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Abstract 

Pyroclastic currents are very destructive and their complex behavior makes the related hazards 

difficult to predict. A new numerical model has been developed to simulate the emplacement 

of both the concentrated and the dilute parts of pyroclastic currents using two coupled depth–

averaged approaches. Interaction laws allow the concentrated current (pyroclastic flow) to 

generate a dilute current (pyroclastic surge) and, inversely, the dilute current to form a 

concentrated current or a deposit. The density of the concentrated current is assumed to be 

constant during emplacement, whereas the density of the dilute current changes depending on 

the particle supply from the concentrated current and the mass lost through sedimentation. The 

model is explored theoretically using simplified geometries as a proxies for natural source 

conditions and topographies. It reproduces the relationships observed in the field between the 

surge genesis and the topography: the increase in surge production in constricted valleys, the 

decoupling between the concentrated and the dilute currents and the formation of surge-derived 

concentrated flows. The strong non linear link between the surge genesis and the velocity of 

the concentrated flow beneath it could explain the sudden occurrence of powerful and 

destructive surges and the difficulty of predicting this occurrence. A companion paper compares 

the results of the model with the field data for the eruption of Merapi in 2010 [Kelfoun et al., 
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submitted] and demonstrates that the approach is able to reproduce the natural emplacement of 

the concentrated and the dilute pyroclastic currents studied with good accuracy. 

 

1. Introduction 

Pyroclastic currents are fast−moving density currents composed of hot gas and rock fragments. 

For small to medium-scale eruptions, generated by column collapse or dome collapse, 

pyroclastic density currents (PDC) are generally formed of two distinct parts: a concentrated 

and a dilute part [Lacroix, 1904; Sparks et al., 1973, Walker and Wilson, 1983; Valentine and 

Fisher, 1986]. The concentrated part, termed block-and-ash flow, scoria flow or pumice flow 

depending on its composition, or more generally called pyroclastic flow [Branney and 

Kokelaar, 2002], follows existing valleys and is sensitive to meter-scale variations in the 

topography. Following the nomenclature used in the volcanological community, the term ‘flow’ 

will be used here for the concentrated part of PDCs only [Branney and Kokelaar, 2002]. Particle 

concentration in the flow is close to particle concentration at rest, which means that particle 

interactions probably play a major role in its dynamics. The dilute part of the current is called 

dilute current, pyroclastic surge or ash−cloud surge. It is formed of fine particles held in 

suspension by turbulent gas [e.g. Branney and Kokelaar, 2002; Valentine, 1987]. Ash−cloud 

surges are generally several tens of meters in thickness but they often leave deposits of only a 

few centimetres-decimetres due to their low particle concentrations (about 1% in volume 

[Druitt, 1998]). Note that this concentration is higher than the maximal concentration of 0.1% 

that defines dilute mixtures in the multiphase flow literature, i.e. below which collisions can be 

neglected [e.g. Elgobashi, 1994]. Pyroclastic surges are less confined by the topography, escape 

easily from the valleys and are very dangerous for the inhabitants. They are believed to be 

stratified, their density increasing downward [Valentine, 1987].  
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The two types of currents interact during their emplacement and can exchange particles and 

gas. The particles, falling down to the ground through sedimentation of the dilute current, either 

form a deposit, increase the volume of the concentrated flow or create a surge-derived 

pyroclastic flow [Druitt and Sparks, 1982; Calder et al., 1999; Druitt et al., 2002]. Inversely, 

a dilute current can be generated by the concentrated flow and then can acquire its own 

dynamics [Fisher, 1979; Nakada and Fujii, 1993; Yamamoto et al. 1993; Fisher, 1995; Kelfoun 

et al., 2000; Bourdier and Abdurachman, 2001; Breard et al., 2016].  

Several approaches have been used to simulate PDCs on digital elevation models (DEMs). For 

example, the kinematic approach only simulate flow trajectories, considering the flow as a 

punctual mass [Sheridan and Malin, 1983, Beget and Limke, 1988; McEwen and Malin, 1989; 

Rossano et al., 2004 and Saucedo et al., 2005]. In the multiphase approach, all the phases 

(different classes of particles, gases of various compositions) are taken into account and interact 

together in 3D [e.g. Valentine and Wohletz, 1989; Valentine et al., 1992; Neri and Macedonio, 

1996; Neri et al., 2003; Dartevelle et al., 2004; Esposti Ongaro et al., 2008; Esposti Ongaro et 

al., 2012]. In the depth-averaged method, all the physical properties and the equations are 

integrated perpendicular to the ground (or sometimes vertically). Compared to the 3D solving 

of the multiphase approach, this integration allows to speed up the calculation time and to take 

into account small details of the topography (models can reproduce the natural runout of 

geophysical flows on high resolution accurate topographies (< 5 m) in a few tens of minutes). 

However, a limit of the approach is its accuracy on complex topographies with high curvatures. 

For a better understanding of the limits and new developments of the depth-averaged approach 

on complex topographies, the reader can refer to Hutter et al. (2005), Luca et al. (2009), Castro-

Orgaz et al. (2015), Luca et al. (2016). The integration of the depth-averaged approach also 

implies that the flow is wider than it is thick and that vertical acceleration is negligible. The 

depth-averaged method is often used to simulate granular flows in the laboratory [Savage and 
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Hutter, 1989; Pouliquen and Forterre, 2002; Gray et al., 2003] and geophysical flows like mud 

flows, pyroclastic flows, landslides, debris avalanches and snow avalanches [e.g. Itoh et al., 

2000; Heinrich et al., 2001; Turnbull and Bartelt, 2003; Pitman et al., 2003; Kelfoun and Druitt, 

2005; Sheridan et al., 2005; Patra et al., 2005; Lucas and Mangeney, 2007; Kelfoun et al., 

2009]. The depth-averaged method has also been developed to take into account 2 phases, solid 

and water, for the simulation of debris flows [e.g. Iverson and Denlinger, 2001; Córdoba et al., 

2015], and to simulate granular flows fluidized by gases [Gueugneau et al., 2017]. 

The integration and resolution of the depth-averaged methods is mainly done for currents whose 

density is constant in time and space, and it has been shown that it can reproduce accurately the 

velocity, deposit thickness and extension of concentrated pyroclastic flows [Kelfoun et al., 

2009]. Theoretically, the depth-averaged approach is less adapted for dilute currents because of 

their vertical variations in density. However, the displacement of a density current is due to a 

pressure gradient parallel to the ground and the pressure is more influenced by the total mass 

above a given point than by its vertical variations. Based on this reasoning, Doyle et al. [2008] 

have explored the formation of concentrated flow from a dilute current using a depth-averaged 

model. Their approach is clearly simplified compared to the multiphase approach but the limited 

number of variables of the model allows the influence of each one on the global results to be 

studied.  

The aim of the present work is to present a new depth-averaged model that simulates both the 

concentrated and the dilute part of pyroclastic currents and their interactions. The dilute current 

can form a concentrated flow, as in Doyle et al. [2008]. The innovation in our model is that, 

inversely, the concentrated flow is able to form a dilute current, as often occurs during dome 

collapses. The model also runs on a pseudo 3D surface (Digital Elevation Model of volcanic 

topography) and the concentrated part uses a rheology estimated from field observations, which 
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allows the dilute current to form either a deposit or a surge-derived pyroclastic flow depending 

on the thickness deposited. 

 

2. The two-layer model 

The objective of this work is to develop the simplest model for concentrated and dilute currents 

that reproduces the first-order features of the natural phenomena. The simulation of the 

concentrated flow must approximate the velocity of the real flow, the covered area (extent, 

runout) and the deposit thickness. The model must also address the way the surge is generated 

by the concentrated flow (Fig. 1), as well as reproducing the velocity, the thickness of the surge 

and the area it covers. Finally, the surge should lose mass to form a deposit or a surge-derived 

pyroclastic flow compatible with natural observations. Other phenomena such as the effects of 

break in slope, the influence of river width changes and the decoupling between the 

concentrated and the dilute currents [e.g. Ogburn et al., 2014] must also be tested to assess the 

quality of the model.  

 

2.1. Dynamics	of	the	concentrated	flow	
 

The dynamics of the concentrated flow is calculated by solving depth-averaged equations of 

mass (1) and momentum balance, along x in (2) and y in (3), taking into account the mass of 

the particles exchanged with the dilute current. 
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where hd is the thickness of the concentrated flow, ( , )x yu uu  its velocity, x and y the slope 

of the topography in the x and y directions, t the time and ( , )x yv vv  the velocity of the surge 

(Fig. 1). The concentrated flow is considered to be of constant density, d, in time and space 

allowing the mass balance to be simplified by a thickness balance in (1). 

The variables m and s are the mass fluxes per square meter of the mixture of gas and particles 

that move from the concentrated to the dilute current (see section 2.3), and of particles that 

leave the dilute current through sedimentation (see section 2.4), respectively (Fig. 1). The terms 

at the right-hand side of equations 1 – 3, which contain m and s, govern the mass and 

momentum exchanges between the concentrated and the dilute currents. 

The flow is slowed down by the resisting stress exerted by the ground, ( , )x yT TT , which 

depends on the rheology of the flow. The rheology of pyroclastic flows is very complex and 

still not clearly understood. Kelfoun et al. [2009] and Kelfoun [2011] have shown that a plastic 

rheology forms flows and deposits whose characteristics are close to the natural phenomena in 

terms of extension, thickness, thickness variation, and velocity, although the reason why this is 

so is not fully understood [Kelfoun, 2011]. Kelfoun et al. [2009] also noted that a velocity-

dependent term could be added to the plastic rheology to better reproduce the natural 

emplacement of the Tungurahua pyroclastic flows, formed by the destabilisation of pyroclasts 

accumulated by fountaining. However, for such eruptions with a relatively small mass flux 

feeding the flow, the influence of this term on the dynamics was too small to be clearly 

identified from field observations. Charbonnier and Gertisser [2012] and Charbonnier et al. 

[2013] have reproduced the emplacement of the concentrated pyroclastic flows of the Merapi 
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volcano for the 2006 and 2010 eruptions. They have confirmed that a plastic rheology captures 

the flow emplacement better than a Coulomb rheology and they have shown that, for the high 

mass flux related to a dome collapse, the additional term related to the square of the flow 

velocity must be used to reproduce the natural velocity of the flow. The retarding stress T they 

have used is expressed by: 

 0 1 dT a    
u

T u u
u

 [4] 

and its components in x and y are 0 1
x

x d x

u
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u
 and 0 1

y
y d y

u
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u
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The best value estimated by Charbonnier and Gertisser [2012] and Charbonnier et al. [2013] 

for the two Merapi eruptions is a1 = 0.01. The velocity related term, a1, influences the flow 

essentially during the initial phase, when both the mass flux and the flow velocity are high. It 

might correspond to an additional absorption of energy related to collisions and rock break-up 

during the lava dome destruction. Neither the temperature and its variations nor the erosion and 

the incorporation of substratum material in the flow [Bernard et al., 2014] are included in the 

present model. Aggradation is also not included in the simulation of the concentrated part, and 

the flow stops en masse according to the balance between driving stresses, retarding stresses 

and inertia. 

 

2.2. Dynamics	of	the	dilute	current	
 

In the same way as for the concentrated flow, the dilute current (i.e. pyroclastic surge) is 

simulated by equations of mass and momentum balance. However, a fourth equation must be 

added to the system because the density varies in time and space. The surge is considered to be 

incompressible and isothermal following Doyle et al. [2008; 2010]. The turbulent mixing is 
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assumed to be sufficiently intense to maintain a uniform particle concentration perpendicular 

to the ground. The system describing the surge dynamics is then: 
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Eq. 5 and 6 describe the volume and mass balances (per square meter) for a current whose 

density varies and whose thickness is not affected by particle settling [Doyle et al., 2010]. 

Equations 7 and 8 are the momentum balances. The right-hand terms of Eq. 7 and 8 mean (1) 

that the surge can move on a slope due to its weight because it is denser than the atmosphere. 

It can also move by spreading (2), even on a horizontal surface. The third term (3) includes the 

stresses that resist to the displacement and the last terms (4) and (5) take into account the 

momentum gain and lost by exchanges with the concentrated part. Note that no overpressure is 

taken into account and that blast effects cannot be simulated. 

Here, hs is the thickness of the dilute current, ( , )x yv vv  its velocity and, x and y the slope 

of the surface formed by the ground plus the concentrated flow in the x and y directions. The 

density of the surge varies and can be close to the density of the atmosphere, a, which cannot 

be neglected (Eq. 7-8). The density of the mixture of gas and particles that moves from the 

concentrated flow to the dilute current is termed m (see section 2.3). As for the concentrated 
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flow, the two terms at the right-hand side of each equation take into account the mass exchange, 

here between the dilute current and, the concentrated flow or deposit (see section 2.4). 

The surge is considered to exhibit turbulent drag stress [e.g. Bonnecaze et al., 1993; Bonnecaze 

and Lister, 1999; Hogg and Pritchard, 2004; Doyle et al. 2008], R, expressed by: 

 2    sa  R v v  [9] 

 

where a2 is a drag coefficient that relates the velocity of the flow to the drag stress exerted by 

the turbulence. The set of equations (5) to (8) is valid only where the density of the ash-cloud 

is higher than the density of the atmosphere, with the ash-cloud behaving as a density current 

(i.e. an ash-cloud surge).  

Air entrainment can have a strong influence on the surge emplacement [Bursik and Woods, 

2000; Andrews, 2014]: atmospheric gases are ingested by the flow, become heated and thus 

decrease the surge density. Air ingestion will increase the flow thickness, simultaneously 

decreasing the flow density [e.g. Hallworth et al., 1996]. Thus, the term ssh  that rules the 

dynamics of the flow (Eq. 6-8) will not drastically change and, while the density of the surge is 

significantly higher than the density of the atmosphere, entrainment influences the flow 

thickness but probably only has a secondary effect on the emplacement (see section 3.7). Air 

entrainment is not taken into account in the model as in the approach of Doyle et al. [2008; 

2010]. This assumption affects the model accuracy for very dilute surges and at the edges of 

dense surges where air ingestion can decrease the surge density down to the atmosphere density, 

causing the ash-cloud to become buoyant. 
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2.3. Mass	and	momentum	exchanges:	from	the	concentrated	to	the	dilute	current	
 

 During the emplacement of the concentrated flow, particles at its surface can be put into 

suspension to form a mixture of gas and particles that supplies the ash-cloud, changing its 

thickness and its density (Fig. 1). A number of processes have been proposed for particle 

transfer from the concentrated flow to the dilute current: (1) turbulence [Denlinger, 1987] (2) 

elutriation [Fisher, 1979; Wilson, 1980]; (3) decompression of pressurized volcanic gases 

[Woods et al., 2002]; (4) entrainment by heated atmospheric gases [Mc Taggart, 1960; Sparks, 

1976; Wilson and Walker, 1982]; (5) particle collisions [Spark et al., 1978; Fujii and Nakada, 

1999]. The gas of the mixture can originate either from the concentrated flow or from 

entrainment and heating of the atmosphere. The density of the mixture, which takes these 

phenomena implicitly into account, is termed m and the mass flux (per m² of the surface and 

per s) of gas and particles forming this mixture and supplying the dilute current is termed m. It 

is impossible to carry out direct measurements of particle exchanges (mass flux rate, the grain 

size distribution, etc.) between the concentrated and the dilute parts of natural pyroclastic 

currents. Wind tunnel experiments, in which an air flux is imposed above a granular layer, are 

useful to understand, at least partially, the mechanisms involved in particle entrainment into a 

saltation layer. The experiments show that the air flux interacts with the roughness caused by 

the grains of the granular layer surface and becomes turbulent [Denlinger, 1989]. This 

turbulence plays an important role in particle mobilization by wind [e.g. Bagnold, 1941]. While 

various laws can be found in the literature, the mass flux of particles, per square meter, is often 

considered to be a function of the wind velocity cubed, with no flux below a minimal velocity 

value [Bagnold, 1941; Pye and Tsoar,1990; Tegen and Fung, 1995; Tegen and Miller, 1997; 

Uno et al., 2001; Xuan, 2004]. This threshold is generally low (some tens of cm / s) compared 

to concentrated pyroclastic flow velocities (> 20 m/s) and here it is assumed to be zero for a 

sake of simplification. 
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The mass flux of the gas and particle mixture, m (in kg / m² / s), which leaves each square 

meter of the surface of the concentrated part to supply the dilute part, is thus modelled by: 

 
3

m 3 a  u   [10] 

where a3 is a parameter that relates the mass flux of particles to the concentrated flow velocity 

(in kg s2 m-5). Eq. 10 certainly highly simplifies reality, the natural mass flux being potentially 

complicated by particle collisions, grinding, shocks and hydraulic jumps related to the 

concentrated flow displacement, by the high temperature and the gas content of the concentrated 

flow and its degasing, and by the density and velocity of the overlying surge [Wilson and 

Walker, 1982]. Since we do not know the influence of these parameters, we use the simplest 

equation form deduced from available experiments, while recognizing that more researches are 

needed to better defined the physical processes involved. 

The mixture of particles and gases (atmospheric and lost from the concentrated flow) change 

both the surge density and its thickness (Fig. 1). The thickness of the surge varies locally with 

time: 
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The product of the surge density multiplied by its thickness, s hs, i.e. the mass of the surge per 

surface unit, also varies according to m: 
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
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The new surge density is deduced from equations (11) and (12). In the model, the surge velocity 

is constant perpendicular to the ground and our depth-averaged approach implicitly assumes 

that vertical mixing is locally instantaneous across the dilute current thickness.  



12 
 

Simultaneously, considering that the mass of the entrained atmosphere is small compared to the 

mass of gas and particles lost from the concentrated flow, the flow thickness decreases 

according to m and to its density, d: 

 d m

d

dh

dt




   [13] 

 

The flux of momentum is calculated from the mass flux m  and the velocity of the concentrated 

part u . The concentrated flow will lose in momentum m u  by per square meter and per 

second, and the dilute current will gain the same momentum. The velocity of the concentrated 

flow is not affected by the particle flux because mass and momentum decrease together. 

However, this mass transfer can modify the surge velocity. 

 

2.4. Mass	and	momentum	exchanges:	from	the	dilute	to	the	concentrated	flow	
 

The settling velocity, wsed, of particles in a surge depend on their density, shape and size, and 

is often given by: 
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sed

4   

3  
p s p

d s

g d
w

C

 



   [14] 

[Le Roux, 1992; Sparks et al., 1997; Dellino et al., 2005, and references therein]. 

where p is the density of particles, dp their diameter and Cd a drag coefficient. 

The mass of particles lost by sedimentation (per square meter) depends on this settling velocity 

wsed, the volumetric fraction of particles cv and the density of the particles p:  

 s sed  v pc w   [15] 
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The surge density is given by  s  1v p v gc c     , where g is the density of the hot gas 

(from volcanic and/or atmospheric origin) of the surge. Note that s decreases progressively to 

g as the surge loses particles by sedimentation. Because the volumetric fraction of particles is 

given by: 

      s sv g p g g pc             [16] 

Eq. 15 becomes: 

  s seds g w     [17] 

The local variation of the mass of the surge per square meter, s hs, through time due to 

sedimentation is then given by: 
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s s
s s g

d h
w

dt


      [18] 

To solve equation 18, we follow the assumption of Doyle et al. [2010] (their equations 2a-2c) 

which considers that the sedimentation does not affect the surge thickness but only its density. 

Where the density of the surge becomes lighter than the atmosphere, the ash-cloud should lift 

off. The model then considers that the particles of the ash-cloud leave the system at the point 

where lift-off should occur and the surge thickness is locally set to zero.  

The mass lost by the surge can form a deposit, be added to the existing concentrated flow or 

form surge-derived concentrated flows [Calder et al., 1999; Druitt et al., 2002]. This depends 

on the thickness of mass deposited, the topographic slope and the rheological parameters chosen 

for the concentrated part. 

The mass of particles lost by the surge equals the mass gained by the concentrated part 

(concentrated flow or deposit) and is given by: 
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Because the density of the concentrated part is considered to be constant, equation 12 can be 

simplified to: 

  
sed

s gd

d

dh
w

dt

 



  [20] 

 

2.1. Numerical	resolution	of	the	equations	
 

The system of equations is solved using the VolcFlow code [Kelfoun and Druitt, 2005; Kelfoun 

et al., 2009], which was developed for the simulation of depth-averaged flows on DEMs. The 

code has been highly modified to take into account two fluids simultaneously (the concentrated 

and the dilute currents), the laws simulating the mass and momentum exchanges (Eq. 10-20), 

and the density variations of the surge (Eq. 6-8). 

 

3. Results 

The parameters of the following simulations are listed in Tab. 1. If not specified, the parameters 

used are realistic values either obtained by field measurements or estimated by reproducing 

natural events in the companion paper [Kelfoun et al., submitted]. 

 

3.1. Characteristics	and	evolution	of	the	dilute	current	
 

In the model, the surge characteristics depend on the mass, momentum and density of the 

mixture formed by the concentrated flow, and on the particles lost by sedimentation. The 

following section illustrates how equations 10 and 17 affect the characteristics of the dilute part. 

For this first example, no lateral displacement is taken into account: the mass of the dilute part 
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comes from the underlying concentrated part and subsequently settles on it. Nevertheless, to be 

consistent with the other sections, the term surge is used to refer to the dilute part. 

Figure 2a shows the influence of the surge density and of the flow velocity on the mass balance 

that controls the surge evolution. The bold curve shows the equilibrium between the mass lost 

by sedimentation and the mass gained from the concentrated flow. To the right of the bold 

curve, values are positive and indicate that the mass elutriated from the concentrated flow is 

higher than the mass lost by sedimentation so that the surge mass increases. To the left, the 

mass balance is negative: the mass flux from the concentrated flow is insufficient to compensate 

the mass flux lost by sedimentation and either the concentrated flow cannot form a surge or an 

existing surge loses mass until it disappears. The density of the surge has two antagonistic 

effects on the sedimentation: first, it reduces the settling velocity of a given particle (Eq. 14). 

However, because a higher density also means a larger concentration of particles, more particles 

settle out, thus increasing the mass lost (Eq. 17). Fig 2a shows that the second effect dominates 

and that a higher surge concentration increases the mass lost. This is true up to a concentration 

of about 1000 kg/m3, which is much higher than the density of a surge. However, except for 

low density surges (<5 kg/m3), the density has a relatively small influence compared to the 

velocity of the concentrated flow. The bold curve shows that, with the parameters chosen (Tab. 

1), a velocity of the pyroclastic flow of about 15-25 m/s is needed to generate and maintain a 

surge. 

Figure 2b shows the same mass transfer rates according to the velocity of the concentrated flow 

and to different particle sizes. Negative values mean that the surge loses mass and tends to 

disappear. The null flux, where the mass lost equals the mass gained, is represented in bold for 

a surge density of 10 kg/m3. Two other null-flux curves for a surge density of 1.1 kg/m3 and 2 

kg/m3 are represented by the dashed and the dotted lines, respectively. Fig. 2b also demonstrates 

the existence of a threshold in surge formation at around 15-25 m/s. Below this velocity, the 
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mass flux from the concentrated flow is very low and is always lower than the mass lost, even 

for very fine particles. 

Note that another condition for surge generation is that the particles can be held in suspension 

and can be mixed homogeneously through the whole surge thickness. It is commonly assumed 

that a particle can be held in suspension if its Rouse number 
*

sed
n

w k
P

v
  is lower than 2.5, with 

v* the shear velocity (in the order of magnitude of the surge velocity v ) and k the Von 

Karman constant, equal to 0.4 [Valentine, 1987; Dellino et al, 2008]. The capacity for 

homogeneous mixing can be estimated using the Stokes number, which is a ratio of the 

characteristic response times for particles to the fluid turbulence [e.g. Elghobashi, 1994; 

Sijercic et al, 2007]. The Stokes number is defined by 0 0

0

t v
Stk 


, where v0 is the characteristic 

velocity of the vortices, ℓ0 their characteristic length and t0 is the relaxation time of the particle 

defined by 
2

0
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


  with s the surge viscosity. For Stk<<1, particles closely follow fluid 

streamlines and can be mixed homogeneously. Particles smaller than 0.1 mm in diameter, as 

often found in surge deposits, are easy to be put into suspension (Pn<2.5) and mixed 

homogeneously (Stk<<1), while particles larger than 1 cm can only be mixed under more 

exceptional conditions (large eddies, high surge viscosity, low particle density). This should be 

kept in mind so as not to over interpret the upper part of Fig. 2b. 

 

3.2. Surge	genesis	from	a	concentrated	flow	
 

Equations of mass fluxes are now coupled with Eqs. 1-3 and 5-8 to be studied dynamically. In 

the first simulation, in 1D (Fig. 3a-b), a mass representing a concentrated flow is released in 

one go onto a slope in order to approximate a dome collapse. For visibility, a high value of T0 
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has been chosen so as to create a thick flow. The flow rheology contains a plastic term (Eq. 4), 

meaning that there is a relation between its thickness and its ability to flow. Where the flow is 

thick, the driving stresses (related to the slope and the thickness) are higher than the retarding 

stress (which is constant) and the flow accelerates (Eq. 2). The high flow velocity induces a 

flux of particles (Eq. 10) that forms a surge when it becomes greater than the mass flux lost by 

sedimentation (Eq. 17). The mass of the surge increases and the surge acquires its own 

dynamics (Eq. 7-8). The concentrated flow thins until the driving stress becomes lower than the 

resisting stress and the velocity decreases until the flow stops. Fewer particles are emitted from 

the flow and the density of the dilute current decreases rapidly through sedimentation. However, 

its density can be high enough to enable the dilute current to surpass the front of the 

concentrated flow (Fig. 3b). The dilute part stops when its density equals the density of the 

atmosphere and the mass lifts off. Thus, depending on the topography and on the characteristics 

of the concentrated and the dilute parts (rheological parameters, mass rate, volume, etc.), the 

dilute current can be slower (Fig. 3a) or faster (Fig. 3b) than the concentrated flow and can stop 

before or after the runout reached by the concentrated flow.  

 

3.3. Concentrated	flow	genesis	from	a	surge 
 

In the simulation shown in Fig. 3c-d a surge is continuously created from the border of the 

calculation domain to mimic, for example, a column collapse. The surge moves downstream 

and progressively loses mass by sedimentation, resulting in a decrease in density. The runout 

of the surge is determined by the point at which the density of the surge equals the density of 

the atmosphere (Fig. 3d). Initially, this mass lost by sedimentation of the surge forms a deposit 

(i.e. a static concentrated part). But, because the thickness of the concentrated part increases 

with time, the driving stress of the weight increases until the concentrated part begins to flow 

(Fig. 3d). Concentrated flow genesis occurs in pulses: the mass lost by the surge accumulates 
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on the ground until it is able to flow, then builds up again to the point at which it flows again. 

The concentrated part is able to exceed the surge runout (Fig. 3d). 

 

3.4. Influence	of	the	slope	on	surge	genesis	
 

The influence of the slope on the surge generated by the concentrated flow in the model can 

first be analyzed in stationary conditions with a purely plastic rheology. The influence of the 

turbulent stress (Eq. 4) is generally of secondary importance and is set here to zero. 

A concentrated flow reaches a constant velocity when the driving force equals the resisting 

force. For a purely plastic rheology, and a flow whose thickness does not vary spatially, a 

stationary state (no variation of h over time) is reached when the driving force equals the plastic 

basal stress: 

 0   sing h    [21] 

This gives the thickness needed by the flow to reach a constant velocity: 

 
0

  sin
h

g


 

  [22] 

A thicker flow will accelerate to thin and thus reach the equilibrium thickness. Conversely, a 

thinner flow will decelerate to thicken. 

In this simple analysis the valley is considered to be horizontal perpendicular to the valley axis 

with vertical walls. For a volumetric rate Q of pyroclastic flow, the stationary velocity is given 

by: 

 
0

   sin

  

Q Q g
u

h w w

 


   [23] 

where w is the valley width. Using Eq. 10, the mass flux from the concentrated flow to the 

dilute current is then: 
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The mass flux that forms the surge is very sensitive to the concentrated flow velocity and, 

consequently, to all the parameters that control this velocity, one of which is the slope. For 

example, increasing the slope from 10° to 30° increases the mass flux by about 25. Decreasing 

the slope from 10° to 5° decreases the mass flux by about 8. 

 

Another illustration of this slope effect is given by a dynamic analysis of the model (full set of 

equations). A first simulation is done on a constant slope of 5°. The valley is linear downslope 

and is defined by a sinusoidal cross section (=50 m, =20 m, Fig. 4a). The concentrated flow 

is generated at the left side of the domain (x=0). It accelerates to reach ~12 m/s and generates a 

dilute current that overflows the valley. With the parameters chosen (Tab. 1), the surge reaches 

a maximal density of ~ 9 kg/m3 above the flow, and because its density decreases rapidly it 

moves laterally by about 70 m from the concentrated part (Fig. 4b). Streamlines show that the 

surge that covers a given area is generated in the proximal area covered by the flow 

(downstream displacement of less than 100 m). 

The simulation in Fig. 4c is done with the same slope and the same valley shape but a steeper 

slope of 30° is added at a distance of 200 m. The effect of the steeper slope is to accelerate the 

flow and this occurs even before the break in slope: because the mass on the steeper slope 

accelerates, the thickness gradient changes. This adds an additional driving stress to the 

concentrated flow (Eq. 2-3) and the mass accelerates, propagating the thickness change and the 

acceleration upstream of the break in slope. On the steeper slope the mass accelerates from 12 

m/s to about 22 m/s and forms a thick, concentrated surge that spreads out in the downstream 

area and is able to flow faster than the concentrated flow. The surge formed on the steep slope 

is able to progress more than 500 m downstream. 
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The surge deposits are 12% of the initial flow volume for the 5° slope and 30% for the steeper 

slope. This mass is removed from the flow and, because the flow stop is related to its thickness, 

a smaller volume means a shorter runout of the flow (not visible for the domain size of Fig. 4). 

 

3.5. Influence	of	river	constriction	on	surge	genesis	
 

If a river narrows in a steady state configuration, the volumetric rates of pyroclastic flow are 

equal before and after the constriction: 

     w w W WQ u h w u h W   [25] 

where w and W are the valley widths and uw, hw, uW and hW are the flow velocity and thickness 

before and after the constriction, respectively. The thickness and/or the velocity need then to 

increase to compensate for the reduction in width. With a purely plastic rheology, we have seen 

that a flow tends to a given thickness for which the driving stress equals the retarding stress and 

the velocity reaches a steady state. Immediately after the constriction, the flow tends to 

accelerate to reach the same thickness as before the constriction and hw=hW. The velocity after 

the constriction is then related to the velocity before the constriction by: 

  W
w

u W
u

w
  [26] 

The mass flux from the flow to the surge depends on the velocity to the power of three. Then, 

after the constriction, the mass flux will increase by a factor 
3

W

w
 
 
 

. For example, a reduction of 

the drainage width by 2 will change the mass flux by 8. Conversely, widening of a valley will 

decrease the surge genesis. 

The effect of a drainage constriction on surge production is simulated by the model in Fig. 5a-

b. Downstream of the constriction, the valley is sinusoidal (Fig. 4a). Upstream, the central line 

of the drainage has been enlarged by a 100-m wide incline. 
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Before the constriction, the velocity calculated by the model with the parameters chosen is 

about 8 m/s, whereas afterwards it is about 30 m/s. With the parameters chosen (Tab. 1) the 

mass flux m changes from 5 to 270 kg/m²/s. The mass flux of 5 kg/m²/s is not high enough to 

compensate the mass lost by particle settling and a very thin surge is created. However, after 

the constriction, the mass flux of 270 kg/m²/s is larger than the mass lost by particle settling 

and a surge can form. The surge leaves the drainage to flow over several tens of meters on the 

interfluves. Thus, the model shows that variations in valley width can have a strong influence 

of the surge genesis and dynamics. 

 

3.6. Decoupling	between	the	currents	
 

Concentrated flows are more sensitive to meter-scale topography than thick, dilute currents. 

Thus decoupling between the two flows often occurs at river bends. The following topography 

was used to check if the model could reproduce this decoupling: a sinusoidal valley cross 

section, with the first part of the valley linear and parallel to the slope (Fig. 5c), after which the 

valley curves by 45° before returning to the downslope orientation. The curve follows a circle 

with a radius of 100 m. Using the chosen parameters (Tab. 1), the concentrated flow formed is 

about 2.5 m thick with a velocity of ~15 m/s. The mass and volume of the surge increase 

progressively (max. thickness ~ 25 m). When the current reaches the bend, the surge continues 

straight forward onto the interfluves, apart from a small part which follows the drainage (Fig. 

5d). The concentrated part follows the drainage because its thickness and velocity at the bend, 

with the parameters chosen, are too low to flow onto the interfluves. It is thus decoupled from 

the main surge. After the bend, the flow still generates the surge but, due to the lower flow 

velocity related to its thinning, the new surge formed is thinner and only overflows the 
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interfluves immediately adjacent to the main drainage (Fig. 5e). As shown in figure 5e the 

thickest surge deposits are found downstream and along the projection of the upstream valley. 

 

3.7. Influence	of	the	density	of	the	surge	(s)	and	of	the	mixing	(m)	
 

Simulation were carried out using the same parameters as for Fig 5c-e, the only difference being 

the value of m, the density of the gas-particle mixture that leaves the concentrated flow to form 

the surge. The value of m controls the value of the surge density s. However, it does not affect 

the mass flux which remains constant. A low value of m thus forms a thick, dilute surge while 

a high value forms a thin, dense surge. Comparing the two results (see supplementary material) 

shows that the densities of the surge and of the mixture play a secondary role in the dynamics 

of the surge: the shape of the deposit is similar for a surge density of about 10 kg/m3 and 20 

kg/m3. This can be explained by Eqs. 7-8 which show that the main parameter that governs the 

surge dynamics is the local mass (s hs). A thick, light surge has the same mass as a thin, 

concentrated surge. This conclusion is not valid if surge thickness is close to the depth of the 

valley: surge can be strongly influenced by the valley shape and can be confined above the 

concentrated flow. The conclusions are not valid either for very light surges, which rapidly 

reach the density of the atmosphere. The results justify a posteriori that air entrainment can be 

considered of second importance as long as the surge density is significantly higher than the 

atmosphere density.  

 

3.8. Influence	of	the	mass	rate	
 

Since surge genesis is related, in the model, to the velocity of the concentrated flow, any 

parameter that causes an increase in the flow velocity also increases the surge production. As 
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explained in the previous sections, a thick flow moves faster than a thin flow. For a given 

volume of flow, a short duration of formation, and consequently a high volumetric rate, forms 

thicker flows than low volumetric rates. Thus high volumetric rates are related to faster flows 

and to more powerful surges. 

Simulations carried out with various volumes and volumetric rates show that, close to the 

source, the principal influence is the mass rate, which controls the velocity of the flow. The 

areas affected by the surges are similar whatever the volumetric rate and are poorly dependent 

on the volume. Downstream, however, the velocity reaches an equilibrium. It is no longer 

influenced by the initial velocity and thus by the mass rate. Here, the velocity and the runout 

are mainly controlled by the volume of the flow, with a larger volume allowing the concentrated 

part to flow and to create a surge far from the source. 

 

3.9. Change	of	surge	extension	with	valley	infill	
 

Field observation indicate that the valley infill, which decreases the valley's depth, seems to 

play a role in the destruction of the surrounding interfluves by ash-cloud surges [Komorowski 

et al., 2013; Ogburn et al., 2014]. To evaluate the effect of the valley depth on the surge 

emplacement, simulations were done with the same geometry as for the simulation in Fig. 4b 

(a 20-m-deep valley, slope 5°) but with the addition of a 50-m high plateau bounding the 

drainage on half of the calculation domain (closer to the source, Fig. 5f). Remind that such a 

topography creates high curvatures that lower the model accuracy. This is, however, interesting 

to explore the model behavior. In the valley surrounded by the plateau, the surge formed with 

a mixing density m of 10 kg/m3 is too thin to flow out of the 50-m-deep valley. The surge 

remains essentially channeled above the flow and particles settle onto it. With more width 

between the plateau edges and the drainage, the particles can form a thick deposit at the sides 
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of the flow and the model shows that the presence of a surrounding topography favours particle 

accumulation and, consequently, the formation of surge-derived concentrated flows. 

At the downstream end of the deep part, the surge is able to spread out onto the interfluves (Fig. 

5f). However, because the surge has settled progressively, the surge thickness and density are 

not very different to what they would have been without the plateau. With a density m of 2 

kg/m3, the same mass flux forms a thicker surge that can overflow the 50-m walls of the 

drainage. However, the edges that bound the flow still play a major role in the surge 

emplacement, and the distance reached by the surge is strongly reduced (150 m from the valley 

on the plateau, and 300 m from the valley elsewhere).  

 

4. Discussion 

4.1. Compatibility	of	the	model	with	field	observations	
 

Our understanding of the coupling between concentrated and dilute currents as well as the 

physics of these currents remains very incomplete, as pointed out by Ogburn et al. [2014]. A 

way to improve our understanding of the physics is to make models, and try to reproduce field 

observations as closely as possible by changing the model parameters, and then by interpreting 

the values and the laws obtained. 

Ash-cloud surges are known to be more powerful and to overrun the concentrated flow after 

traversing a break in slope. For example, this has been described at Santiguito, Guatemala [Rose 

et al., 1977], at Ngauruhoe [Nairn and Self, 1978] and at Merapi, Indonesia [Kelfoun et al., 

2000; Lube et al., 2011; Jenkins et al., 2013]. The tree directions measured following the 1994 

eruption of Merapi [Kelfoun et al., 2000] are entirely compatible with the results of Fig. 4. 

Surges are also known to detach from the concentrated flow at valley bends [Yamamoto et al., 

1993; Fujii and Nakada, 1999; Kelfoun et al., 2000; Charbonnier and Gertisser, 2008; Lube et 
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al., 2011; Komorowski et al., 2013]. Loughlin et al. [2002] described the formation of surges 

after valley constrictions. A strong negative correlation between the valley cross-sectional area 

and the area covered by detached surges has been demonstrated by Ogburn et al. [2014]. Our 

model reproduces this effect (Fig. 5b). Their observation that a critical cross-section exists in 

reality is compatible with the critical velocity needed by the model to form a surge (~20 m/s). 

The critical section of Ogburn et al. [2014] might then be explained by the velocity needed to 

allow a given volumetric rate to flow across a given valley width. Cole et al. [2002] studied the 

pyroclastic flows of Montserrat and concluded that there is no direct relationship between the 

volume of pyroclastic flows and the area covered by surges. This is consistent with the results 

of the model that the volumetric rate plays a more crucial role in the surge genesis than the 

volume itself.  

 

4.2. Influence	of	the	parameters	on	surge	dynamics	
 

The model has been developed to be as simple as possible. Nevertheless, because it aims to 

capture the first order behavior of a natural complex phenomenon, about 20 parameters need to 

be defined. Some of them are known, or can be calculated or estimated in the field (e.g. volume 

of the flow, gravity, concentrated flow density, topography). But five parameters cannot be 

directly estimated: the rheological parameters of the concentrated flow (T0 and a1, Eq. 4), the 

turbulent coefficient of the surge (a2, Eq. 9), the parameter a3 (Eq. 10) that governs the exchange 

between the concentrated flow and the surge, and the density of the mixture that supplies the 

surge (m, Eq. 11). This section explains how they can be estimated from field observations.  

 T0 and a1 control the flow emplacement and can be estimated relatively easily. T0 controls 

the thickness of the concentrated deposit. A high value forms thick, short deposits, a low value 

forms thin, long deposits. The parameter a1 influences the concentrated flow velocity, and an 



26 
 

increase in this value slows down the simulated flows. On a complex topography, the velocity 

and thus the value of a1 can be estimated depending on whether the flow can cross a given 

morphology. The results are strongly influenced by the choice of the plastic rheology as a proxy 

for the complex rheology of pyroclastic flows. The advantage of the plastic rheology compared 

to the Coulomb law is that is reproduces the correlation between the flow thickness and it flow 

capacity. This is probably why it successfully reproduces the emplacement of natural 

pyroclastic flows [Kelfoun et al., 2009; Charbonnier et al., 2013] as well as debris avalanches 

[Kelfoun and Druitt, 2005; Kelfoun, 2011]. Other rheological laws that would reproduce this 

correlation would lead to similar results. 

 The variable a2 controls the surge velocity. It can be estimated using direct observations of 

the velocity or from the destruction, related to this velocity and to the surge density. The ratio 

of the length of the surge to its width can be also used to define a2. A low value of a2 tends to 

increase the length of the surge downstream. 

 Variable a3 determines the mass flux from the concentrated flow and is estimated from the 

mass of surge deposits. With a high value of a3, a large mass of particles from the concentrated 

flow is passed to the surge, and voluminous surge deposits are formed. This parameter 

implicitly takes into account phenomena that act on the surge genesis (temperature, pore 

pressure, etc.). Future work must define this dependence more quantitatively, must better 

explain the mechanism responsible of the particle exchanges, which is certainly more complex 

than saltation, and must confirm or improve Eq. 10. 

 Mixture density m determines the thickness of the surge and, consequently, its density. It 

can be estimated by the elevation reached by the surge along the hills, by the capacity of the 

surge to flow over the topography or from the estimation of the surge density (using the dynamic 

pressure for example, Jenkins et al. 2013).  
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5. Conclusion 

A new model has been developed to simulate concentrated pyroclastic flows, pyroclastic surges 

and their interactions, using two coupled depth-averaged approaches. The analysis of the model 

behavior shows that the approach and the equations used make it possible to reproduce the 

behavior of the natural current, at least qualitatively. The model mimics the genesis of surges 

from concentrated flows and the formation of deposits, and of surge-derived concentrated flows 

through sedimentation of the surge. It shows that a velocity of about 25 m/s is needed for a 

concentrated flow to form a surge. All the parameters that increase the concentrated flow 

velocity can thus be lead to surge formation. This explains the strong influence of the 

topography on the surge genesis: a break in slope or a river constriction can dramatically 

influence the surge genesis by accelerating the velocity of the concentrated flow. The model 

also shows that the volume rate can be more important for the surge genesis than the volume 

itself. The strong correlation between the volumetric rate and surge genesis can be particularly 

problematic for hazard assessment. In the case of dome collapse, for example, knowing the 

dome volume would not be enough in itself to estimate the areas covered by resultant surges. 

The volumetric rate is a critical parameter and depends on the way the dome collapses, which 

is difficult to predict, and could explain the sudden genesis of powerful surges, the difficulty of 

predicting their subsequent damage, and the potential danger for the population. The model 

must now be tested against real field cases in order to check its ability to quantitatively 

reproduce natural phenomenon. In a companion paper [Kelfoun et al., submitted], we show that 

the model is able to reproduce the extension, the thickness and the emplacement of the 2010 

PDCs of Merapi volcano. 
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Notation 

a1 u²-stress coefficient for the flow, Eq. 4 
a2 turbulent stress coefficient for the surge, Eq. 9 
a3 mass flux coefficient to the surge, Eq. 10 
Cd drag coefficient of surge particles 
cv volumetric fraction of particles 
g gravity 
hd flow thickness 
hs surge thickness 
t time 
T = [Tx, Ty] total resisting stress for the flow 
R = [Rx, Ry] total resisting stress for the surge 
u = [ux, uy] flow velocity 
v = [vx, vy] surge velocity 
wsed  settling velocity of surge particles 
x x-direction along the slope 
y y-direction along the slope 
 
x, y topographic slope in x and y  
x, y slope of the flow surface in x and y 
m mass flux from the flow to the surge 
s mass flux lost by settling from the surge 
a atmosphere density 
d flow density 
g gas density in the surge 
m mixture density from the flow to the surge 
p particles density 
s surge density 
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Captions 
 
Figure 1: Flow diagram of the model. The concentrated flow loses a mass flux s of densitym 

that forms the dilute current (surge). The dilute current is of variable density and loses a mass 

flux s that can form a concentrated flow or a deposit.  

 

Figure 2: (a) Mass fluxes at the interface between the concentrated flow and the surge (in kg 

per m² and per second, values in italic), based on the velocity of the concentrated flow and the 

surge density. The mass flux to the surge is given by Eq. 10-12 while the mass is lost according 

to Eq. 14 and 18. The solid curves are drawn for particle diameters of 0.25 mm. The bold curve 

indicates that the mass gained balances the mass lost (mass balance = 0). Dashed curves 

correspond to the equilibrium state for particles of 0.1 mm and 1 mm in diameter. The dark 

grey zone corresponds to the area where the dilute mixture is lighter than the atmosphere and 

lifts off. (b) Mass fluxes between the concentrated flow and the dilute current (in kg per m² and 

per second) based on the velocity of the concentrated flow and the particle diameter (log scale) 

for a surge density of 10 kg/m3. Dashed line: equilibrium state for a density of 2 kg/m3 and 1.1 

kg/m3. 

 

Figure 3: (a-c) Surge genesis from a concentrated flow. Once generated, the surge has its own 

dynamics and can overrun the concentrated flow. (a) t = 5 s, (b) t = 15 s. (b-d) Genesis firstly 

of a concentrated deposit and then of a concentrated flow from the mass lost by the surge. The 

surge is generated continuously at the left-hand border of the domain with a thickness of 50 m 

and a density of 20 kg/m3. (a) t = 10 s, (b) t = 200 s. 

 

Figure 4: Effect of the topographic slope on the area covered by pyroclastic surges. (a) Cross 

section of the valley. (b) With a slope of 5° the surge extends up to 70 m from the concentrated 

flow. (c) If a steeper slope is added to the topography, the surge genesis is much stronger. Movie 

in supplementary material. 

 

Figure 5: (a-b) Downstream of a constriction, the higher velocity of the concentrated flow 

creates more voluminous surges that can leave the main drainage to overflow the interfluves. 

(c-e) Decoupling between the concentrated and the dilute current. Images show deposit extent 

for concentrated and dilute currents at (a) t=30 s, (b) 45 s and (c) at rest (150 s). Movie in 
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supplementary material. mix = 10 kg/m3. (f) Influence of the valley depth on the surge 

emplacement. The depth of the valley plays a strong role on the lateral extent of the surge. 

 

Table 1: Parameters used in the simulations. For all the simulations, the value of a is set at 1 

kg/m3. The values of the particle diameters dp are given for Cd = 1. For other values of Cd (e.g. 

Dellino et al. 2008) the particle diameter must be changed to keep the ratio dp/Cd constant. g, 

gravity; g, density of the gas in the surge; s, surge density; p, particle density; d, 

concentrated flow density; m, mixing density (section 2.3); a1, turbulent/collisional term for 

the concentrated flow; a2, turbulent/collisional term for the surge; a3, term for surge genesis; 

dp, particle diameter; V, volume of the concentrated part, ts, duration of current genesis; _c, the 

value changes and is calculated by the model, _, parameter not used. All the models described 

in this article were run in a few minutes on a desktop computer (maximal domain size: 200×500 

meshes, calculation speed: ≈1 s of calculation for 1 s in reality on a desktop computer, ≈15 min 

per simulation). 

 













g  g  s  p  d  m T 0 a1 a2 a3 d p d p V t s min( ) max( )

m/s² kPa ‐ ‐ kg s2 m‐5
mm    unit m3

s ‐ ‐

Fig. 2a ‐ =f ( s, u ) 9.81 0.5 0‐20 2000 ‐ ‐ ‐ ‐ ‐ 0.001 1 0 ‐ ‐ 0 0

Fig. 2b ‐ =f (d , u ) 9.81 0.5 10 ‐ ‐ ‐ ‐ ‐ ‐ 0.001 0.01‐100 ‐6.6 ‐ 6.6 ‐ ‐ 0 0

Fig. 3ab ‐ Surge from flow 9.81 0.64 _c 2400 1600 10 20 0.01 0.2 0.01 10 ‐3.32 1334 m
3
/m 0 0.38 45

Fig. 3cd ‐ Flow to surge 9.81 0.64 _c 2400 1600 10 10 0.01 0.2 0.01 10 ‐3.32 ~2600 m
3
/m 200 s 0.38 45

Fig. 4  ‐ break in slope 9.81 0.64 _c 2400 1600 10 4 0.01 0.2 0.01 0.0625 4 100000 60 5 30

Fig. 5ab ‐ constriction 9.81 0.64 _c 2400 1600 10 4 0.01 0.2 0.01 0.0625 4 100000 60 10 10

Fig. 5c‐e ‐ bend,  mix 10 9.81 0.64 _c 2400 1680 10 4 0.01 0.1 0.01 0.0625 4 40000 60 20 20

Fig. 5f ‐ in a deep valley 9.81 0.64 _c 2400 1600 10 4 0.01 0.2 0.01 0.0625 4 200000 30 5 5

kg/m3



Table 1: List of variables used 

x, y topographic slope in x and y  
x, y slope of the flow surface in x and y 
m mass flux from the flow to the surge 
s mass flux lost by settling from the surge 
a atmosphere density 
d flow density 
g gas density in the surge 
m mixture density from the flow to the surge 
p particles density 
s surge density 
 
a1 turbulent stress coefficient for the flow, Eq. 4 
a2 turbulent stress coefficient for the surge, Eq. 9 

a3 mass flux coefficient to the surge, Eq. 10 
Cd drag coefficient of surge particles 
cv volumetric concentration of particles 
g gravity 
hd flow thickness 
hs surge thickness 
t time 
T = [Tx, Ty] total resisting stress for the flow 
R = [Rx, Ry] total resisting stress for the surge 
u = [ux, uy] flow velocity 
v = [vx, vy] surge velocity 
wsed  settling velocity of surge particles 
x x-direction along the slope 
y y-direction along the slope
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Figure S1. Emplacement of a surge for a surge density twice that of Fig. 5c-e: (a) t=30 s, 
(b) 45 s and (c) at rest (150 s). mix = 20 kg/m3. 
 

Movie S2. Movie of the simulation presented in Fig. 4. Effect of the topographic slope on the 
area covered by pyroclastic surges. 
 

Movie S3. Movie of the simulation presented in Fig. 5c-e. Decoupling between the dense and 
the dilute flow. 
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