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A very substantial progress has been made in our understanding of infectious diseases
caused by invasive bacteria. Under their planktonic forms, bacteria transiently reside
in the otherwise sterile mammal body tissues, as the physiological inflammation
insures both their clearance and repair of any tissue damage. Yet, the bacteria
prone to experience planktonic to biofilm developmental transition still need to
be studied. Of note, sessile bacteria not only persist but also concur preventing
the effectors and regulators of the physiological inflammation to operate. Thus, it
is urgent to design biologically sound experimental approaches aimed to extract,
at the earliest stage, immune signatures of mono-bacteria planktonic to biofilm
developmental transition in vivo and ex vivo. Indeed, the transition is often the first
event to which succeeds the “chronicization” process whereby classical bacteria-
targeting therapies are no more efficacious. An in vivo model of micro-injection
of Staphylococcus aureus planktonic or biofilm cells in the ear pinna dermis of
laboratory transgenic mice with fluorescent immune cells is proposed. It allows
visualizing, in real time, the range of the early interactions between the S. aureus
and myeloid cell subsets- the resident macrophages and dendritic cells, the recruited
neutrophil granulocytes/polymorphonuclear neutrophils, monocytes otherwise known
to differentiate as macrophages or dendritic cells. One main objective is to extract
contrasting immune signatures of the modulation of the physiological inflammation with
respect to the two bacterial lifestyles.

Keywords: bacteria, biofilm, intravital imaging, macrophage/monocyte, mouse, polymorphonuclear neutrophil

INTRODUCTION

Most invasive bacteria display two different lifestyles: whereas the free-floating planktonic bacteria’
life style dominates, in some clinical settings, bacteria sensing hostile conditions adhere to
biotic or abiotic surfaces and form biofilms (Moormeier and Bayles, 2017). The planktonic
to biofilm/sessile lifestyle transition is associated with important metabolic changes and self-
production of proteins-lipids-exopolysaccharides-rich as well as extracellular DNA-containing
extracellular matrix (Costerton et al., 1999).
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According to the National Institutes of Health, biofilms
have an enormous impact on human medicine, accounting
for over 80% of infectious processes in otherwise sterile
tissue (s). Whereas the physiological inflammation is able to
both clear invasive planktonic bacteria and to repair tissue
damages insuring the return to tissue structural and functional
homeostasis, this physiological inflammation does not operate in
tissues experiencing sustained colonization by bacterial biofilms.
Moreover, contrasting with planktonic bacteria that are cleared
by commonly used antibiotics, provided that they do not harbor
genetic resistance determinants, the majority of bacteria within
the biofilms are resistant to these antibiotics (Lebeaux et al.,
2014).

In this review, our present understanding of the professional
phagocyte sensors of microbial agonists expected to operate
over the in vivo planktonic to biofilm lifestyle switch is briefly
introduced. Transiently invasive planktonic bacteria are usually
cleared by myeloid cells of either the neutrophil granulocyte
lineage or/and by mononuclear phagocytes. However, the
bilateral interactions engaged or not between sessile bacteria
and the myeloid cells are still poorly studied. Until now,
most experimentalists have conducted in vitro studies with
sessile bacteria, exposing them to either one or the other
myeloid cell lineage or both (Watters et al., 2016). This review
focuses on recent developments obtained in rodent models
to characterize inflammatory responses against Staphylococcus
aureus or Pseudomonas aeruginosa sessile bacteria. A new
experimental approach combining the mouse ear pinna model
and the intravital imaging approach is proposed to analyze these
innate immune responses at the dynamic level.

THE PROFESSIONAL PHAGOCYTE
SENSORS OF MICROBIAL AGONISTS
EXPECTED TO OPERATE OVER THE IN
VIVO PLANKTONIC TO BIOFILM
LIFESTYLE SWITCH

The in vivo developmental transition from planktonic to
sessile bacteria reflects a range of bilateral cross talks in the
fluctuating dynamic tissue milieu colonized by the bacteria under
study. At the earliest stage of this developmental transition,
communications between key bacterial messengers as well as
interactions between bacterial agonists and sensors displayed by
the resident and recruited myeloid cells such as the professional
phagocytes are initiated and renewed.

The Nucleotide-Based Second
Messengers
The cyclic dinucleotides (c-di-NMPs) are recognized as Microbial
Associated Molecular Patterns/MAMPs and induce a host type
I interferon immune response prolonged by IFNγ production
(Valle et al., 2013; Snyder et al., 2017). Moreover, the c-di-
NMPs play a central role in many bacterial species during the
lifestyle transition (Valle et al., 2013). Using the P. aeruginosa
model organism, Valentini and Filloux (2016) showed that the

bacteria use c-di-GMP as a checkpoint during the different steps
of biofilm development. There is indeed a direct correlation
between high levels of c-di-GMP in the bacteria and biofilm
formation, and between low levels of c-di-GMP and motility
(planktonic phenotype). The c-di-GMP second messenger is used
by Escherichia coli and Salmonella enterica serovar Typhimurium
over their planktonic to biofilm developmental transition
(Allewell, 2016; Valentini and Filloux, 2016) whereas the c-di-
AMP is used as a second messenger by other bacteria such as
S. aureus (Corrigan et al., 2011).

The Guanosine tetraphosphate (ppGpp) and pentaphosphate
(pppGpp), also called (p)ppGpp or alarmones are synthetized
when bacteria are exposed to cells such as phagocytes in
the infected tissue. Considered as bacterial signature of a so
called stringent response, these alarmones represent intracellular
signaling molecules known to participate to intracellular bacteria
survival: Geiger et al. (2012) demonstrated that the stringent
response is induced, in vitro, after S. aureus phagocytosis by
neutrophil granulocytes or polymorphonuclears (PMN). The
rapid (p)ppGpp synthesis leads to increased psm transcription
and to participation of synthetized phenol soluble modulins
(PSMs) concurring to bacteria survival after phagocytosis (Geiger
et al., 2012). Depicted as pro-inflammatory agents, the PSMs also
account for the bacteria escape from the transient intracellular
niche, followed either by bacteria survival inside the cytosol or by
lysis of the cell, all these rapid processes contributing to damages
of the S. aureus- hosting tissues (Geiger et al., 2012; Peschel and
Otto, 2013).

The Quorum Sensing Circuit and Its
Additional Regulators
Quorum sensing (QS) is a cell-to-cell signaling process that
allows bacteria to sense and process high cell densities. It
involves the synthesis, release and accumulation of signaling
molecules called auto-inducers (AIs) (Papenfort and Bassler,
2016). At high concentrations, AIs induce cellular signaling
cascades that notably control biofilm formation. The QS system
of S. aureus called accessory gene regulator (Agr) has been
extensively studied (Paharik and Horswill, 2016). With other
regulators, it constitutes a complex regulatory network that,
at any moment, either modifies AGR activity itself, or its
downstream signaling or metabolic pathways. At the early stage
of S. aureus developmental transition from planktonic to biofilm
lifestyle, the low Agr concentration allows the production of
inter-bacteria/intercellular adhesins whereas toxins’ expression is
repressed (Balasubramanian et al., 2016). Later, high levels of Agr
induce biofilm structuration and dispersion by up-regulating the
expression of the pro-inflammatory PSM molecules (Otto, 2008;
Periasamy et al., 2012; Kavanaugh and Horswill, 2016; Paharik
and Horswill, 2016). Environmental factors also modulate the
Agr function in S. aureus, with a well-described inhibitory effect
of the reactive oxygen species (ROS) produced by innate immune
cells (Kavanaugh and Horswill, 2016).

Among other regulators that interact with the agr system
at later stage of the biofilm development and maturation, the
S. aureus exoprotein (Sae) two-component system promotes
the synthesis and secretion of leucocidins and other virulence
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determinants that actively participate to S. aureus survival
after contact with PMN in vitro (Paharik and Horswill, 2016).
Sae mutants have indeed a decreased capacity to resist to
the PMN- clearing functions after contact (Yarwood and
Schlievert, 2003; Voyich et al., 2009; Paharik and Horswill,
2016).

RODENT MODELS TO STUDY
INFLAMMATORY RESPONSES TO
BIOFILMS IN VIVO

In rodent laboratory models, the most rapidly recruited cells
are phagocytes, namely the PMN. Over any local disruption
of mouse tissue homeostasis, PMN stored in the bone marrow
egress into the blood vascular bed. Through chemoattractants
and cytokines produced by tissue resident mast cells and
macrophages (Teng et al., 2017), the PMN rapidly cross
the microvessels endothelial cells, reaching the extracellular
compartment colonized by invasive bacteria. They represent the
first wave of innate immune cells to be recruited from the
blood circulation. Most often, PMN efficiently kill and degrade
invasive planktonic bacteria by using different antimicrobial
strategies: phagocytosis, production of ROS and antimicrobial
peptides, as well as cytotoxic components released from
their subcellular distinct granules. More recently, neutrophil
extracellular traps (NETs) have been observed and included
as an additional strategy (Brinkmann et al., 2004). Among
the in vivo models that allow characterization of the bilateral
interactions co-engaged by PMN and sessile bacteria, we
selected those relying on either P. aeruginosa or S. aureus
(Table 1).

Of note, the features of the biofilm-colonized devices
condition the interaction profiles: whereas in devices of hollow
type (catheter, silicon splint) bacterial biofilms are protected
from the immune cells, on solid devices (K-wire, pin), the
bacterial biofilms are directly exposed to the different waves
of immune cells. Depending on the model used, many other
parameters operate (listed in Table 1). In most models, an
intense and rapid accumulation of PMN is observed at the
proximity of the biofilms (Wagner et al., 2003; Prabhakara
et al., 2011a; Torre et al., 2015; Moser et al., 2017; Wang et al.,
2017), the PMN representing the most abundant population
of recruited cells. Using a non- invasive bioluminescence-based
approach, Bernthal et al. (2011) showed that this recruitment
is IL-1β dependent, as a 50% decrease in PMNs numbers was
observed in the bacteria colonized knee joints of IL-1β deficient
mice, as compared to wild-type mice. This PMN infiltration
is increased when diabetic mice are treated with insulin in
a bacteria-hosting wound, the latter incorporating actin and
DNA from lysed PMN, which therefore contributes to the
building of biofilms (Watters et al., 2014). Of note, a low
PMN recruitment in the target tissues (Thurlow et al., 2011;
Scherr et al., 2014; Secor et al., 2017) can be also operating:
in particular was noticed an association between the reduced
PMN recruitment and the production of Filamentous Pf1-
like bacteriophage (Pf phage) by P. aeruginosa (Secor et al.,

2017). Taken globally, whatever the experimental conditions
depicted in Table 1, there is a need to capture more
comprehensive information documenting, at least at the earliest
stages, the in vivo dynamic interactions between bacteria and
PMN.

Could mature biofilms’ matrix components protect bacteria
from activated PMN? PMN were indeed shown to be activated,
in vitro, by bacterial DNA and polysaccharides components
such as alginate, the measured outcome being an increase of
their respiratory burst (Pedersen et al., 1990; Alvarez et al.,
2006; Fuxman Bass et al., 2008; Jensen et al., 2010). In vivo,
P. aeruginosa biofilm interactions with PMN lead to up regulation
of the QS-dependent effectors such as rhamnolipids which
cause PMN lysis (Alhede et al., 2014). This shielding specific
property of rhamnolipids is described in mouse models relying
upon the intraperitoneal implant of pre-colonized silicone device
(Van Gennip et al., 2012) or on biofilm development in
the respiratory tract (Bjarnsholt et al., 2005; Jakobsen et al.,
2012). In these models, QS mutants are unable to produce
rhamnolipids and are rapidly phagocytosed and cleared by
PMN.

Monocytes/macrophages are other key actors recruited and
sensing both the other inflammatory cells -e.g., PMN -as well
as bacteria agonists. Under homeostatic conditions, circulating
macrophage/monocytes qualified as classical/intermediate ones
are continuously recruited from the blood and either mature
into macrophages or remain as monocytes within tissues
(Sprangers et al., 2016; Jakubzick et al., 2017). In the skin,
long- lived resident macrophages are also present and maintain
their population by self-renewal (Sprangers et al., 2016;
Jakubzick et al., 2017). As for PMN, microbe-specific molecules
participate to the rapid emigration of classical/intermediate
monocytes in the extravascular space which contribute to the
resolution of inflammation by recognizing and phagocytosing
bacteria and dying cells, and by producing ROS and reactive
nitrogen species (RNI) (Sprangers et al., 2016; Jakubzick
et al., 2017; Kashem et al., 2017). Once PMNs experience
apoptotic death, a second wave of monocytes qualified as
non- classical monocytes contribute to the resolution of
inflammation and repair of the disrupted tissue (Sprangers et al.,
2016).

Only a few studies (Prabhakara et al., 2011a; Thurlow et al.,
2011; Hanke et al., 2012, 2013; Scherr et al., 2015; Corrado
et al., 2016; Silva-Santana et al., 2016; see Table 1) assess
the complex recruitment waves and networks of both PMN
and monocyte subsets. Of note, an early wave of monocyte
recruitment is sometimes predominant, as compared to PMN
recruitment (Thurlow et al., 2011). Two main studies were
conducted to monitor the abundance and functional features of
monocyte/macrophage recruitment in vivo at specific time points
after contact with biofilms. The biofilms’ matrix components
clearly modulate the functional properties of recruited cells. In a
S. aureus pre-colonized catheter-based model, mobilized cells are
mainly distant from the catheter and a non-significant proportion
of F4/80+ macrophages are able to invade the biofilms. Cells
present deeply into the biofilm rapidly die, therefore preventing
phagocytosis of biofilm bacteria to be otherwise exerted by
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macrophages (Thurlow et al., 2011). A significant reduction of
pro-inflammatory cytokines (IL-1β, TNF. . .) and chemokines
(CXCL2, CCL2) production at the boundary of the biofilm-
colonized tissue is also observed, associated with a reduced Nitric
Oxide synthase (iNOS) induction and an increased arginase-1
expression. The authors conclude to a macrophage polarization
toward a counter-inflammatory activated M2 phenotype and
to fibrosis with MyD88- signaling as a major effector pathway
regulating these two phenomena (Thurlow et al., 2011; Hanke
and Kielian, 2012; Hanke et al., 2012). In a lung experiencing
colonization with phage Pf- producing P. aeruginosa, Secor
et al. (2017) also documented a M2 polarization profile. Taken
globally, it appears that the macrophage M2 polarization and
fibrosis do concur prolonging bacteria biofilm persistence,
although the universal character of such responses remains to be
assessed.

THE MOUSE EAR PINNA DERMIS
IMAGED BY INTRA-VITAL CONFOCAL
MICROSCOPY AT STEADY AND NOT
STEADY STATE

Intra-vital microscopy is increasingly used in different
biomedical research fields to study dynamic processes at
the cellular level in their specific tissue environment. Compared
to classical methods such as ex vivo histology or flow cytometry,
intra-vital confocal microscopy live imaging allows dynamic
interactions to be captured once fluorescent reporters are
expressed by both the microbes and the laboratory mouse cell
lineages with which are engaged, more or less durably, dynamic
interactions.

Several skin-related models were described in the literature
to study the immunobiology of biofilm infections by using
classical approaches (Table 1). In these models, the biofilm-
loaded cutaneous sites were the back or the flank of animals,
which represent unsuitable sites for intravital microscopy of
cutaneous innate immune responses.

The ear pinnae is one of the most studied appendage in which
are delivered microorganisms, enabling the observation of the
early and either transient or prolonged dynamic interactions
with resident or recruited myeloid cells (Amino et al., 2006,
2007; Peters et al., 2008; Ng et al., 2011; Sumaria et al., 2011;
Jain and Weninger, 2013; Tavares et al., 2013; Carneiro et al.,
2017). As an imaging site, the ear presents several technical
advantages such as the accessibility of the tissue, easy and
fast protocols of preparation to perform imaging experiments
and obtain reproducible results, and the possibility of imaging
for long periods of time in blocks of 20–40 min (Li et al.,
2012).

The mouse ear pinna appendage harbors a thin epidermis
and an underlying dermis, respectively avascularized and highly
vascularized, which contain a broad range of lympho-myeloid
cells (Jain and Weninger, 2013). Using a multiphoton microscopy
approach and quantitative flow cytometry, Tong et al. (2015)
elaborated a 3D immune cell atlas of mouse skin and compared

the ear pinnae, dorsal back, footpad, and tail skin. Langerhans
cells and dendritic epidermal T cells are present in the
epidermis, whereas the dermis mainly harbors in the upper
dermis myeloid cells such as dendritic cells, mast cells as well
as lymphoid cells (αβT cells, γδT cells, and group 2 Innate
Lymphoid Cells), and mainly resident macrophages in the
deeper dermis (Tay et al., 2014; Tong et al., 2015). All these
dermis-located immune cells are included in a collagen- and
elastin- rich and more or less hyaluronan- rich extracellular
matrix. In term of cell numbers, the specificities of the ear
pinna cutaneous site are the following ones: the total leukocyte
density is high, with around 4800 cells per mm2 and a
majority of cells present in the dermis. Macrophages, dermal
dendritic cells and mast cells represent the majority of ear
dermal leukocytes with respectively around 6000 macrophages
per mm3 and more than 2000 dermal dendritic cells and
mast cells per mm3 (Tong et al., 2015). Of note, the ear
pinna dermis presents two specificities regarding the presence
of mast cells: their high prevalence and their perivascular
localization, in close association to blood vessels, in contrast to
dermal dendritic cells (Tong et al., 2015). By using intravital
multi-photon microscopy, Ng et al. (2011) showed that PMNs
are present in the ear dermis of naive mice, but in small
numbers, and patrol, as do dermal dendritic cells. Both cell
lineages are likely surveying the presence of either epidermis-
restricted microbiota derived agonists that reach the dermis
or endogenous agonists through the sensors displayed at the
plasma membrane or within the macropinocytosis/endosomal
machinery.

THE MOUSE EAR SKIN MODEL TO
STUDY THE DYNAMICS OF INNATE
IMMUNE RESPONSES AGAINST
PLANKTONIC OR SESSILE
Staphylococcus aureus

By combining intra-vital confocal microscopy approach and
the mouse ear pinna infection model, inflammatory responses
against biofilms could be analyzed for the first time at the
dynamic level in the tissue environment. The Figure 1 shows
the schematic workflow of methods proposed to characterize
and compare the innate immune responses against S. aureus
planktonic and sessile bacteria. Transgenic mice with fluorescent
immune cells visible in the skin such as Lysozyme-EGFP
(circulating PMNs and monocytes, dermal macrophages),
CD11c-EYFP (dermal dendritic cells, epidermal langherans cells)
and Mcpt5-Cre+R26Y+ (dermal mast cells) mouse strains have
been selected (Faust et al., 2000; Lindquist et al., 2004; Dudeck
et al., 2011). The conditions to prepare bacteria inoculum will
be set up. The planktonic inoculum will be obtained from
an overnight culture of fluorescent S. aureus Lyo-S2 strain in
Trypticase Soja broth (Marquès et al., 2015). Biofilms will be
generated from a planktonic culture incubated at 37◦C under
static conditions. After 24 h of incubation, biofilms will be gently
collected (A). The first series of experiments will be performed
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FIGURE 1 | The three steps’ workflow proposed for extracting, post either Staphylococcus aureus planktonic or biofilm delivery, specific immune signatures
displayed by mouse myeloid cells. (A) Inoculum preparation in vitro. (B) Inoculum micro-injection in the ear pinna of mouse (107 UFC of either planktonic or sessile
bacteria). (C1a) Real time imaging of the ear pinna of a LysM-EGFP transgenic mouse harboring fluorescent phagocytes and fluorescent S. aureus bacteria by
confocal microscopy. (C1b) Massive recruitment of GFP+ cells post-injection in the upper dermis of the ear pinna of a mouse inoculated with S. aureus sessile or
planktonic bacteria. (C2), (C3), (C4) Quantitative analyses in the ear pinna and the auricular lymph node to determine (C2) the phenotype of recruited cells, (C3) the
cytokine levels and (C4) the bacteria counts.

with Lysozyme-EGFP mice inoculated into the ear tissue with
the same number of CFU of either planktonic or sessile bacteria
(B). Inoculum will be micro-injected in two injection points
in the dermis of the ear pinna tissue with a nanofil syringe
(Mac-Daniel et al., 2016). At early time-points, mice will be
anesthetized and the cellular recruitment will be analyzed by
confocal microscopy at the injection points (C1a and C1b). The
behavior of recruited or resident innate immune cells (moving
speed, trajectory, distance covered) will be analyzed, as well as
their specific interactions with bacteria. In parallel, additional
groups of mice will be inoculated with planktonic or biofilm
bacteria to perform quantitative analyzes over 14 days in the
ear tissue and the cutaneous draining lymph node (auricular
lymph node), i.e., determination of the phenotype of recruited

cells (C2), of the cytokine levels (C3), and counting of bacteria in
the target tissues (C4). The inflammation visible to the eye and
macroscopic cutaneous lesions (skin necrosis) will be observed
and compared.

CONCLUSION

The objective of the review was to highlight the requirement
of developing new in vivo models to analyze, at the early stage
of infection, the dynamics of innate immune responses against
S. aureus planktonic or sessile bacteria. A new experimental
approach in the field combining the mouse ear pinna model
and the intravital imaging approach is proposed. The long term
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objectives are to use this model as a pre-clinical model to test
necessary new therapeutic approaches targeting the host immune
system, as proposed initially by Hanke et al. (2013).
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