with simulations based on other numerical schemes. 

Some of these are presented here. Figures 3-5 show comparisons between numerical and exact 

solutions of dam-break problems. In the first case (Fig. 3) the slope is horizontal and there is zero 

friction. This problem simulates the breakage of a dam separating an initial layer 1.5 m thick (left) 

from a layer 0.5 m thick (right). Our solution reproduces almost exactly the analytical solution, and 

particularly the frontal shock wave and the thickness of the central plateau.  

Figure 4 shows three comparisons with exact solutions obtained by Mangeney et al. (2000) 

for a dam-break problem on a slope with non-zero friction, and with zero thickness in front of the 

initial dam. The shape and velocity of the flow are accurately reproduced, even for the least 

favourable case of a steep slope and high friction angle. Note that the vertical exaggeration of the y-

axis exaggerates the difference between numerical and analytical solutions.  

Since our numerical scheme is based on a rectilinear coordinate system, we also performed 

circular dambreak tests to ensure that the calculations are isotropic. In Fig. 5, a 6-m-diameter 

cylinder of zero-friction fluid, 1.5 m thick, is released onto a 0.5-m-thick, horizontal layer of the 

same fluid. The resulting degree of isotropy and shock resolution are both satisfactory, some small 

numerical oscillations disappearing progressively during the calculation. 

 We also applied our code to published laboratory experiments of granular flows down 

chutes. These include the experiments of Savage and Hutter (1991), Pouliquen and Forterre (2002), 

and Gray et al. (2003). In all cases our code is able to reproduce the experimental results as well as 

schemes presented by the authors and based on other numerical approaches (the frictional law of 

our model can be easily changed to take into account the various frictional laws used by the authors 

to reproduce their experimental results). In one numerically challenging experiment, in which a 

high-friction flow at high velocity encounters an obstacle (Gray et al., 2003; Fig. 4), our scheme 

reproduces the shape and velocity of the flow; however, it is somewhat less stable than the 

numerical scheme used by the same authors to simulate their experiment (using the same time and 



 7 

space steps). The advantage of our scheme is that the computing time necessary for simulating flow 

over terrain with a large number of mesh cells is less than for many published methods. In this 

paper we calculate the emplacement of an avalanche on a 460 x 570 mesh topography in about 1 

day with 3GHz computer. The computation time could be reduced, but we have chosen a time step 

five times lower than necessary to ensure stability.  

 

Geological starting conditions 

The pre-avalanche topography north of Socompa Volcano was estimated as follows. The present-

day topography of the volcano and avalanche (Fig. 1a) was extracted from Shuttle Radar 

Topography Mission (SRTM) data. Field and borehole constraints on deposit thickness (Wadge et 

al., 1995) were used to subtract the 25 km3 of avalanche deposit and to obtain a best estimate of the 

pre-avalanche landscape (Fig. 1c). The ~11 km3 accumulation of Toreva blocks at the northern foot 

of the volcano were removed, and the sectorial scar filled in using Fig. 13 of Van Wyk de Vries et 

al. (2001) to reconstruct the pre-collapse morphology of the volcano (Fig. 1c). We reconstruct the 

La Flexura anticline north of the volcano (LF, Fig. 1a) from descriptions of Van Wyk de Vries et al. 

(2001), as well as the small pre-existing relief north of La Flexura. The combination of these 

constraints resulted in little freedom in reconstructing the pre-collapse morphology. Since in this 

paper we only model emplacement of the (fluid) 25 km3 avalanche, 11 km3 of the scar fill was left 

in place during our calculations (to slump subsequently as Torevas).  

One significant uncertainty is the exact geometry of the initial collapse volume. In the 

absence of precise evidence concerning the shape of the avalanche headwall scarp (partly buried by 

post-avalanche products), we assume two end-member cases: (1) a wedge-shaped volume with 

hemi-cylindrical headwall scarp 5 km in radius (Figs. 1c, d), referred to in what follows as the 

‘deep’ collapse geometry, and (2) a slab-like initial slide volume, referred to as the ‘shallow’ 

geometry (see the legend of Fig. 1 for details). The deep geometry appears to be most compatible 

with field evidence (Van wyk de Vries et al., 2001) and has been used for most of the simulations. 
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The shallow geometry is not really compatible with field evidence, but provides an alternative 

limiting case. 

 

Numerical results 

 Different models were run with the aim of satisfying the following field constraints. (1) Best 

fit to the northwestern margin, where the avalanche ran up a distal slope approximately 

perpendicular to the flow axis. (2) Best fit to the overall outline of the avalanche deposit, including 

the frontal lobe. (3) Reproduction of major structures observed on the avalanche deposit, in 

particular the median escarpment. Only models satisfying reasonably all three constraints are taken 

as acceptable approximations of reality. All the results presented below were obtained by flow 

across numerically ‘dry’ topography. 

 

Frictional rheology 

Models were run assuming a frictional avalanche rheology (eq. 4) considering three 

combinations of basal and internal angles of dynamic friction: (1) bed << int = 30°, the static angle 

of friction for dry granular debris; (2) bed  0° but int = 0°;  (3) bed = int  0°. In each case the 

parameters were varied in multiple simulations.  The visual best-fit solutions are presented in Fig. 6 

using the ‘deep’ collapse geometry. 

In the first best-fit model (Fig 6 a-d) int = 30°, and a value of bed = 1° is necessary to reach 

the northwestern margin of the Monturaqui Basin and produce the observed runup. A high internal 

friction may be realistic for Socompa avalanche, which exhibits field evidence for the rafting and 

progressive brittle break-up of SB material on top of a base of shearing, low-friction RIF (Van wyk 

de Vries et al., 2001). Bed friction angles higher than 1° result in reduced runout, and lower ones 

cause excess spreading. The avalanche first accelerates away from the volcano, attaining a 

maximum velocity of ~100 ms-1, before reflecting progressively off the northwestern margins of the 

basin (Figs. 6a-c).  
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In model 2 (Fig. 6 e-h) bed  0° but int = 0°, so that kactpass =1. This is not necessarily 

unrealistic because recent laboratory experiments that show that the ratio of ground-parallel to 

ground-normal stress is close to unity in laboratory granular flows (Pouliquen and Forterre, 2002). 

In the absence of internal friction, a slightly higher basal friction angle (2.5°) is now required for 

best fit. The evolution is close to the previous case, but here waves can be observed reflecting off 

the western, northern and northeastern sides of the basin (Fig. 6f).  

Model 3 (not shown in Fig. 6), in which the basal and internal angles are assumed to be the 

same (best fit for ~2.5°), produces a result very similar to the second model. This is because the 

values of kactpass are very similar: 1 in model 2 and 1.0038 in model 3. 

All three of these frictional models reproduce only very crudely the shape of the real 

avalanche deposit. A major failing is that, owing to the very low basal friction, the model 

avalanches flow off any gradients greater than 1 to 2.5° (depending on the case). After reaching 

their maximum limits, the avalanches drain back into the centre of the Monturaqui Basin. 

Consequently the model deposits each have negligible thickness along their limits of maximum 

extent, whereas thicknesses of up to 60 m are observed along the margins of the real avalanche 

(Wadge et al., 1995). The effect of topographic draining is to cause excess concentration of debris 

on the floor of the Monturaqui Basin. Models 2 and 3 with low internal friction generate essentially 

flat-topped ponds that are quite different from the real avalanche. The high angle of internal friction 

in model 1 permits the preservation of surface topography, but comparison with that of the real 

avalanche is not favourable. None of the models generate a well defined surface feature resembling 

the 30-60-m-high median escarpment. The frictional models therefore fail in reproducing some 

first-order morphological characteristics of the real avalanche deposit. 

In order to assess the effect of initial slide conditions on our results, we also ran the same 

models using the ‘shallow’ collapse geometry (Fig. 7). Using the same values of int as in Fig. 6 

(30° and 0°), we find best-fit values of bed (1° and 3.5° respectively), deposit shapes, and surface 

morphologies that are similar to those for the ‘deep’ geometry. We conclude that the form of the 
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resulting deposit is only weakly dependent on the geometry of the collapse volume, so that our 

uncertainty of the latter does not invalidate the apparent failure of the simple frictional models used 

above. 

 We also allowed bed to vary with the Froude Number ( u gh ) of the avalanche, as found 

for laboratory granular flows (Pouliquen and Forterre, 2002) and approximated (Heinrich et al., 

2001) by: 

  bed 1 2 1tan tan tan tan exp
ghh

D u
   

 
     

 

   [7] 

where1 and 2 are limiting angles of friction (with 2 > 1) and D is approximately an order of 

magnitude larger than the mean particle size. Here, kactpass is considered to equal 1. Equation 6 in 

fact gives results comparable to model 2 (bed  0° and int = 0°) described above (Fig. 6 e-h). The 

effect of velocity is to increase bed over and above the static value (1). For the mean value of bed 

necessary to reproduce the observed runout (2.5°), 1 needs to have an even lower value, 

irrespective of D and 2. Once a given part of the avalanche is slowing down, bed reverts to 1 and, 

as in the constant-bed case, formation of surface topography is prevented by the high fluidity of the 

material. It is worth noting that values for 1, 2 and D used by Heinrich et al. (2001) to simulate 

the ~0.005 km3 26 December 1997 debris avalanche on Montserrat (11°, 25° and 15 m respectively) 

result in a runout for Socompa that is much smaller than that observed. Using a more complete form 

of eq. 7 (Pouliquen and Forterre, 2002) gives slightly better results because the friction angle 

increases just as the avalanche comes to rest, allowing structures to be preserved. However, while 

this law gives very good results for simulated laboratory experiments, we have not found any 

combination of the six free parameters in this friction law that give a good fit in the case of 

Socompa. 

Finally we note that the well known Voellmy rheological law also fails to satisfy all three 

constraints at Socompa. The Voellmy law consists of a frictional stress plus a positive stress term 

proportional to velocity squared (e.g., Evans et al., 2001). Although entirely empirical, it has been 
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widely used to model snow and rock avalanches in two dimensions. However in the case of 

Socompa we find that it fails to generate realistic results for a similar reason as equation 7. 

In summary, simple frictional models are able to reproduce the approximate runout of 

Socompa avalanche only if very low values are used for the basal dynamic friction. However, they 

are unable to generate deposits either with realistic thicknesses on slopes greater than about three 

degrees, or realistic surface morphology such as the median escarpment. This is because the low 

basal friction angles necessary for long runout also result in strong topographic drainback. 

 

Constant retarding stress 

In view of the apparent inadequacy of the simple frictional models, we also ran models in which the 

retarding stress T in equations 2-3 was constant (kactpass was taken as unity). This very simple 

assumption was motivated by the study of Dade and Huppert (1998), who found that the field data 

for a large number of avalanches can be explained by an approximately constant retarding stress. 

The models produce surprisingly good fits to the real avalanche, provided that T lies in the 

range 50-100 kPa, depending on the initial slide geometry chosen. Using the ‘deep’ collapse 

geometry the overall distribution is reproduced reasonably well with a value of 52 kPa (Fig. 8), but 

with slight excess spreading to the west and east. A 75 kPA resistance produces realistic fits to the 

western and eastern boundaries, but the northwestern limit is not reached. In the case of a 

(geologically less realistic) ‘shallow’ collapse, a resistance of 100 kPa is required, but the frontal 

lobe is less well produced. 

Unlike the frictional rheologies, this law produces a deposit with a well defined edge and 

leaves a deposit of realistic (Wadge et al., 1995) thickness on all slopes, irrespective of angle. 

Surface structures on the deposit from this simulation are remarkably similar to those of the real 

avalanche (Fig. 8 d,e). In particular a well defined NE-SW-trending topographic discontinuity (ME, 

Fig. 8) strongly resembles the median escarpment both in height (20 to 50 m) and location.  
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Snapshots of the 52 kPa simulation (Fig. 9, coloured for velocity) provide an explanation for 

the origin of the median escarpment. The avalanche accelerates down the northern flank of the 

volcano, attaining a maximum speed of ~ 100 m s-1. As it runs up the western, then northwestern, 

slope of the basin, it reflects as three waves (one main one and two smaller ones) that then merge 

and wash back across the basin. The front of this composite wave then freezes to form the median 

escarpment. The elevated zone located north of the frozen wave front is also observed on the real 

avalanche deposit, and in the model represents the peak of the reflected wave (CZ, Fig.8). This area, 

which in the natural deposit is rich in complex fault structures, experiences a complex history 

during the simulation, involving (1) initial stretching as the avalanche accelerates away from the 

volcano (Fig. 9a), (2) compression as the material decelerates and accumulates against the 

northwest margin (Fig. 9c), and (3) stretching and shearing during reflection off the northwest 

margin (Fig. 9d,e).  Other similarities between the simulated and real deposits include the frontal 

lobe (FL, fig. 8) and the over-thickened margins along the northwestern limit of the avalanche that 

in the model form by accumulation, then back-slumping, of material during wave reflection. 

 

Discussion 

We have carried out numerical modelling of the emplacement of Socompa avalanche using 

the depth-averaged equations for granular flow and a numerical scheme capable of resolving shocks 

to a high degree of accuracy. The models assume transport of the avalanche on a basal slip layer, as 

suggested by evidence at Socompa and from other avalanche deposits. Starting conditions are 

consistent with field observations and the avalanche is assumed to have travelled as a single mass, 

with the exception of the Toreva blocks, which in our models are left to slump after avalanche 

emplacement. 

The high ‘mobility’ of long-runout avalanches is normally interpreted in terms of reduced 

dynamic friction. The results of our modelling using frictional laws indeed confirm that very low 

basal friction (3° or less) is required to explain runout at Socompa, irrespective of the internal value. 
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This agrees approximately with the value of arctan (H/L) for the avalanche, which is 4.3° if the 

maximum values of H (height drop) and L (horizontal runout) are used. Simple scaling arguments 

show that arctan (H/L) ~ , the mean dynamic friction angle during emplacement (e.g., Pariseau and 

Voight, 1979). The long runout can’t be explained by gravitational spreading of a very large volume 

of rock debris with normal friction. Use of values of  in the range 20-30° typical of dry granular 

materials results in runouts that are grossly inferior to that observed. No variation of the geometry 

of the initial slide mass within geologically realistic limits changes this conclusion. 

Many hypothetical mechanisms of friction reduction have been proposed for rock 

avalanches; see Davies and McSaveney (1999), Legros (2002) and Collins and Melosh (2003) for 

recent summaries. We focus here on just a few that are relatively well constrained physically. 

Elevated pore fluid pressure may play an important role in friction reduction in many avalanches by 

decreasing the effective normal stress at the bed. Fluid pressures close to lithostatic have been 

measured in debris flows (Major and Iverson, 1999) and are likely in wet rock avalanches such as 

Mount St. Helens (Voight et al., 1983). Although there was insufficient water in Socompa 

avalanche for subsequent decantation and mudflow formation, saturation of a thin basal layer can’t 

be excluded. Water could have been derived from the water table beneath the volcano or from the 

ground surface over which the avalanche travelled. It is possible that a shallow lake or water-

saturated sediments existed in the Monturaqui Basin in late postglacial times (Van wyk de Vries et 

al., 2001). Pressurized hydrothermal fluids derived from the edifice and/or over-ridden atmospheric 

air could also have played a role. Other mechanisms, such as acoustic fluidization (Melosh, 1983; 

Collins and Melosh, 2003), mechanical fluidization (Davies, 1982), self-lubrication  (Campbell, 

1989; Campbell et al., 1995) or dynamic fragmentation (Davies and McSaveney, 1999) may 

generate velocity dependencies of dynamic friction in the absence of pore fluids.  

Although frictional models can account crudely for the long runout of Socompa avalanche, 

the low basal friction allows neither realistic deposition on slopes nor preservation of surface 

morphology like the median escarpment. A better fit is obtained if we simply assume a constant 
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retarding stress in the range 50-100 kPa. We emphasise that we don’t consider this to be necessarily 

an accurate rheological description of the avalanche; constraints on the starting conditions are too 

crude to enable any unique rheology to be inferred. Avalanches will probably exhibit very 

complicated time-dependent and spacially variable mechanical behaviour (Iverson and Vallance, 

2001). Most likely, the condition represents some average value of a retarding stress that varied 

with time during runout. However it’s consistent with the finding of Dade and Huppert (1998) that 

an approximately constant stress in the range 10-100 kPa can explain the spreading behaviour of 

rock avalanches with a wide range of volumes. Indeed it was this observation that led us to try 

models of this type. Other authors have also concluded that long-runout avalanches exhibit some 

kind of yield strength by comparing avalanche deposit thicknesses on Earth and Mars (McEwen, 

1989; Shaller, 1991). That a constant retarding stress can also capture to a first order the 

emplacement dynamics of Socompa avalanche lends some support to Dade and Huppert’s analysis 

and raises the question of the origin of this behaviour.  

We speculate that conditions in the avalanche may have varied with time in such a way that 

the retarding stress could have remained approximately constant, even though the rheological 

behaviour was fundamentally frictional (i.e., basal shear stress was a product of an apparent friction 

coefficient times the lithostatic normal stress, modified by a centrifugal term [eq 4]). Consider a 

hypothetical avalanche in which high fluid pressure is initially present in the basal shear zone, so 

that motion commences (when the avalanche is thick) with low basal friction. During runout, pore 

fluids migrate away from the shear zone, so that friction increases progressively by pressure 

diffusion at the same time that the avalanche spreads and thins (e.g., Iverson and Denlinger, 2001). 

The result could be that the basal stress remains approximately constant due to the competing 

effects of basal friction and flow thickness (i.e., lithostatic normal stress). In the case of a velocity-

dependent process such as acoustic fluidization or mechanical fluidization, the basal friction might 

be reduced at initial high velocity (when the flow is thick), but would increase at lower velocities 

and approach the value of static friction as the avalanche comes to rest (once the flow had thinned). 
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In both examples, acquisition of high apparent friction as avalanche motion ceased would permit 

preservation of surface morphology. A third possibility is that basal friction remains negligible 

throughout runout (for example due to fluid pressure   lithostatic overburden), and that the 

retarding stress is a cohesive component related to grinding and crushing of particles in the basal 

layer and/or to rock breakage within the overriding mass as it spreads across the landscape. Stresses 

of 50-100 kPa indeed lie in the range of cohesive strengths of volcanic materials measured in 

laboratory experiments ( e.g., Voight et al. 2002). 

 Irrespective of the exact dynamics, our study provides two general constraints on the flow 

behaviour of the avalanche. First, all models investigated require peak velocities of ~100 m s-1 to 

achieve the observed runout. This is due to the large height differential between the volcano summit 

and the basin floor (3000 m): one of the largest known for a terrestrial avalanche. Second, the 

results suggest that the median escarpment is the frozen front of a huge composite wave of rock 

debris reflected off the western northwestern and northern margins of the Monturaqui Basin. 

Reflection is observed to different extents in all the models run, but it is only in the constant-stress 

simulation that the wave front is preserved as a high escarpment.  

The reflection hypothesis is further investigated in Figs. 10a-d, in which the 52 kPa 

constant-stress model is re-run with the avalanche surface coloured according to rock lithology. The 

initial distribution of lithology colours is arbitrarily adjusted, but is geologically realistic (Van wyk 

de Vries, 2001; oral comm.). White tracer particles track the motion of the avalanche as they are 

advected along. The distribution of surface lithologies on the resulting numerical deposit closely 

resembles that evident on the Landsat image of the avalanche (Fig. 10e). Moreover the back-

reflected trails of the tracer particles mimic the stretching and folding fabrics on the avalanche 

surface. As the wave is reflected back in the model, material behind the wave drains northwestward 

to form the frontal lobe. Although certainly not a unique solution, Fig. 10 demonstrates that 

avalanche reflection, as well as generating the median escarpment, can plausibly account for the 
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surface textures observed on the deposit surface for a geologically realistic pre-collapse distribution 

of lithologies on and around the volcano.  

 The topographic reflection of a huge wave of fragmented rock debris off the side of the 

Monturaqui Basin is a striking illustration of the high fluidity that characterises long-runout rock 

avalanches like Socompa.  
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Appendix 1 : Numerical scheme 

We use a Eulerian explicit upwind scheme where scalars (flow thickness h and ground 

elevation z) are defined and computed at the centres of cells, and vectors (fluxes  and velocities 

 ,  u vu  at the edges (Fig. A1a). For the calculation, mean values of flow thickness ( h ) are 

computed at the edges of cells, and mean values of velocities,  ,  u vu = , at the centres of cells.  

We use cell edge (i-1/2, j) to illustrate the main steps of the algorithm (Fig. A1b). For each 

time increment we first compute the source terms of the conservation equations, then the advection 

terms. The governing equations contain three source-term accelerations: 
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where  is the local slope, z  is the horizontal azimuth of that slope, and  is the retarding stress 

dependant on the rheological law chosen. The algorithm first calculates a fictive velocity due just to 

terms aw and ap. The retarding acceleration ar is then computed in the direction opposed to this 

fictive velocity. This approach increases the stability of the algorithm and ensures isotropy of the 

solutions. The value of new velocity (called s) due to the action of source terms is then: 

 d

1 2, 1 2, dt t

i j i j w p r t

    s u a a a  

The second stage of the algorithm computes the advection terms. The fluxes of mass and 

momentum are calculated using an upwind scheme. For example, if the x component of 1 2,i js  is 

negative, fluxes through the side are computed by: 
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Note that the exponents used for  do not indicate time, but the quantity advected : mass h and 

momentum hu and hv. From these fluxes, we calculate the new thickness and the new mean velocity 

at the centre of each cell: 
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where S is the surface of the cell. 

Finally, the x and y components of the new velocities at the edges, modified by advection, 

are calculated using a second upwind scheme. For example, if ,

t

i ju  and 1,

t

i ju  are both negative, ,

t

i ju  

will modify only the value of 1 2,

t

i ju  and the new velocity at time t at edge (i-1/2, j) is given by : 
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Figure captions 

Figure 1: (a) Shaded topography of Socompa avalanche, showing the median escarpment (ME), the 

frontal lobe (FL), thick distal levees (L) cut by large normal faults (NF) and the central 

morphologically rough zone (CZ). The accumulation of Toreva blocks is marked (T). La Flexura 

(LF) is a basement anticline predating sector collapse. Deposits from later pyroclastic flows are 

marked (P). Coordinates are given in km (UTM, WGS84). (b) Location of Socompa Volcano in 

northern Chile. (c) Reconstructed topography of the area before collapse and (d) of the failure 
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surface. The 25 km3 that collapsed to form the avalanche in the ‘deep’ collapse model is outlined by 

a black dotted line; the white-ruled area is the 11 km3 that slumped after collapse and which was left 

in place in our calculations. The contact between the two volumes is taken as a hemi-cylindrical 

headwall scarp 5 km in radius. In the ‘shallow’ collapse model the 25km3 that collapsed is taken as 

a slab representing the upper 69.4 % (= 25 / 36) of the entire area. 

 

Figure 2: Geometry of the calculation domain. The ground topography is defined using horizontal 

axes xh and yh, and vertical axis zh. The avalanche co-ordinates and thickness are defined using 

topography-linked axes x, y and z. The cell dimensions are dx and dy. 

 

Figure 3: Comparison between numerical and analytical solutions for a dam-break onto a 

numerically ‘wet’ surface, in the absence of friction. An initial 1.5-m-thick layer is released onto a 

0.5-m thick layer. Points of the exact solution for t = 0.3 s are : (x = 0, h = 1.5) (0.3492, 1.5) 

(1.0915,0.924289) (2.5781, 0.924289) (3 0.5). Note the good fit between the two solutions at t = 0.3 

s and the accurate reproduction of the front. The thickness of the plateau obtained by our numerical 

solution is between 0.9240 and 0.9244, compared with 0.924289 for the analytical solution. 

Parameters used : dxh = 2.5 mm, dt = 110-4 s, g = 9.81 m s-2.  

 

Figure 4: Comparison between the analytical solution of Mangeney et al., 2000, (dashed gray), and 

our numerical model (solid black) for a frictional dam-break flow onto a numerically ‘dry’ surface. 

(a) Horizontal surface (= 0°) with no friction (bed = 0°) at t = 21s. (b) = 20°, no friction (bed = 

0°) at 18 s. (c) = 40°, bed = 30° at 21 s. Parameters used : dxh = 1 m, dt = 10-2 s, g = 9.81 m s-2. 

The figures to the right show the initial shape at t=0, without vertical exaggeration. 

 

Figure 5 : Circular dambreak tests viewed from above (and in cross section in the lower part of each 

figure) show the isotropy of our numerical scheme. An initial 1.5 m thick layer flows onto a 0.5 m 
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thick static layer. The surface is horizontal and there is no friction. Parameters dxh = 0.05 m, dt = 

0.005 s, g = 9.81 m s-2. Small numerical instabilities present in (b) disappear as the flow propagates. 

 

Figure 6: Snapshots of the emplacement of frictional avalanche models 1 and 2 at t = 200 s and t = 

400 s, with the corresponding deposits. See text for full discussion. (a-d) Model 1. Avalanche with 

bed = 1° and int = 30°. (e-h) Model 2. Avalanche with bed = 2,5° and int = 0°. The colour scale 

gives the thicknesses (m) of the avalanche. Figures d and h are shaded relief maps of the final 

deposits. Both models assume an initial ‘deep’ slide surface and vertical headwall scarp of hemi-

cylindrical shape. Distances are given in meters (UTM). 

 

Figure 7: Best-fit simulations using a ‘shallow’ slab-like initial slide geometry, to be compared with 

the ‘deep’ geometry shown in Fig. 6. The colour scale denotes thickness. (a) Avalanche with int = 

30°. Visual best fits require approximatively the same value of bed = 1° for this ‘shallow’ geometry 

as for a ‘deep’ geometry. (b) Avalanche with int = 0°. Visual best fits require bed = 3,5° for this 

‘shallow’ geometry compared with the 2.5° for the ‘deep’ case in Fig. 6. 

 

Figure 8: Avalanche evolution using a constant retarding stress T = 52 kPa. The colour scale 

denotes thickness. The initial ‘deep’ slide geometry is used in this simulation. (a-c) Snapshots at 

200 s, 400 s and 600 s. (d) Shaded relief map of the simulated deposit. (e) Shaded relief map of the 

real deposit. 

 

Figure 9: Snapshots every 100 s of the constant-stress (52 kPa) simulation of Fig. 8, coloured 

according to velocity (m s-1). The reflected wave is particularly clear in these figures, as is the late-

stage emplacement of the frontal lobe. 
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Figure 10: (a-d) The constant-stress (52 kPa) simulation of Figs. 8 and 9, with surface rocks 

coloured according to lithology. Pink: altered Socompa lavas. Grey and brown: fresh lavas. Pale 

blue: ignimbrite. Ignimbrite bordering the initial avalanche front to the northeast represents the 

ignimbrite-cored La Flexura anticline that formed the thrust front of the initial avalanche slump. 

The distribution of lithology colours has been arbitrarily adjusted, but is geologically realistic. 

White lines show the trajectories of points on the avalanche surface advected by the flow. The 

snapshots are at a) t = 200 s, b) 300 s, c) 400 s and d) the final deposit. Numbers refer to structures 

visible on the simulated deposit and on the Landsat (channels 7 4 2) image (e).  

 

Figure A1. Definitions of scalars, vectors and cell notation in the numerical scheme. 
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