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Abstract

Tactile sensing is an essential element of autonomous dexterous robot hand manipulation. It provides information about
forces of interaction and surface properties at points of contact between the robot fingers and the objects. Recent
advancements in robot tactile sensing led to development of many computational techniques that exploit this important
sensory channel. This paper reviews current state-of-the-art of manipulation and grasping applications that involve
artificial sense of touch and discusses pros and cons of each technique. The main issues of artificial tactile sensing are
addressed. General requirements of a tactile sensor are briefly discussed and the main transduction technologies are
analyzed. Twenty eight various tactile sensors, each integrated into a robot hand, are classified in accordance with their
transduction types and applications. Previously issued reviews are focused on hardware part of tactile sensors, whereas
we present an overview of algorithms and tactile feedback-based control systems that exploit signals from the sensors.
The applications of these algorithms include grasp stability estimation, tactile object recognition, tactile servoing and
force control. Drawing from advancements in tactile sensing technology and taking into consideration its drawbacks,

this paper outlines possible new directions of research in dexterous manipulation.
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1. Introduction

Autonomous dexterous manipulation, also known as
in-hand object manipulation, is one of the much-desired
key skills of industrial and social robots [1]. The develop-
ment of autonomous dexterous robotic systems is a com-
plex process of an interdisciplinary nature involving such
diverse research fields as computer vision, force control,
motion planning, grasping, sensor fusion, digital signal
processing, human-robot interaction, learning and tactile
sensing [2]. In this paper we address the issue of tactile
sensing reviewing the current state-of-the-art tactile sen-
sors and their applications in dexterous robot hands.

During the last decades, industrial robots have replaced
humans in heavy, repetitive or/and unsafe manufacturing
tasks [3]. The car, consumer electronics, and aerospace
industries, to name only a few, have used pre-programmed
robotic manipulators equipped with simple two-finger grip-
pers in large scale production lines. Nevertheless, current
manufacturing demands dictate a need for lower volume
assembly of more customizable and variable products, re-
quiring robots with higher adaptability, easy reconfigura-
bility in software and hardware, more flexibility and more
manipulation capabilities [4]. This need can be met by re-
placing grippers with multi-fingered dexterous robot hands
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that are able to grasp very different objects and even ma-
nipulate them with the use of fingers [1]. Dexterous robot
hands are also essential in the new generation social and
service robots which can replace humans in daily routines
[5], and provide assistance to the elderly and the disabled.
The incursion of robotics in domestic life presents new
challenges to robotic design. Unlike industrial environ-
ments domestic spaces are typically unstructured which
means that perception needs to be added to the robots’
control strategies.

Among perception modalities, tactile sensing plays an
important role in physical interactions, especially with hu-
man beings. Neuroscience has long demonstrated the im-
portance of tactile feedback in human manipulation. Dif-
ferent studies have shown that people with anesthetized
fingertips are unable to maintain a stable grasp [6], and
children with deficient tactile sensing have difficulties in
performing manipulation tasks [7]. Tactile sensors provide
robots with information about physical contact, whereby
autonomous robot hands can operate in unstructured en-
vironments and manipulate unknown objects [8]. At the
same time, the availability of sensory information to the
robot ensures its safe operation in direct human-robot in-
teraction applications.

In traditional industrial approaches control of robot
end-effectors is achieved by embedding prior knowledge
about articulated object and environment into the con-
trol algorithm. Robot hands are thus able to manipulate
only known objects and work in a structured environment,
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which means they are less adaptive to unexpected events.
To overcome these limitations, an approach based on ac-
tive exploration, which relies on data from tactile sensors,
can be implemented to let robot hands explore objects and
run control actions when unexpected events occur. Only
a few approaches use tactile feedback inside autonomous
control schemes [8].

Artificial tactile sensors in robotic applications are rep-
resented by pressure profile sensing arrays, force-torque
sensors, and dynamic tactile sensors [9]. Information ac-
quired from artificial sensing systems can be used for find-
ing contact locations, reconstructing and recognizing ob-
ject shape, and measuring contact forces and temperature.

Even though tactile sensory information is an essen-
tial element in the process of manipulation, technology
and research in artificial tactile sensing is not developed
as well as other perception modalities [10]. Promising new
technological advances in tactile sensors based on micro-
electromechanical systems [11] and organic transistors [12],
have not been applied yet to robotic devices.

Currently research is focused on developing new tactile
skins, covering robot hands with tactile sensors and inves-
tigating new algorithms and approaches for using tactile
information in autonomous manipulation. New techniques
that use tactile sensing information include object recog-
nition and exploration, grasp stability estimation, force
control, tactile servoing and slip detection.

This paper presents a thorough review of the most re-
cent advances in robotic tactile sensing. Previous review
articles have mostly concentrated in tactile hardware deal-
ing with tactile sensing technologies for robot hands [13],
for minimal invasive surgery [14], for biomedical applica-
tions [15], slip detection in hand prostheses [16], robotic
tactile skins [17] and large area tactile skins [18]. This
paper will review the techniques for handling tactile data
in robotic manipulation applications covering approaches
and applications of tactile sensors in the control of multi-
fingered robotic hands. The paper is organized as follows:
Tactile sensing technologies are given in Section 2. Inte-
gration of the sensors with robot hands and tactile data
acquisition are reviewed in Section 3. This is followed by
a survey of computational techniques that use tactile in-
formation to control the robot hands. These techniques
include grasp stability estimation 4.1, object recognition
4.2, force control 4.4 and tactile servoing 4.3. A summary
of the conclusions appear in Section 5.

2. Tactile Sensing Technologies

Information about interaction properties can be ac-
quired from proprioceptive (intrinsic) sensors, such as joint
angle sensors with actuator torque sensors, and cutaneous
(extrinsic) tactile sensors [17]. Even though, intrinsic sen-
sors can give approximate information about interaction
force as shown elsewhere [2], extrinsic tactile sensors give
much more precise and multi-modal information about in-
teraction properties [19]. Thus, tactile sensors can be de-

fined as a tool that can evaluate a given property of an
object through physical contact between the hand and the
object [20]. When a tactile sensor is represented by an
array, each sensing element of the sensor is referred dif-
ferently in robotics literature, e.g. sensing cell, taxel or
tactel.

Tactile sensors meet the following task-related require-
ments of in-hand manipulation [10]:

1) Response. In collision avoidance [21] and human-robot
interaction tasks, tactile sensors must provide information
about the presence of contact and measure the strength of
contact force, respectively.

2) Exploration. During exploration, tactile sensors should
provide information about: surface properties from mea-
surements of a texture, hardness, and temperature [22];
structural properties from shape [23]; and functional prop-
erties from detection of contacts and vibrations [24].

3) Manipulation. In autonomous manipulation tasks, tac-
tile data is used as a control parameter in: slip detection;
estimation of grasp stability[25]; contact point estimation,
surface normal and curvature measurement [26]; tangen-
tial and normal forces measurements for achieving stable
grasps [27]; and contact force measurements for fingertip
force control [28].

Depending on the task, the sensor has different design
specifications, which were first determined by Harmon [29].
The basic design criteria for tactile sensors have been pre-
viously reported in [17] for humanoid robots, in [15] for
biomedical engineering, in [16] for prosthetic hands, and in
[18] for manufacturing and large tactile system implemen-
tation. In autonomous manipulation applications, tactile
sensors meet requirements for object characterization and
identification (e.g. they estimate the compliance, thermal
and textural properties) and for manipulation (e.g. they
control the force applied to the object) [19].

The most important design criteria for tactile sensors
with application in manipulation tasks are summarized in
Table 1 and discussed in following:

1) Requirements on spatial resolution of a tactile
sensing array depends on both the size of the objects to
be recognized and the location of the sensor on a robot
hand. A rather high spatial resolution is desirable in in-
hand object manipulation [30] or tactile servoing [31] tasks,
whereas in the cases when high sensitivity or high fre-
quency response are desirable, e.g. reactive force control
[32], the spatial resolution is limited by for the following
reasons. A higher spatial resolution unavoidably leads to
a longer acquisition time [33], a larger number of wire con-
nections and a stronger sensitivity to external electromag-
netic noises. The first two consequences are straightfor-
ward, high resolution requires a large number of sensing
cells, which in turn causes longer processing time. These
sensing cells also require more wire connections. The high-
est limit of sensitivity is given by the minimum detectable
variation of the measured signal. As sensing cells become
smaller the sensitivity to external electro-magnetic noises
and crosstalk increases. Thus, the sensitivity degrades be-



cause the level of noise can become comparable with the
signal. By considering these pros and cons, the require-
ments on spatial resolution can vary for different parts of
a robot hand. It was previously investigated that the res-
olution on the fingertips should be as high as 1mm since
the fingertips are mostly involved in fine manipulation [29].
In the current state of the art, fingertip tactile sensors
integrated with robot hands have a spatial resolution of
around 5mm [34], [35]. On less sensitive parts of a robot
hand like the palm, the spatial resolution decreases up to
5mm as stated in [17]. Requirements for spatial resolu-
tion can be omitted when only slippage is of importance,
e.g. automatic grasping using vibrations to achieve stable
grasp [32] and slip-detection with center-of-pressure tactile
sensor [36].

2) Sensitivity in the tactile sensors is given by the
smallest detectable variation in pressure/force. A small
detectable variation means a high sensitivity. High sensi-
tivity is very important in manipulation tasks with fragile
and deformable objects as in [37] or [38]. However, the
range from the minimum to maximum detectable pres-
sure/force, i.e. dynamic range, shrinks with the increase
of the sensitivity of a tactile sensor, which is caused by the
technology used in the structure of the current sensors. An
area of sensing cells the sensor also causes contradiction
between sensitivity and spatial resolution as was discussed
above.

Dahiya et al. [17] impose following requirements. The
sensitivity on the fingertips should be not less than 1mMN,
while a dynamic range of 1000 : 1 is desirable.

3) Requirements for frequency response highly de-
pend on the application. In general, tactile sensors can
be dynamic or static [9]. If the hand is required to detect
vibrations during slippage, the frequency response should
be as high as the vibration frequencies occurring during
a slippage [16], [32], [38], [39]. In human hands, the de-
tectable vibration frequencies vary from 5H z to 50H z and
from 40Hz to 400H z for different afferents [6]. Thus the
frequency response of a dynamic tactile sensor should be
at least 400H z, i.e. the sampling rate must be at least
800H z according to Nyquist—Shannon sampling theorem.
When only spatial resolution is of importance (e.g. tac-
tile object recognition [40]), then the frequency response
is not restricted by the response time. On the contrary,
when measurements of vibrations are used to prevent a
slippage [41], to detect a contact of a grasped object with
an environment [38] or to recognize a texture of a surface
[22], then the response time of a sensor becomes crucial.
The frequency response (bandwidth) is limited by the soft-
ness (elasticity) of a tactile sensor. The use of soft materi-
als, that are used to increase surface friction, causes phase
delay in propagation of the waves of the mechanical vibra-
tions that occur at the point of contact.

4) Hysteresis and memory effect ideally should be as low
as possible. Tactile sensing arrays incorporating flexible
foam in their structure it unavoidably leads to an elas-
tic behavior of the sensors. Once the sensor is pressed

and released, the flexible foam first compresses and then
regains its form but not immediately (hysteresis effect)
and sometimes not to the previous shape (memory effect).
Moreover, the sensor could be covered by a soft material,
e.g. silicon rubber as in [42]. The advantage of using flex-
ible materials is the increase of a contact friction. How-
ever, sensitivity and frequency response of a sensor may
degrade with the increase of flexibility. Though, reading
devices can have high sampling rate, a sensor may have
significant hysteresis, which reduces dynamic response [9].
The memory effect could be avoided by use of a thinner
foam, which in turn decreases the dynamic range, since
the maximum charge (in capacitive sensors) that can be
stored is proportional to the thickness of the foam. This
maximum charge represents the largest detectable force.

5) Wiring of tactile sensors should not affect the workspace

of robot hands [18]. Integration of a high number of tactile
sensors in the robot hand is challenging due to wiring con-
straints. As an example, in [43] a multimodal tactile sensor
is installed as a complete fingertip with bulky backside in-
stead of distal and middle phalanges. Shielding and smart
wiring should guarantee minimum sensitivity to noise and
minimum tactile cross-talk. Use of serial communication
protocol decreases the number of connection wires as in
iCub skin [44], but it increases the sampling rate.

6) A sensor itself should be flexible so it can be at-
tached to any type of robot hand [44], unless the sensor is
designed as a complete part of a robot hand, as for example
the 3D-shaped tactile sensing fingertip in [34].

7) Surface properties of tactile sensors, such as me-
chanical compliance and surface friction coefficient should
fit to various manipulation tasks. Elastic material with
given friction coefficient and compliance can cover tactile
sensors. If the contact sensing surface has very low friction,
then the hand must apply high normal forces to keep the
object stable, which can lead to breaking the object [34].
However, the low friction of the sensor surface is needed
in tactile exploration procedures [31].

8) A robust sensor design should guarantee that the
sensor can withstand highly repetitive usage without its
performance being affected. The sensor should endure nor-
mal as well as lateral forces.

2.1. Tuctile sensor types

Change of capacitance, resistance, optical distribution,
electrical charge can be used in the sensing systems [45],
[46].In the robotics literature, these different ways to con-
struct the sensing systems are referred as transduction of
contact information [10]. And the types of tactile sensors
vary depending on the transduction.

In the following we describe the basic types of tactile
sensors and their transduction methods. The advantages
and disadvantages of each sensor type are given in Table
2.



Table 1: Design criteria: pros and cons.

Criteria pros

cons Application

A smaller objects can be recognized

1gh spatial || § features with a higher precision

A smaller sensitivity and a longer

Contact pattern
recognition, fine

resolution can be extracted. processing time. manipulation.
Dynamic range of the sensor Light touch
High Detection of a rather small change yus & . detection and
oo shrinks, spatial resolutions . .
sensitivity of a contact force. fragile object
decreases. . .
manipulation.
High A rather fast response to the . . . Detection of a slip
. Spatial resolution and dynamic
frequency changes in the level of the contact and texture
range decrease o
response force recognition.
, Detection of a slip
Low . Degrease of the sensor’s surface
. High frequency response e . and texture
hysteresis friction and dynamic range. .
recognition.
Low nu'mber The workspace of robot hands does Decr.ease of the fl'requen'cy response Dexterous
of wire (in case of using serial data . .
. not change. L2 manipulation
connections communication).
Imped tactile exploration
High surface Insuring stable grasp without procedure. Reduces the frequency Grasping

friction applying high forces.

response of the sensor (in case of

using soft paddings).

2.1.1. Piezoresistive sensors

The piezoresistive effect is a physical process during
which electrical resistance changes when the material is
mechanically deformed (Figure 1(a)) [45]. Materials pos-
sessing this effect are called piezoresistors [51].

There are several technologies for artificial tactile sens-
ing based on piezoresistive materials: Force Sensing Resis-
tors (FSR), pressure-sensitive conductive rubber, piezore-
sistive foam, and piezoresistive fabric.The simplest way
to incorporate tactile sensing via discrete components is
by using FSRs [9] and they are widely used in position-
ing devices such as joysticks [52]. Piezoresistive rubber
is a composite material made by mixing non-conductive
elastomer with homogeneously distributed electrically con-
ductive carbon particles [53], [47]. Figure 1(b) shows the
structure of conductive rubber at nano-scale level [48].
Sensors based on conductive rubber with multilayer struc-
tures as in [49], [39], [35], [54] (Figure 1(c), 1(d)) may suf-
fer from delamination of top layers. This can be avoided
by using a single layer of the conductive rubber with a
stitched array of wires in orthogonal orientations as in
[65]. Another method of designing tactile sensing arrays
using the conductive rubbers incorporates a non-flexible
pattern of the electrodes on one layer and piezoresistive
rubber on a second layer (Figure 1(e) [34]. Some of the
sensors and components are commercially available from
Interlink [56] and the Tekscan [57] (FSRs), Weiss Robotics
[58] (rigid tactile sensors based on carbon enriched sili-
cone rubber), Inaraba [59| (pressure conductive rubber),
Eeonyx [60] (piezoresistive fabric), ATi industrial automa-

tion [61] (Force/Torque sensors).

It is worth mentioning that currently developed tac-
tile sensors based on pressure sensitive rubber and organic
transistors, such as the ones used in the bionic skin [62],
are exceptionally thin and highly flexible. Conductive rub-
bers used in piezoresistive sensors have a nonlinear force-
resistance characteristic (please refer to sensor calibration
plot in [31]). As a consequence of using elastic materi-
als, the sensors have severe hysteresis. The sensitivity in
the piezoresistive sensors may decrease due to wearing and
tearing off, since the resistance of the conductive rubber
does not depend on deformation only but also on thick-
ness. Moreover, materials used in the piezoresistive sen-
sors could change their properties due to variation of the
temperature and moistness [45].

Piezoresistors also suffer from lower repeatability:after
multiple deformations, an elastic material may never re-
gain its initial form. Some of the piezoresistive sensing
arrays are also fragile to shear forces, e.g. Weiss tactile
sensors [58]. In spite of these drawbacks, a number of
robot hands incorporate piezoresistive tactile sensing ar-
rays, since the sensors are relatively simple to manufac-
ture, can be flexible and many commercial solutions exist.
Compared to capacitive sensors that will be discussed in
the next section, the piezoresistive sensors are more robust
(not completely) to electro-magnetic noises.

2.1.2. Capacitive sensors
Capacitive sensors consist of two conductive plates (Fig-
ure 2(a)) separated by a compressible dielectric material
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Piezoresistive Tactile Sensor Arrays: (a) illustration of resistance changes in conductive rubber [47],(b) nano-scale image of

conductive rubber [48], (c) structure of piezoresistive tactile array [49], (d) piezoresistive fabric tactile sensor [50], (e) schematic of electrode
layer of the 3D-shaped tactile sensor [34], (f) tactile image of a piezo-resistive pressure sensor array [35].

(Figure 2(b)). When the gap between plates changes un-
der the applied forces, the capacitance is also changed.
Besides normal forces, the shear forces can be calculated
by the sensor with the use of embedded multiple capaci-
tors [63]. Pressure sensing arrays can be constructed by
overlapping row and column electrodes isolated from each
other by elastic dielectric [33]. Sensitivity to small forces
can be achieved by using more compressible elastic mate-
rials or thin sensors. As a flexible foam between two plates
gets thinner than a smaller charge in the sensor could be
measured that is in turn means a higher sensitivity.

Capacitive technology is very popular among the sens-
ing transducers and it has been widely used in robotic
applications [17]: for example, in tactile the skin (Figure
2(c)) for the iCub humanoid robot [44], in the PR2 robot
grippers [38], with the multifingered "Allegro" robot hand
[64], and with the Robotiq robot gripper [65].

There are commercial capacitive pressure sensing ar-
rays such as "DigiTacts" from Pressure Profile Systems
(PPS) [66] and capacitance-to-digital-converter (CDC) chips
such as "AD7147" from Analog Devices [67].

The major disadvantages of capacitive sensors are sus-
ceptibility to electro-magnetic noise, sensitivity to temper-
ature, non-linear response (please refer to the plot with
response of excited taxel in [68]), and hysteresis. Their
advantages include a higher frequency response relatively
to piezoresistive sensors. Since capacitive technologies are
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Figure 2: Capacitive Tactile Sensing Technology: (a) capacitance of
a parallel plate capacitor depends on distance between plates d and
area of the plates A (g is the stored charge) [45]; (b) two conductive
plates are separated by an elastic dielectric — as force is applied, the
distance between the plates reduces, changing the capacitance [9]; (¢c)
mesh of triangle shape capacitive sensors for the palm of the iCub
humanoid robot [44].

used in every day life applications, as for example touch
screens, this type of tactile sensing have been well investi-
gated and used in robotics and especially in robot hands.

2.1.3. Piezoelectric sensors

The piezoelectric effect (Figure 3(a)) is described as
electrical charge generation in the crystalline material due
to deformation caused by applied force/pressure [45]. The
piezoelectric effect is produced in quartz crystals, as well as
in human-made ceramics and polymers, such as polyvinyli-
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Figure 3: Piezoelectric Tactile Sensing: (a) the piezoelectric effect —
an applied force causes rearrangement of positive Si and negative O2
particles leading to an increase of potential [45]; (b) a tactile sensing
array based on the piezoelectric effect with electrodes on the bottom
layer, piezolectric material in the middle and rubber on the top [24],
(¢) schematic model of a piezoelectric sensing tactel [71].

dene fluoride (PVDF) [69]. A piezoelectric tactile sensor
can be created with the PVDF film strips embedded into a
rubber material. Piezoelectric materials, being restricted
for dynamic measurements and used in ultrasonic-based
sensors, are suitable for dynamic tactile sensing [17], [33].
Among other piezoelectric materials, PVDF polymer has
features such as flexibility and chemical stability, which
makes it preferable for use in touch sensors. Seminara et
al. [69] conducted research on PVDF electro-mechanical
design of tactile sensors with frequency range of 1 Hz
to 1 kHz. Goger et al. [24] developed a combined dy-
namic /static tactile sensor (Figure 3(b)) based on PVDF
polymer and piezoresistive foam from Weiss Robotics for
a fluidic robot hand [70]. Chuang et al. [71] developed
a flexible tactile sensor based on piezoelectric film with
structural electrodes for grasping an object of unknown
weight (Figure 3(c)).

Piezoelectric materials have high bandwidth up to 7k H z
as reported in [24]. These materials have faster dynamic
response than capacitive sensors. Their disadvantages in-
clude fragility of electrical junctions, temperature sensitiv-
ity [52] and they are suitable for dynamic measurements
only.

2.1.4. Quantum Tunnel Effect Sensors

Quantum Tunnel Composite (QTC) sensors can change
their properties from insulators to conductors under com-
pression [17]. QTC sensors are more technologically ad-
vanced compared to piezoresistive and capacitive sensors.
The metal particles in QTC get so close to each other that
quantum tunneling (of electrons) takes place between the
particles. Using QTC material, Zhang et al. 2013 [72]
(Figure 4) developed a flexible tactile sensor for an an-
thropomorphic artificial hand with capability of measur-
ing shear and normal forces. The sensor has sensitivities
of 0.45mV/mN in x- and y-directions and of 0.16mV/mN
in z-directions, and dynamic ranges up to 8N in z- and
y-directions and 20N in x-direction. QTC-based tactile
sensors [73] were integrated with previous versions of the
Shadow robot hand [74] and used in the tactile glove for
the Robonaut hand [75]. The sensors have linear response
(please refer to sensor outputs w.r.t normal force in [72])

(b)

Figure 4: Quantum Effect Tactile Sensing: (a) structure of a tactel
of the QTC based tactile sensing array with capability of measuring
shear and normal forces [72]; (b) the flexible tactile sensing array for
a finger of an anthropomorphic robot hand with the tactels that can
measure shear forces [72].

and a dynamic range starting from 0 to 22N which out-
perform the piezoresistive sensor with a maximum force of
5 N [31] in terms of the dynamic range. These sensors suf-
fer from wear and tear of and, therefore, their sensitivity
decreases as in the case of the piezoresistive sensors. To
the best of our knowledge, for the tactile sensing materi-
als within this category, there are no commercial products
that are designed for use with robot hands.

2.1.5. Optical sensors

Optical sensing is based on optical reflection between
mediums with different refractive indices. Conventional
optical tactile sensors consist of an array of infrared light-
emitting diodes (LEDs) and photo detectors (Figure 5(a)).
The intensity of the light is proportional to the magnitude
of the pressure [45]. Optical sensors can also be made
sensitive to shear forces, e.g. Yussof et al. [37] devel-
oped an optical three-axis tactile sensor for the fingertips
of a two-fingered hand (Figure 5(b)). The sensor consists
of 41 sensing elements made from silicon rubber, a light
source, an optical fiber-scope, and a current charged cou-
pled device (CCD) camera. With the optical tactile sen-
sor, the hand is capable of manipulating a light paper box
(Figure 5(c)). Kampmann et al. [76] embedded fiber op-
tic sensors to a multi-modal tactile measuring system of
a three-fingered robot gripper (Figure 7(d)). Xie et al.
developed a flat 3x3 optical tactile sensor array (Figure
5(d)) with elements of the sensor that are magnetic reso-
nance compatible for use in Magnetic Resonance Imaging
[77]. Johnson et al. [78] proposed a novel "GelSight" tac-
tile sensor to capture surface textures using an elastomer
coated with a reflective membrane and a camera with res-
olution of up to 2 microns. (Figure 5(e)). A fingertip with
a "GelSight" (Figure 5(f)) tactile sensor can measure the
surface roughness and texture, the pressure distribution,
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Figure 5: Optical Tactile Sensors: (a) an optical tactile transducer
based on the principle of frustrated total internal reflection [45], (b)
a structure of optical three-axis tactile sensor: a displacement of a
sensing element fixed on flexible finger surface causes changes in light
propagation in opto-fibers [37], (c) fingers with the sensitive optical
sensors manipulating a light paper box [37], (d) photo of an optical 3
x 3 tactile array with magnetic field compatibility [77], (e) "GelSight"
optical sensor consisting of a piece of clear elastomer coated with a
reflective membrane senses the shape of the cookie surface [79], (f)
finger configurations of the "GelSight" sensor [79].

and even a slip [79]. Another example of an optical tactile
sensor with transparent elastomer material is presented in
[80], where an LED and a photo-diode distant from each
other are placed against a reflecting (contact) planar sur-
face. When surface deforms it causes changes in reflected
beams. Similar concept is used in the OptoForce sensors
[81]. These sensors are based on the use of infrared light to
detect deformation of the contact surface, which in turn
transforms to force. The forces in three dimensions are
estimated from measurements of four photo-diodes that
surround one infrared source. The reflecting surface has a
semi-spherical shape.

Sensors within this category have good spatial reso-
lution, sensitivity, high repeatability and immunity from
electro-magnetic interference [15]. The disadvantages of
these tactile sensors are their relatively big size, high-
power consumption and high computational costs [10].

2.1.6. Sensors based on barometric measurements
Tactile sensors within this group use pressure trans-
ducers that have been long used for measuring the pres-
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Figure 6: Sensors based on barometric measurements: (a) the struc-
ture of a tactile sensing cell with a barometer and silicon rubber (b),
the TakkStrip tactile array of these cells [87], (c) custom shaped
array of the pressure sensing barometers of the iHY hand [42], (d)
micro-vibration sensing system based on a fluid pressure sensor of
the BioTac tactile sensor [83].

sure in liquids and air [45]. Use of liquid inside a tac-
tile sensor allows getting high frequency response and de-
formability of the sensor at the same time. A liquid is
used as propagation media for vibrations, which are rep-
resented by changes in pressure value. This approach
takes advantage of the conventional pressure sensors, as
for example the digital barometer [82]. Wettels et al. [19]
introduced the sensing system that incorporates electro-
conductive fluid to produce both constant and dynamic
signals (Figure 6(d)). Micro-vibrations, caused by either
motion over textured surface or slippage at any contact
point, propagate as sound waves through the liquid media
to a pressure transducer [83]. The bandwidth of the sen-
sor is 1 kHz, which makes the sensing system well suitable
for slip detection applications. The sensor is embedded
in the multi-modal biomimetic ®BioTac fingertip sensor
from SynTouch LLC [84].

In [85], no liquid is used as a propagation media, a
barometer is instead molded within a silicon rubber in each
tactel. The rubber acts as a membrane (Figure 6(a)) .
Once the rubber is deformed due to the contact with an
environment, it causes changes in the pressure values of
the barometer. Using the same digital barometer, Odhner
et al. [42] developed a tactile sensor array (Figure 6(c))
with a spatial resolution of around (3 — 5mm), sensitivity
1mN, and dynamic range up to 4.9N for a three-fingered
robot hand [42].

Sensors involving liquid and barometers have high fre-
quency response [86]. Sensors with silicon rubber and
barometer are low-cost, but has low frequency response
[85] as a result of the elasticity of the silicon rubber. Hence,
the use of a liquid as a propagation media is more suitable
when frequency response is of importance.



2.1.7. Multi-modal Tactile Sensors

To match the human hand’s different types of tac-
tile sensing modalities (thermal, fast adapting and slow
adapting afferents) [6] as close as possible, a robot hand
should be equipped with multi-modal tactile sensors. Cur-
rent multi-modal tactile sensing systems incorporate static
pressure distribution arrays, dynamic tactile sensors, ther-
mal sensors, and proximity sensors. The BioTac finger-
shaped sensor array (Figure 7a,b) provides information
about the contact forces, microvibrations, and tempera-
ture produced during contact with external objects [19].
Some tactile sensors have the ability to sense dynamic and
static contact forces since they have been constructed us-
ing a combination of piezoresitive and piezoelectric ma-
terials. Examples of such material include piezoresistive
rubber with PVDF (Figure 3(b)) [24] that is integrated
with an anthropomorphic fluidic hand [70] and pressure
variable resistor ink with PVDF that is integrated with
a four fingered robot hand [88]. Another hybrid sensing
system with similar combination of dynamic and static
transducers combines carbon micro-coil touch sensor and
a force tactile sensor [89]. Hasegawa et al. integrated
proximity and pressure sensors on the fingertip (Figure
7(c)) to enhance autonomous grasping [90]. Optical sen-
sors also found their application in the multi-modal ap-
proach. A three-fingered robot gripper described in [76]
incorporates optical sensors and combines measurements
of absolute forces by strain gauge sensors, dynamic forces
by piezoelectric sensors, and force distribution by fiber op-
tic sensors, as shown in Figure 7(d). Unlike the above
multimodal sensors, in which locations of sensing units
are known, a sensing system of a robot fingertip proposed
by Hosoda et al. [91] has random distribution of the sens-
ing units. Similar to [24], the sensing system consists of
piezoresistive and piezoelectric sensors to measure static
forces and vibrations. The piezoelectric sensors are placed
at a skin layer and inside the fingertip thus giving possi-
bility to measure internal vibrations. The only drawback
of the multimodal tactile sensors is their size.

2.1.8. Structure-borne sound tactile sensors

Vibrations and waves in solid structures are summa-
rized by the term "Structure-borne sound" [92]. In ma-
nipulation tasks, structure born sounds occur at the ini-
tial contact of a manipulated object with the environment
or during the slippage. Accelerometers and microphones
can be used as detecting devices. In pick-and-place ma-
nipulation tasks, these structure born sounds can serve as
indicators to trigger the placement of the object by the ma-
nipulator. Romano et al. [38] use a high sensitive 3-axis
accelerometer in the base of PR2 robot gripper in order
to detect the contact of the object with the table and to
release the object. Earlier, Kyberd et al. [32] integrated a
microphone with an anthropomorphic prosthetic hand for
automated grasping.

Sensors within this group have wide bandwidth, but
are suitable for dynamic measurements only. However, in
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Figure 7: Multimodal Tactile Sensors: (a) schematic of the
biomimetic BioTac tactile sensor with 19 electrodes, fluid pressure
sensor and thermometer [84], (b) photo of the multimodal BioTac
tactile sensor, (c¢) combined tactile-proximity sensor that can mea-
sure both the distance to an object and the contact pressure [90], (d)
drawing of a multi-modal tactile sensing module consisting of optical
and piezoresistive sensors [76].

a close proximity of an object, it is possible to estimate the
distance to the object by comparing a level of an environ-
mental acoustic noise and a level of noise within the sensor
as has been shown by Jiang et al. [93]. The presented con-
cept of the sensor is based on Seashell Effect - increase of
a level of noise in cavities due to resonance of sound waves
and intrinsic resonance frequency of a cave. The sensor
incorporates a cavity and a microphone located inside the
cavity. The cavity has its own resonance frequency that
depends on both the structure of the cavity and the dis-
tance from an object to be grasped.

Data stream coming from tactile sensors has different
physical meanings for different transduction technologies.
In general it can be dynamic or static according to the
time response and may represent an array of data, vector
or scalar value. Hence, data acquisition from different sen-
sors has its own approaches as discussed in the following
section.

2.2. Tuactile data types and acquisition

Force torque sensors installed on the fingertips of a
robot hand provide with force and torque values in each
direction in R3. A contact point location can be estimated
from these forces and torques as long as the shape of the
fingertip is known [26]. The measured forces and torques
can then be used for force control (Section 4.4) and in
haptic object recognition (Section 4.2).



Table 2: Tactile sensing types: advantages and disadvantages of ma-
jor sensor types. Abbreviations for the names: PRes. - piezoresistive
sensors, Cap. - capacitive, PEl. - piezoelectric sensor, Opt. - optical
sensors, BarS. - sensors based on barometric measurements, MultiM.
- multimodal sensors, SoundS. - structure borne sound sensors.

Type H Advantages H Disadvantages
Non-linear response,
Many commercial temperature and
solutions exist, moistness
PRes. simpler for dependence, fatigue,
manufacturing, permanent
can be flexible. deformation,
hysteresis
A number of Susceptibility to
commercial electro-magnetic
Ca solutions, can be noise, sensitivity to
p- flexible, may have temperature,
higher bandwidth non-linear response,
than PRes. hysteresis.
. Temperature
PEL I}; fg“ﬁi}; dependence, dynamic
sensing only
I;;;;iz:; I;T;E;)Eiec’ More complex for
QTC range (w.r.t Ca manufacturing (w.r.t
ind P'R'es) p- in Cap. and PRes)
High spatial reso-
lutlo.n,. hlgh Bulky, high-power
sensitivity, . .
Opt. repeatabilit consumption, high
imrrimi ty to %’)’M computational costs
noise
High bandwidth,
BarS. high sensitivity, Low spatial
. temperature and .
(fluid) oistness resolution
independence
SoundS)| High bandwidth Dynamic sensing only

Tactile sensors with fast response (such as accelerom-
eters, microphones, piezoelectric and capacitive technol-
ogy based sensors, and barometers with fluid media) pro-
vide information about vibrations at the contact point (see
Figure 8 (b)). Information about vibrations can be fur-
ther used for slip detection and haptic object exploration
(Sections 4.2.2 and 4.1.2). The dynamic response of the
tactile sensing arrays is limited by the sampling rate of
reading devices. In [39], the sampling rate of data acqui-
sition board is 10 kHz, while in [9] the signal bandwidth
is limited by the sampling rate (300 Hz) of a commercial
capacitance-to-digital-converter [67]. Figures 9(a) and (b)
show schematic diagrams of reading devices for dynamic
capacitive and piezolectric PVDF sensors.

Information from pressure sensing tactile arrays can be

Force [N]

Amplitute

Ellipsoidal Fingertip
(©

Figure 8: Tactile sensing signal types: (a) a two-dimensional pres-
sure distribution of a tactile sensing array, where the sensing tactels
are located on zy plane and force/pressure is measured along z-axis
[77]; (b) dynamic tactile signal from a single tactel or from an en-
semble of tactles, which can be acquired during a slippage [24]; (c) 6
DoF force/torque sensor measurements in the ellipsoid-shape finger-
tip [26] including normal forces in each direction F; of the Cartesian
space, torques M;, contact point P, forces and torques at contact
point F' and q.

treated as a gray-scale image in computer vision [40] (see
figure 8(a)). Although some tactile arrays may have tac-
tels (Figure 4(a)) that can measure pressure in the three-
dimensional space as in [72], the value of each tactel in
most of the current tactile sensors is proportional to ap-
plied normal pressure only. Tactile sensor arrays provide
information about contact shape and pressure distribu-
tions [41].

In capacitive and piezoresistive sensors, data from each
tactel can be acquired either directly, which means that a
high amount of wires is required, or by using a multiplexing
circuit (Figure 10(c)), which decreases twofold the number
of wire connection.

Piezoresistive tactile arrays consist of a common elec-
trode, of sensing electrodes that are arranged as a ma-
trix, and of conductive rubber in between. Pressing on
the sensor’s surface provides an image of the applied pres-
sure profile [53]. Figure 1(f) illustrates the image of the
sensing array which is produced when a spherical object is
pressing the tactile surface. Tactile images can be used for
contact pattern recognition [94], grasp stability estimation
[95], object classification [49], and tactile servoing [31].

For tactile sensing arrays, data acquisition involves the
usage of analog to digital converters (Figure 9(d)) as well
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Figure 9: Tactile sensing reading circuits: (a) the condenser mi-

crophone circuit for capacitive sensors [9]; (b) a circuit for utilizing
piezoelectric PVDF film as a stress rate sensor [9]; (c) signal condi-
tioning and voltage multiplexing for a 3 x 3 tactile sensing array [49];
(d) the voltage-divider circuit for a pressure conductive rubber [39];
(e) network structure of the iCub tactile sensing skin using CAN-bus
for connecting tactile sensing patches, 12 tactels in each patch, with
a main processing unit [44].
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as of microprocessing units for polling each tactel [18]. The
capacitance of capacitive tactile sensors can be measured
by commercial CDCs chips. The CDC chips can include
I?C serial interface. Digital barometers such as the abso-
lute digital pressure sensor "MPL115A" [96] that is used
in the iHY robot hand [42] has also I2C serial interface.
Communication with processing units can be realized via
different transmission protocols (e.g. controller area net-
work (CAN), and universal serial bus (USB), RS232). In
iCub skin [44], local measurements are sent by an on-board
processing unit over a CAN bus (Figure 9(e)). Multimodal
tactile sensing data in the BioTac sensor [19] is acquired
by the PIC microprocessor and sent to the host process-
ing unit over serial peripheral interface (SPI). In order to
minimize memory use of micro-processing units, data com-
ing from sensors can be preprocessed by signal condition-
ing circuits, which can be implemented as system on chip
(SOC) or system in package (SIP) [18].

In some specific applications, for example in fast reac-
tion to slip [24], signals from tactile sensors can be ana-
lyzed and processed within a controller without sending
information to the host computer. In most of the appli-
cations, middleware and high-level software installed onto
the main processing unit is used to compute acquired data
and control the system. For these purposes versatile open
source and commercial robot control platforms are avail-
able: in [30], robot operating system (ROS) [97] is used to
control Shadow robot hand [98], robot platform (YARP)
[99] is used to control iCub humanoid robot [100]; the con-
trolling operating system dSPACE from dSPACE Co. is
used in [39] to control high speed-robot hand [101] in real-
time and C-++ libraries of open Robot control software
(OROCOS) [102]. Among open source robot control plat-
forms, ROS is the most widely used and supports both
simulation (Gazebo simulator) and control of the Shadow
hand, the Barret hand and many other manipulators and
robots.

3. State of the art tactile sensor integration with
robot hands

In this section we review the existing robot hands equipped

with tactile sensors and discuss several issues related to the
integration process.

3.1. Issues related to the shape of the attachment surface

Mounting tactile sensors on the palm, a jaw grippers
or on fingers with flat surfaces is relatively straightfor-
ward, one of the simplest ways involving using a double
side tape. Figure 10(a) shows an experimental setup con-
taining the Shadow Hand and the Tekscan tactile sens-
ing system (Model 4256E), which was used for contact
shape recognition [94]. In another manipulating setup,
off-the-shelf capacitive arrays have been installed on the
fingertips of the four-fingered "Allegro" robot hand (Fig-
ure 10(b)). Figure 10(c) illustrates the Robotiq adaptive



Figure 10:

Simple integration of tactile sensing arrays: (a) the
Tekscan tactile sensing system consisting of 349 taxels with the
Shadow robot hand [94], (b) the Allegro robot hand with PPS
RoboTouch capacitive arrays [64], (c) the Robotiq adaptive gripper
with sensor suite installed on the contact surface [65]

gripper covered by capacitive pressure sensing arrays used
for the recognition of the type of the slip [65]. Attaching
tactile sensors on fingers and fingertips is a complex pro-
cess as curved surfaces with small radius of curvature have
to be taken into account. Tactile sensors should be either:
a) flexible and appropriately shaped to envelop a given
surface, as in iCub tactile fingertip sensors (Figure 11(a,
b) [103]; b) rigid and shaped as an attachment part, e.g.
[34] or [104] where a 3D-shaped tactile sensing array and
an ellipsoid F /T sensor (Figure 11(c) and (e) ) replace the
fingertips of the Shadow robot hand [98]. In another ver-
sion of the Shadow robot Hand with the integrated BioTac
multimodal tactile sensor, each finger loses one DoF (Fig-
ure 11(d)), — the sensor is as big as the two last links, distal
and middle phalanges of the human index finger.

The shape of the links of the fingers in robot hands
is different from the shapes of human finger phalanxes.
The proximal and middle links of fingers in artificial robot
hands have a smaller contact surface than those of hu-
mans, a fact that significantly decreases the sensing area
and causes difficulties with attachment. Figure 12 shows
the difference between sensing areas on the middle and
proximal links of a human finger and a robot finger. Cur-
rent artificial tactile sensors are not as flexible as human
skin and cannot cover the empty space between the links
for closing the finger of robot hands.

3.2. Wiring issues

A key issue in tactile sensing array integration is the
amount of wires required to read and transmit the data
from the sensing arrays. Any increase in the number of
tactels in tactile sensing array causes an increase either in
the number of wires or/and on the time needed for data
acquisition from sensors. A serial data communication can
be used to reduce the number of connections. For exam-
ple, in the iCub skin, communication was implemented
through 12C serial bus, where only four wires were con-
nected to the PCB of the sensing array [44]. However, se-
rial access of data is slower than parallel access. In iCub,
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Figure 11: Advanced integration of tactile sensors on the robot fin-
gertips: (a) a flexible PCB for a capacitive tactile sensing array with
12 taxels designed for the iCub humanoid robot [103],(b) the iCub
flexible PCB wrapped around the inner support of the fingertip [103],
(c) a 3D-shaped rigid tactile sensing array with 12 sensing elements
attached to the fingertip of the Shadow robot hand [34], (d) the Bio-
Tac multimodal tactile sensor installed on the Shadow robot hand by
replacing two last links of the finger [43], (¢) ATinano 17 force/torque
sensor on the fingertip of the Shadow robot hand [30].

the skin sampling rate for each tactel decreases from 100
Hz to 25 Hz as the number of tactels increases. If the
real-time pressure distribution is of interest, as for exam-
ple in tactile servoing [31], the serial data access may fail
to produce time-series images of the contact image. The
parallel access of data provides higher acquisition rate, but
requires a higher number of wires than the serial one. Em-
ploying advanced addressing schemes is a way of reducing
the number of wires needed in the parallel access schemes.
For example, in the row-column scheme [49] n + m wires
are needed for n * m array of sensors instead of n x m + 1
wires required in the schemes with one common ground
[34]. Other approaches dedicated to reducing wiring issues
include wireless data and power transmission and imple-
mentation of a decentralized data pre-processing of tactile
signals [24], [76].

3.3. Integration steps

One way to integrate tactile sensors in robot hands
is in using tactile gloves. A number of tactile data gloves
have been designed for use in human grasping applications
rather than in autonomous manipulations tasks, e.g. [54].
However, tactile data gloves could be worn on robot hands,



Figure 12: Difference in contact surfaces between a human finger
and a robot finger [105].

Figure 13: Tactile data glove based on conductive rubber (a) and
the tactile information from the data glove during a grasp (b) [54].

as in the Robonaut robot hand [106] capable of sensing
19 points of contact. Commercial tactile data gloves are
available from Tekscan [57] and CyberGlove [107]. Figure
13 shows a tactile data glove based on piezoresistive and
conductive fabrics.

A more effective way of integrating tactile sensors is
to embed them into the robot hand. The embedding pro-
cedure of the tactile sensing skin within the robot hand
involves the following steps [44]:

e definition of the surface to be covered by the available
3D computer-aided-drawing (CAD) model or by means of
a 3D scanner.

e manufacturing of the supporting part using tactile sens-
ing PCBs. This part is to be attached to the robot hand.
The use of a 3D printer can facilitate the manufacturing
procedure. This step is not applicable if integration of
fingertip-shaped tactile sensors is required, which involves
changing the structure of the finger.

e identification and wiring of the sensing elements.

e gluing the sensing elements down on the supporting part.
e covering the sensing elements with flexible material, e.g.
silicon rubber. For a specific surface shape , custom molds
should be designed.
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3.4. Robot hands equipped with tactile sensors

This section presents an overview of manipulating plat-
forms with sensorized artificial hands, developed in the
framework of research projects in autonomous manipula-
tion and tactile sensing applications. A list of these plat-
forms is presented in Table 3 and a summary with com-
ments about the different hand/sensor combinations are
given in Table 4.

In [49] an 8x8 tactile array based on piezoresistive rub-
ber has been attached onto the grippers of the 3-fingered
Schunk SDH hand for classifying deformable objects. Out-
standing in speed performance, the Lightweight High-Speed
Multifingered Hand System [101] integrates Center-of-Pres-
sure (CoP) sensor for the force measurements and PVDF
based high sensitive tactile sensor for slip detection, as
shown in Figure 14(a) [39]. Commercial 3-finger Schunk
SDH hand [109] with integrated Weiss Robotics piezoresis-
tive tactile sensors [58] incorporates a 14x6 array on each
distal link and a 14x7 array on each middle link. The Uni-
versal robot hand [35] has 102 tactels on fingertips and 70
tactels on the rest of the links. In contrast to the serial
connection of sensors present in the iCub skin [44], each
tactile array has its own connection with the acquisition
board (Figure 14(b)).

Capacitive arrays from Pressure Profile System [66]
have been integrated with PR2 robot grippers [95]. The
sensor array on the PR2 robot has tactels in back and
front, on left and right sides, and finally on the tip. Very
sensitive tactile sensors with fibers connected to capacitive
sensor akin to animal whiskers have been integrated with
the parallel jaw gripper of a humanoid robot platform to
explore object surfaces and for human-robot interaction
purposes [113]. The Barret hand [114] has capacitive tac-
tile sensors on the tips, distal link and palm.

The "Takktile" arrays [87] based on barometric mea-
surements have been integrated with the iRobot-Harvard-
Yale (iHY) Hand [42]. The hand is covered by an array of
48 tactels on the palm, a 2x6 array on proximal links, and
a 2x5 array on distal links with two of the tactels on the
tip (Figure 14(c)).

An optical tactile array of 41 tactels with the ability
to measure normal and tangential forces has been placed
on the tips of a two-fingered robot system [13]. A multi-
modal tactile sensing system may require a larger space,
especially if optical tactile sensors are incorporated within
it. Figure 14(d) illustrates the robot hand with the multi-
modal sensing system [76]. Force torque sensors are placed
at the base of each finger, not on the fingertips as in the
Shadow hand [104]. The three-axis opto-force sensors [81]
can be installed on the tips of the Barret Hand [114].

In [117], photo-reflectors have been attached to the
three-fingered robot to provide proximity information for
preshaping the fingers during grasping. The Seashell ef-
fect sensors [93], which also provide proximity information,
have been installed on the PR2 robot grippers.

The tactile sensing system for the DLR robot hand-arm
system [116] is designed as large scale tactile skin using the



Table 3: The list of tactile sensors that have been integrated with robot hands. Number of tactels (No.), spatial resolution (Res.), sensitivity
(Sens.), dynamic range (Range) and data acquisition rate (Rate) are provided where possible.
Tactile sensor H

Robot Hand | No. of tactels  [[ Res./Sens./Range || Rate
Piezoresistive sensors
FSR [56] Robonaut data glove[106] 19 5mm/0.1N /20N 1 kHz
Fabric sensor [60] Sensor Glove [54] 56 34mm?/(0.1-30N) -
Rubber-based [49] Schunk gripper [108] 8x8 6.25mm? /- /250kPa 100 fps
Rubber-based [39] ngh_il;ieéi [?i—oﬁlr]lgered 17x19 3mm/-/- 10 kHz
Weiss Robotics [53] Schunk sDH [109] (14x6)and(14x7) 3.5mm/-/250kPa 800 fps
3D-shaped sensor [34] Shadow Hand 12 5.5mm/0.03-2 /10N||  ~ 1 kHz
Rubber-based [35] Universal robot hand [35] 102 on tip 3.6 mm/ 1IN/- 50 Hz
Gifu hand sensor Gifu Hand IIT [110] 624 ~4mm/- /22 07]7\22 10 Hz
Tekscan [57] Shadow Hand [94] 349 4mm/-/345kPa 200 Hz
FSR [41] Southampton hand [41] 15 - -
ATi Nanol7 sensors [61] Shadow hand [98] 5 per finger -/ 3.26mN/12N 833 Hz
Weiss Robotics [58] Fluidic FRH-4 hand [111] 14x6 3.5mm/-/250kPa 230 fps
Capacitive sensors
Icub sensor [103], [44] iCub Humanoid robot 12 per tip, 48-palm 7mm/2.5%/150kPa 25-250Hz
PPS sensors [66] PR2 robot grippers [3§] 22 4mm/6.25mN /7kPa 24.4 Hz
PPS RoboTouch [66] Allegro robotic hand [64] 24 25mm? /TkPa 30-100Hz
Dynamic sensor [9] Robotiq Gripper [112] 132 -/-12N 300 Hz
Combined sensor [113] Parallel jaw gripper [113] 16 10 mN qugz%
PPS RoboTouch Barrett Hand [114] 120 per finger 5mm/6.25mN /7kPa 30-100Hz
Piezoelectric sensors
PRes. [58] + PVDF [24] 8 DoF Fluid Hand [70] 47 3.5mm/-/250kPa >1kHz
PRes. ink + PVDF [88] SKKU Hand IT [88] 24 on fingertip 0.5mm/- /- -
Tactile skin [115] DLR Hand [116] in process of development
Barometric measurements based sensor
Takktile (silicon) [87] iHY Robot Hand [42] 24+48 5mm/10mN/4.9N 50 Hz
BioTac (liquid) [83] Shadow Hand [98] 1 per finger -/0.1N/3N 1 kHz
QTC tactile sensors
Robonoaut sensors Robonaut Hand [75] 33 -/0.1IN/10N -
Piratech [73] Shadow Hand [74] 36 358 /4005 -
Optical tactile sensors
Sensor for MRT [77] Robot Manipulator 9 -/0.5N/5N 25 fps
3DoF sensor [37] Robot gripper 41 3mm,/0.08N/1.8N 10 Hz
Optoforce [81] Barret Hand 1 per finger 10mm/-/10N -
Multi-modal tactile sensors
Proximity Sensor [90] A three-fingered hand [90] Palm: 5x6 10cm and 2cm 1 kHz
19 + fluid
BioTac sensor [84] Shadow Hand [43] barometer + -/~0.01N/1:1000 5OH5Z0’ 12{I;HZ’
thermistor
30fps;
Optical+PVDF+Force 3-fingered gripper [76] 324 fibers, 120 -/-/4N 10kHz;
PVDF, 3 F/T
100Hz
"Structure-borne sound" tactile sensors
Microphone Oxford prosthesis [32] 1 - -
Accelerometer PR2 robot grippers [3§] 1 0.15m/s? 3 kHz
SeaShell effect sensor [93] PR2 robot grippers 1 -/Non/Non 44 kHz
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Figure 14: Three-fingered robot hands with tactile sensors: (a) a
finger with tactile sensor of the 3-fingered high-speed robot hand
[101], (b) assembly of tactile sensing arrays with a robot finger of
the Universal robot hand with 3 movable and 2 immovable fingers
[35], (c) schematic illustration of a finger of the iHY robot hand
with embedded array of pressure sensors based on digital barometers
placed inside the soft paddings of the fingers [42]; (d) schematic
illustration of the integration of a multimodal sensing system with a
three-fingered robot hand [76]

column-row net structure [115]. The robonaut hand has
tactile feedback through the tactile data glove incorporat-
ing piezoresistive technology [106] and QTC technology
[75]. Figure 15(a) shows the Fluidic hand [70] with modi-
fied version of the Weiss [58] sensors. The dexterous Gifu
III robot hand (Figure 15(d)) has a sensing array of 859
taxels (Figure 15(c)) based on piezoresistive conductive ink
[110]. An array of 24 conductive ink in combination with
piezoelectric PVDF material has been used in the SKKU IT
robot hand [88]. The Shadow Hand [98] has different inte-
grated tactile sensors: force/torque sensors (Figure 11(e))
[30], multimodal Biotac tactile sensors (Figure 11(d)) [43],
3D-shaped fingertip tactile sensors (Figure 11(c)) [34], and
QTC sensors [74]. The robot hand of the iCub humanoid
robot [100] has sensors on the fingertips and palm, but not
on the middle and proximal phalanges (Figure 15(b).

Besides the five fingered robot hands, a number of an-
thropomorphic robot hands with three fingers and thumb
exist, including the "Twendy one" robot hand covered by
capacitive tactile sensing arrays [118] and the "Allegro"
robot hand [119] developed by SimLab Co.

3.5. Large area tactile skin

There is a high demand for manipulators and humanoid
robots whose whole surface is covered with tactile sensors
[18]. Large sensing areas embedded in robotic systems
enhance human-robot interaction and are important for
safety reasons. However, a large area tactile skin and the
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Figure 15: Five-fingered robot hands with tactile sensors: (a) the
fluidic robot hand with combined piezoelectric and piezoresistive tac-
tile sensors that can sense high-frequency vibrations due to the ab-
sence of electric motors [24], (b) the robot hand of the iCub hu-
manoid robot with tactile sensors on the fingertips and the palm
[44], (c) flexible tactile sensing arrays of the SKKU robot hand [88],
(d) the SKKU robot hand [88]

concomitant increase in the amount of tactels present chal-
lenges with regards to optimal data acquisition and wiring.

The number of sensing tactels should be easily change-
able for arbitrary surfaces to enhance the performance of
the system. The iCub skin uses flexible triangle patches
consisting of 12 sensing tactels each and off-the-shelf CDC
AD7147 [67] (Figure 2(c)). Up to 16 triangle patches in
series can be connected with each other but only one of
them must be connected with the micro-processing unit
which significantly reduces the amount of wires required.
However, polling time increases proportionally to the num-
ber of serial sensing elements. The iCub skin has been
integrated in the child-sized humanoid robot KASPAR
[120] and the autonomous humanoid robot NAO. iCub skin
based on capacitive technology can sense applied pressure
only.

Unlike the capacitive technology based iCub skin which
can only sense applied pressure, HEX-O-SKIN measures
temperature, vibrations and light touch [121]. Each patch
of the HEX-O-SKIN is a hexagonal printed circuit board
equipped with proximity sensors, accelerometers, thermis-
tors, and a local controller. Each patch is less than 2 g in
weight, 5.1 em? in area, and 3.6 mm thick.

A limited number of tactile sensing skins has been in-
tegrated in robotic manipulators for applications that re-
quire tactile feedback, as in safe human-robot interaction.
An example of an industrial manipulator covered with
an array of capacitative proximity sensors is described in



Table 4: Sensors integrated with robot hands: advantages and disadvantages of major approaches.

Hand/Sensor Combination

Advantages

Disadvantages

3D-shaped array [34] & Shadow
Hand; iCub robot fingertip
sensor [68]

Multiple point of contact, covers
spherical shapes, wires - within
fingers

Normal force measurements
only

Ellipsoid f/t sensor [104] &
Shadow Hand; OptoForce [81] &
Barret Hand

Covers spherical shapes, high
sensitivity, shear forces.

Single point of contact only,
wires - outside of fingers

BioTac [84] & Shadow Hand

Multiple point of contact, high
bandwidth, wires - inside

Last joint static (20 degrees)

Robonaut glove and Hand [106]

Ease of replacement, low cost

Not reliable compared to rigidly
attached sensors

Fabric sensor [54]

Ease of replacement, stretchable

Wear and tear off

Tactile sensing array (PPS [66],
Tekscan [57], and etc.) & any
robot hand

Can be easily attached to any
flat and cylindrical surfaces

Cannot cover spherical shape,
wiring issues

Weiss Robotics [58] & any robot
hand; Takktile [87] & iHY hand

Robust

Flat surface only

SeaShell effect sensor (Cavity
with microphone & PR2) [93]

Pre-touch sense

Direct contact of the cavity with
an object limits forces

Proximity Sensor [90]

Pre-grasp sense

Cannot measure very close

proximities
Accelerometer at the base of . . . Interference with electric motor
. Vibration detection .
robot grippers [38] noise
Microphone at the tips of the . . . No interference with motor
Oxford Hand prosthesis [32] Vibration detection noises

Object Recognition Tactile Servoing

Tactile Sensors

Force Control

Grasp Stability

Figure 16: Tactile sensing techniques. Tactile sensing in robot hands
is used for object recognition, tactile servoing, force control and for
assessing grasp stability.

[21]. A commercial industrial manipulator that incorpo-
rates 118 proximity sensors is shown in [122]. Research
in design of multi-fingered dexterous robot hands, being
previously focused on prosthetic hands only, has surged
in recent years. Various dexterous robot hands were de-
veloped in research laboratories and became commercially
available [74], [118], [119].

4. Computational Techniques in Tactile Sensing Ap-
plications

In the robotics literature, tactile feedback has been
widely used for telemanipulation, haptic devices, and legged
robots [123]. In event-driven manipulation, tactile sig-
nals have been used for detection of the current manip-
ulation phase (contact/no contact, rolling, sliding) [124].
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The use of tactile information for object exploration and
recognition, material classification, and slip prediction has
recently become rather popular as is reflected in [40], [95],
[23], [19].

In robot hand applications, tactile signals are used to
recognize objects, control forces, grasp objects, and to
servo surfaces (Figure 16). Each of these applications will
be discussed in following sections. The major computa-
tional techniques used in these applications are illustrated
in (Figure 17). As discussed in the Section 2.2, differ-
ent tactile sensor types have different sensing quantities,
including force vectors, vibrations, and contact patterns.
These quantities are then subjected to various computa-
tional techniques. The same computational technique may
be used in a number of applications, as it illustrated in the
latter figure.

4.1. Grasp stability and slip detection

Grasping is one of the basic skills service robots and
industrial manipulators are expected to have. Before per-
forming a grasping procedure, a robot must plan the grasp.
Grasping is a complex process for robot hands even if ob-
ject parameters such as shape, position, physical proper-
ties are known. When the properties are known, analytical
approaches involving force and form closures can be em-
ployed to perform grasping [125]. In unstructured environ-
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ments, object parameters are uncertain, which makes the
grasping task even more difficult and presents a big chal-
lenge for grasp stability approaches. A detailed review of
all grasping techniques is out the scope of this paper and
can be found in previous papers [126], [127].

In some approaches, the robot grasping procedure could
be simplified by using proximity sensors on fingertips [128].
There are two main approaches of robot grasping that in-
volve tactile feedback. Omne approach treats grasping as
a control problem and does not consider hand kinemat-
ics or assumes simple hands like grippers [39]. Another
approach makes use of both model based grasp planning
and force feedback to address the problem of grasping with
dexterous robot hands that have more dof than grippers
[25].

Regarding tactile sensor types and the way of process-
ing the data, there are three different techniques for assess-
ing grasp stability at the current state-of-the-art: friction
cone based techniques, vibrations based techniques, and
tactile images based techniques. Each of the technique is
discussed in following.

4.1.1. Friction cone estimation for the slip event

The friction coefficient of surfaces and the load con-
ditions are very important in grasping. When humans
pick up an object, they take into account these parame-
ters and adjust grasping forces based on tactile feedback
during manipulation. The stability of a grasp is evalu-
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ated by the ratio of normal, Fyorm, to tangential, Fiung,
reaction forces and static coefficient of friction p; (Fig-
ure 18(a)). Maintaining objects within the friction cone,
to preclude slippage, is ensured by the following condi-
tion [125]: 1 < py X F’Zix The tangential force can

be obtained by force/torque (F/T) sensors, for example
ATi Nano 17 [61], whereas most of the current pressure
sensing arrays can measure normal pressure only (Figure
8(c)). In [86] tangential forces are computed by apply-
ing a Kalman filter to the data of the pressure sensing
arrays of a bio-mimetic tactile sensor. The sensor con-
sists of conductive fluid and electrodes placed in different
places of the fingertip. Hence, the sensor does not provide
absolute force values. The Kalman filter integrates sig-
nals from the electrodes to produce a force output. Other
approaches can rely on dynamic friction models that al-
low the prediction of an incipient slip. For example, using
F/T sensors installed on the Barret hand [114], Song et al.
[27] estimate the coeflicients of the dynamic LuGre friction
model of a contact with an unknown object through two
exploratory motions. Break-away friction ratio (BF-ratio)
is then computed to predict a slippage. Besides the trans-
duction methods mentioned in Section 2.1, heat microflux
detectors, which are mainly used for measuring objects’
thermal properties, can be used for detecting a slip [129].
The temperature at the contact point increases during the
slip due to the energy dissipation at the presence of friction



forces.

4.1.2. Vibrations as the slip-signals

Except exploratory procedures such as texture recog-
nition, the key feature of a stable grasp is the absence of
slippage [43]. During slippage or at the moment of contact
with the environment, a robot hand experiences mechan-
ical vibrations. This phenomenon is known as structure-
borne sound [130]. The absence of vibration frequencies
indicates the absence of slippage. Achieving stable grasp
by detecting vibrations has been long implemented in hand
prosthetic devices [16], [131], [132]. In order to detect vi-
brations during a slip event, the tactile sensor should have
appropriate bandwidth to detect the vibration frequencies
(Section 2). Piezoelectric materials (Figure 3) and capaci-
tive sensors (Figure 2) have been widely used for detecting
vibrations induced by a slip. These sensors are usually em-
bedded into pressure sensitive tactile arrays. Signals com-
ing from each sensor represent high-frequency oscillations
(Figure 8(b)) and are sampled at a high sampling rate.

Dynamic tactile signals can be processed directly in
time domain and in frequency domain. One of the simplest
ways of detecting the slippage is to use a high-pass filter
(Figure 18(b)). A given level of filtered disturbances indi-
cates a slip-event. In [38] forces of each cell in capacitive
tactile sensing array are subjected to a discrete-time first-
order Butterworth high-pass filter with cut-off frequency
of 5 Hz to mimic fast adaptive (FA-II) human afferents.
A high-bandwidth accelerometer is used to detect contact
between the object and the environment. The detection
of slippage by evaluating the level of high-passed filtered
data can be processed at a high rate.

Another computational technique using vibrations is
based on the transformation to the frequency domain and
the calculation of the spectrum power, as shown in Figure
18(c). In [39] pressure disturbance signals are subjected
to discrete wavelet transform (DWT) [134]. When DWT
power exceeds the experimentally determined threshold,
initial slip is detected and the grasping force is increased
accordingly. Cutkosky et al. [9] developed a technique
to distinguish between two types of slippage: robot hand
/ object and object / environment. Acquired data from
these two types of slippage were identified by the param-
eter noted as power-ratio classifier, which is calculated by
applying Fourier transformation and phase shifting in fre-
quency domain. The power-ratio classifier is the ratio of
the spectrum power of the individual tactel to the power
spectrum of all tactels. Tactile signals are processed in a
way that mimics the effects of stimuli on human tactile
receptors, both individually and as an ensemble. Slip is
classified by values of relative power between individual
tactels and the array as an ensemble.

A further computational technique uses transformation
to frequency domain and then applies principal compo-
nent analysis (PCA) and machine learning methods (Fig-
ure 18(d)). In [24], input signal (z[n]) is processed by the
Short-Time Fourier Transformation (STFT) with window
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function in a short period of time (w[n]), which provides a
two dimensional representation in time-frequency domain:
STFT{z[n]} = X(m,w) = >.,7___ z[nJw[n —mle
The transformed signal is then subjected to PCA and the
slip is detected by k-NN (k nearest neighbor) classifier.

Depending on the transduction type of the sensor, a
stable grasp can be qualitatively assessed from: (1) con-
tact forces [27], (2) vibrations [9], and (3) tactile contact
patterns and hand kinematics [25]. Figure 18 outlines dif-
ferent algorithms and computational techniques that have
been used for achieving and assessing the grasp. Table 5
lists the robot hands and tactile sensors that have been
tested with the above techniques.

— _ —iwn

4.1.8. Tactile image features for stable grasp estimation

Data from tactile sensing arrays can be treated as a
gray scale image (Figure 8(a)). When an object comes to
contact with the tactile array, tactile image features of the
contact pattern can be extracted for the further estimation
of a stability of a grasp.

The first technique introduced in [133] detects the slip-
page of an object by analyzing changes of feature points of
the tactile image. Data is collected at a sampling rate of
60 Hz from a 44x44 array of piezoelectric sensors installed
on an industrial manipulator. Before the actual motion of
the grasped object in a slip-event, there are some feature
points that remain on previous positions and points that
have moved. Ratio of immobile points to moved points
indicates the slip-event. This approach requires a large
tactile array because the surface of an object that is in
contact should be fully represented in the tactile image.

The slip detection techniques demonstrated in the pre-
vious sections can be used in grasping approaches that
address the grasp as a control problem and do not take
into account the hand kinematics. For the dexterous robot
hands with tactile sensing arrays, a grasp stability can be
estimated by computing tactile information together with
hand kinematics (Figure 18(e)).

Bekiroglu et al. [95] consider grasp stability as a proba-
bility distribution that depends on tactile images acquired
from pressure distribution sensing arrays; joint configu-
ration of the hand; object information (e.g. object shape
class) and grasp information (e.g. hand pre-shape). Grasp
stability is evaluated by analyzing tactile images and hand
configurations based on supervised machine learning algo-
rithms. While AdaBoost [135] and Support Vector Ma-
chine (SVM) [136] classifiers are used for one-shot recog-
nition at the final step of the grasping procedure, the hid-
den Markov model (HMM) [137] classifier is used for the
time-series case. It should be noted that, besides the SVM,
Adaboost and kNN classifying algorithms, other classifica-
tion, clustering, statistical learning and data mining algo-
rithms described in [138] can be used for the grasp stability
estimation. Dang et al. [25] developed a grasping frame-
work that generates grasps; executes and then estimates
the quality of the grasp and performs hand adjustment and
local geometry exploration if the grasp is not successful.
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Figure 18: Data processing steps for the techniques applied in tactile-based stable grasping: (a) slip detection based on static (e.g. friction
cone) and dynamic (e.g. LuGre) contact force models [27]; (b) slip detection based on vibrations that can be recognized in time domain by
existence of high-pass filtered tactile data [38]; (c) slip detection based on vibrations by calculating a spectral power in the frequency (i.e.
Fourier transformations) and time-frequency (i.e. wavelet transformations) domains [39], [9]; (d) slip detection based on vibrations that can
be recognized in time-frequency domain by extracting and classifying features of transformed signals [24]; (e) grasp stability estimation based

on features from tactile images and hand kinematics [95], [25].

Grasp stability is estimated from tactile images. Unlike to
the algorithm of Bekiroglu et al. [95], the position of each
tactile array is calculated to determine the configuration of
the contacts involved in a grasp. Then grasp feature vec-
tors are computed using bag-of-words model and classified
by a supervised SVM classifier. If a grasp is not successful,
the robot adjusts the hand according to tactile experience
database of stable grasps or explore the local geometry.

Other rather old approach proposed by Kyberd et al.
[41] detects slippage by calculating changes in tactile pat-
tern represented by a matrix in which the increase of force
corresponds to 1, decrease to (-1), and no changes to (0).
Slippage and twist are derived then by summing and sub-
tracting the neighbor elements in the matrix.

The advantages and disadvantages of the above ap-
proaches are given in the Figure 18. In the case of es-
timation of grasp stability by measuring normal forces,
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the friction surface must be given in advance or estimated
by tangential force measurements (Figure 18 (a)). Mean-
while, the rest approaches do not require this preliminary
information about surface. However, the second approach
of detecting vibrations by applying a high-pass filter (Fig-
ure 18 (b)) may suffer from an interference noise coming
from electric motors. This interference can be eliminated
by transforming temporal signals to the frequency domain
and filtering out motor noise harmonics ((Figure 18 (b)).
These approaches are well suited for reactive controllers.
But in grasp planning algorithms, information about con-
tact patterns play an essential role.

Regarding the sensor parameters, high temporal reso-
lution is very important for the vibration based techniques
and less important for the one based on friction cone esti-
mation. High spatial resolution increases performance of
the approach of assessing grasp stability from contact pat-



Table 5: Approaches for the grasp stability estimation based on tactile information. A number of computational techniques for assessing the
grasp based on vibration, friction force model and tactile images are listed in accordance with used tactile sensors and robot hands.

Sensors H Robot Hands H Techniques H Ref.
Vibrations
Weiss Robotics + PVDF Fluidic Hand [70] Filtering, STFT, PCA, kNN [24]
PPS sensors PR2 gripper Filtering, Grip force control [38]
CoP + PVDF |[39] ngh—speﬁi Olll]a nd hand DWT power, force control [39]
.. . . FFT, spectral power, phase shift, slip type
Capacitive sensors Robotiq gripper [112] detection 9]
Microphone Prosthetic hand Filtering [32]
Accelerometer PR2 robot grippers Filtering, object — world contact detection [38]
Friction force model
BioTac [86] Otto Bock M2 hand Force control, Kalman filter [86]
ATi nano 17 [61] Barret hand LuGre dynamic fI‘lCth.Il model, break-away 127]
ratio
Tactile images
. _ Schunk 3-Finger Gripping Temporal and Static image features + joint
Piezoresistive [58] Hand sDH [109] angles, HMM and SVM 195]
Capacitive sensor arrays Barret hand Image features + joint angles, SVM [25]
Piezoelectric (16x16) Manipulator Tmage moments, Loc&}hz.e d Dlspl.acement [133]
Phenomenon, incipient slip
terns. And high sensitivity is essential for the techniques Tactile Object Recognition
that rely on estimation of surface friction. | | |
4.2. Tactile Object Recognition RTextu_rtg Pattern » Otbfjec;
ecognition iti entification
Object recognition is an important element in human- 9 Recognition
robot interaction and autonomous manipulation [150]. In Spectrum Image Statistical
manipulation tasks, robotic systems detect, explore and Analysis Processing Methods
recognize objects. For the detection and recognition tasks Vibrations: Tactile Image: Multimodal:
robots use their perception system. The perception system dynamic tactile pressure profile tactile Image,
. . .. . . sensor tactile array vibrations,
includes audio, vision and tactile subsystems. Information temperature

from audio devices — high sensitive microphones that can
detect micro-vibrations — serves to detect a slip [32] and
to recognize textures [151]. Visual information is provided
by RGB cameras, stereo cameras, RGB-Depth cameras,
laser scanners, and etc. Image information can be suffi-
cient to control a robot in some applications as in visual
servoing. However, recent trends show that, even though
robotic vision gives a lot of information, tactile informa-
tion about the contact is still necessary as it improves per-
formance of the recognition and manipulation tasks [17].
Data from vision may be noisy or even not available when
the robot itself obstructs visibility during manipulation.
Tactile information from end-effector can complement the
information acquired from vision for object detection and
recognition. Tactile sensors can provide information about
local surface texture, as for example in [79)].

Depending on the sensor type, there are three different
approaches of tactile object recognition (Figure 19). The
first approach of object identification, a robot hand uses
multimodal tactile information [43]. Different tactile sig-
nals are combined to identify an object in contact with the

Figure 19: Tactile object recognition. Tactile data can be used for
classification of textures based on spectrum of frequencies that ap-
pear during the sliding over a surface [43]. Object that is in contact
with the tactile sensing array can be recognized from the contact
patterns using image processing techniques [40]. When multimodal
tactile information is available, objects can be identified through sta-
tistical and probabilistic analysis of multimodal data [19].

sensors. The second approach is based on spectral anal-
ysis. The texture of a surface is identified via vibrations
which occur when a tactile sensor slides over the surface.
Oscillations are transformed to frequency (time-frequency)
domain to detect a different texture according to the spec-
trum of the acquired signal [24]. In the last approach of the
contact pattern recognition, image processing techniques
are applied in order to recognize the shape of the object
that is in contact with a sensing array [40]. Tactile images
can be also used to classify deformable and rigid objects
[49] and in some specific cases for texture recognition [79]
from a contact print with high resolution.
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Table 6: Tactile Object Recognition.

A number of computational techniques for object identification, texture classification and contact

pattern recognition is listed in accordance with tactile sensor types and robot hands.

Tactile Sensors H Hands Methods H Ref.
Object Identification
8x8 array and 6x14 Weiss || Schunk Gripper and SDH Tmage Moments, k-NN, DTW [49]
sensor hand
BioTac [84] Shadow Hand ANN, GMMR, PCA [43]
Capa'(ntlve Barret Hand Multimodal categorization using statistical [139]
array-+microphone model
Texture Recognition
BioTac sensor [84] Shadow Hand FFT, SVM, Bayesian approach [19]
Ati Nano 17 Barret hand friction ratio, FFT, k-NN [140]
Digital accelerometer - STFT, k-NN, SVM [141]
Artificial robotic finger FFT, majority voting, naive Bayes tree
PVDF based from Robotis motors (NBTree), naive Bayes, decision trees (J48) [142]
Feature extraction, SVM, Pitman—Yor
Accelerometer - . [143]
process mixture models
GelSight - MSLBP [79]
Contact Pattern and Shape Recognition
PVDF + conductive foam Fluid Hand [70] PCA, Moments, k-NN [24]
RRT, k-means, GMMs, Bag-of-Features,
PPS [66] ) PCA, SIFT, MR-8, Polar Fourier [40]
Joystick sensor 6 DoF Manipulator Curvature estimation, surféc'e normal, [144]
model-based recognition
Piezoresistive rubber Unlversal[3R5c])bot Hand Multicontact Recognition [35]
Tekscan [57] Shadow Hand Edge Detection, Segmentation, Neural [94]
Networks
Weiss Robotics sensor .
DSA 9205 1 DoF Gripper Bag-of-Features [145]
. . Schunk [109], .
Weiss Robotics ARMAR-IITh ANN classifier, PCA, SOM [146]
. . robotic manipulator
Weiss Robotics (Phantom Omni) SIFT, k-means, kNN, bag-of-features [147]
Tekscan TM(4256 E) Barret Hand PCA, convexity, naive Bayes classifier [148]
. . Localization: Binary Robust invariant
GelSight [79] Gripper scalable keypoints, [149]

4.2.1. Tactile object identification

Robot fingers with as many sensing modalities as hu-
man fingertips, for example the multimodal BioTac sensor
[84], can identify an object through its physical properties.
In [19], multimodal information is sensed by barometer,
thermistor, pressure sensitive liquid, and pattern of elec-
trodes distributed over the entire surface of the fingertip.
Artificial neural networks (ANN) and Gaussian mixture
model regression (GMMR) are used to extract force vec-
tors from an array of electrodes; those vectors are then
used to extract traction information. The barometer gives
texture information by analyzing oscillations in the fre-
quency domain. Then the temperature sensor information
is combined with these modalities to select exploratory
movements to achieve an effective object recognition pro-
cedure. Exploratory movements (Table 7) proposed in [43]
use Bayesian theory to identify the most informative ac-
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tion. Although the procedure of object exploration may
involve up to six actions, only the first three exploratory
movements have been used for object identification. The
pressure movement is used to estimate the flexibility of an
object. During the lateral sliding motion, a tactile sensor
can detect the texture of a surface. Temperature is mea-
sured in static contact. The shape of an object can be rec-
ognized by calculating the joint angles of the fingers during
the enclosure. By lifting an object, the mass of an object
can be estimated. Finally, the borders of a surface can
be recognized by following the contour. High-passed pres-
sure value of the orthonormal to contact surface electrode
is used to explore an object’s compliance; around 1.47N
of force is applied using torque controllers until reaching
the steady state. Texture is recognized from vibrations by
applying similar computational techniques as in vibration
sensing for slip detection (see section 4). Before the slid-



ing motion, the robot end-effector is controlled by torque
controller. When the desired contact force is achieved, the
torque controller is switched to mixed position velocity
controller to perform the sliding motion. During the slid-
ing motion, the robot gets information about the surface
roughness. The traction of a surface can be measured by
comparing tangential forces and normal forces. Tempera-
ture heat flux is measured by maintaining static contact.
After selecting the most informative exploratory move-
ments, objects are classified according to training data.

In other multi-modal approach [139], a 3D visual sen-
sor, auditory information acquired by shaking the object,
and tactile images acquired from grasp have been used
to identify an object. Statistical model Latent Dirichlet
allocation (LDA) is implemented for on-line object cate-
gorization.

4.2.2. Texture Recognition

Texture recognition, as the vibration-based slip detec-
tion techniques 4.1.2, is based on dynamic tactile data and
draws on signal processing methods. Most commonly, vari-
ations of sensing value, whether they come from micro-
vibration sensors or tactile arrays, are subjected to Fast
Fourier transformation (FFT). Then the spectral compo-
nents and possibly computed features are used for classi-
fication algorithms (Figure 20 (a)).

Fishel et al. [22] registered vibrations by change in
pressure of a barometer located within a liquid. At initial
step, signals from the barometer are filtered by pass-band
filter with the bandwidth of from 20 Hz to 700 Hz. Then
Fourier Transformation is applied to the signals. Derived
spectral components could be already in the classification
algorithm, but would not result in good estimation for
properties of a surface. To estimate the roughness of a
surface, the authors proposed to calculate a spectral power
of the pressure variations, P,.(n):

N
1 2
Power = N 321 Pue(n)?, (1)

where N is total number of harmonics. Meanwhile, spec-
tral centroids, SC, used to estimate a fineness of the sur-

face:
Yo FFt(Pac(n)? + f
Sony ft(Pac(n))?

where f is a frequency, fft(-) is the FFT. The authors
state that these spectral centroids give better estimation
of the fineness than conventional relationship f = v/\,
in which v and A are the velocity and the spatial wave-
length of the texture/fingerprints, at a higher velocities
or on finer surfaces respectively. These features together
with a motor current demand to estimate the tractions
of a surface are then implemented in Bayesian classifica-
tion/exploration (Figure 20 (b)).

In [140] since the authors were limited with the acquisi-
tion rate from sensors, the maximum detectable frequency

(2)
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was 100 Hz. The Friction Ratio was estimated by use of a
six-axis force and torque sensor. Then variations of a mean
squared error (MSE) between the estimated ratio and sen-
sor output were then subjected to FFT. The FFT resulted
in spectral components that can be applied in classifica-
tions step. The authors applied k-NN classifier. (Figure
20 (c)).

Jamali et al. [142] applied high pass filter with cut-off
frequency of 500 Hz and removed DC (constant) compo-
nent by use of Zero-Mean Normalization. As in the above
approaches the input signal was transformed to frequency
domain. The harmonics that occur during sliding were
classified by means of Majority voting algorithms (Figure
20 (d)).

Unlike the above approaches, Li et al. [79] recognized
the texture as an image through a contact pattern sens-
ing the GelSight sensor with a resolution of around 2 mi-
crons. The authors proposed Multi-scale local binary pat-
tern (MLBP) to classify high resolution tactile images (Fig-
ure 20 (e)).

Regardless the source of vibrations the applied com-
putational techniques can share common methods. In the
approaches proposed by Jamali et al. [142] and Fishel et
al. [22], the measured signal, which are acquired from a
piezoelectric and liquid pressure sensor, are filtered first
and transformed to the frequency domain. Metrics used
for the classification are different in these two approaches.
While, in the first approach, the authors used the Fourier
components as the metrics for a classifier, in the second
approach, one more step is taken to extract features that
represent surface properties as the metrics for their classi-
fier. The estimation of surface properties from the Fourier
components rather than using them directly as the metrics
give an advantage to the exploration procedures, because
the extracted features can be used to choose the next ex-
ploratory action (Table 7 which results in a higher recog-
nition rate.

The vibrations can be also represented by a combi-
nation of several variables, as for example, ratio between
the normal and tangential forces [140|. The variation of
the proposed metric represents the change of the traction
properties. Therefore, the used metric are not explicitly
related to the surface texture, which may result in not
perfect recognition process.

4.2.8. Contact pattern recognition

Object recognition from tactile arrays uses image pro-
cessing techniques [40]. Figure 21 (a) outlines the most
common steps in tactile contact pattern recognition: pre-
processing, feature extraction, and classification. As pre-
processing steps we consider the following operations: spa-
tial filtering, thresholding, and normalization of sensor
output values to the highest one. Image features can be
computed from tactile images by applying PCA, which
results in image moments (i.e. eigenvectors and eigenval-
ues) that provide information about contact area, center
of pressure, and orientation of line in the case of the edge
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Figure 20: Computational techniques applied in tactile texture recognition: (a) major flow chart of a texture recognition, including filtering,
Fourier Transform and feature extraction, and classification; (b) Fishel et al. [22] estimate surface roughness by calculating average spectral
power Power from N harmonics with amplitude P,.(n) and surface fineness A by comparing finger velocity v and frequency f; (c¢) Hongbin
et al. [140] estimate the dynamic friction model f¢ / fn and detect the variation from the estimated model, where f; and f, are the tangential
and normal forces, respectively; (d) Jamali et al. [142] use directly the Fourier components as the feature space for classification algorithm;
(e) Li et al. [79] use a Multi-scale local binary pattern, which is operator for texture classification, for contact pattern recognition exploiting
the GelSight sensor with a high spatial resolution that allow recognition of even very smooth textures.

contact type. An alternative way of extracting features
from a tactile image is to use Hough transformations [152].
This method is less reliable in extracting a straight line as
stated in [31] (Figure 22(a)), but can be effectively ap-
plied for the detection of circles in the image. Besides
geometrical elements, tactile image processing draws on
other image processing tools, such as contour detection
in order to achieve identification of more complex shapes
(Figure 22(b)). Rather than extracting features in spa-
tial units, one could extract image features represented
in the frequency domain by applying Fourier Transform.
Finally, these features serve as core for classification al-
gorithms. Scale-invariant feature transformation (SIFT),
which is mostly used in computer vision, can be also im-
plemented in tactile contact processing to extract features.

Schneider et al. [145] used the bag-of-features approach
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for tactile pattern recognition. In a preprocessing step, all
measurements are normalized to the sensor’s maximum
response to allow the recognition to be invariant to the
pressure level: Z € [0;1]**Y. Two tactile images noted
as I1(z,y) and Iy(z,y) are compared by computing the
Euclidean distance, d(I, I3) pixel by pixel:

ZZ'Il z,y) — I (. y)l,

and the distance between two observations, z1 and 22,
is calculated by taking into account the distance between
fingers, w, and the weighting factor, «, that represents
the contribution of changes in contact patterns and finger
distance:

d(Zl; 22) = % (d([i@ft;lleft) + d( Mght
+ (1 — Oé)*|u}1 — w2|’

d(Ii, Iz) = (3)

LD
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Figure 21:

Computational techniques applied in tactile contact pattern recognition: (a) major flow chart of contact pattern recognition,

including preprocessing, feature extraction, and classification; (b) Schneider et al. [145] normalize tactile image and calculate Euclidean
distance pixel by pixel (c) Hongbin et al. [94], (d) Goger et al. [24], (e) Pezzementi et al. [40], (f) Drimus et al. [49], (g) Hongbin et al. [148].
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Table 7: Types of actions for object identification [43] based on mul-

timodal tactile perception.

Exploratory| Control Feedback .Sensory
. . informa-
movements | variables signals .
tion
. . . . Fingertip
Pressure Flng.e?tlp Fingertip deforma-
Position force .
tion
Fingertip Fingertip
L 1 . . . .
gte;ra Velocity & | Velocity & | Vibrations
sliding
Force Force
Static Flng.e?tlp Local ('ie— Heat flow
contact Position formation
Hand joint | Hand joint | Hand joint
Enclosure o
torques torques positions
Lifting Arm' J.omt Arm. ‘].OlIlt Arm joint
position position forces
Contour Fingertip Local Fingertip
following Position contact position
where I'/* and 17" stand for tactile images from left and

right fingers of a gripper. The k-means unsupervised clus-
tering algorithm has been applied to get centers (centroids)
of each cluster (cj...c). The centroids serve to build a vo-
cabulary for the bag-of-features approach (Figure 21 (b)).
To verify the proposed techniques, the authors carried out
830 tactile observations with a 6x14 piezoresistive array
for 21 different objects.

Hongbin et al. [94] applied a three-layer Neural Net-
work to classify contact patterns. As in the above ap-
proach, an image is normalized to the highest value in
range zero to one. Then two more preprocessing steps
of resizing and thresholding operations were carried out.
The operation of resizing from a 5x9 to a 12x20 image has
been implemented by linear interpolation. The thresh-
olding operation provided at the output a binary image.
Both operations have been implemented to enhance the
tactile image since the sensor used in the paper was with
low spatial resolution. In order to get features for the
classifier, the authors calculated the number of repetitions
of the same image sub-patterns created by sweeping a 3x3
pixel-window (Figure 21 (c)). The efficacy of the proposed
approach has been verified on the recognition of 4 different
shapes, including edge, sphere, ring, and rectangle, with
40 tests for each shape.

In addition to thresholding, resizing, and normalization
of sensor values during the preprocessing steps, a contact
pattern could be also normalized spatially (normalization
of a contact pose) as was implemented by Goger et al.
[24]. The normalization of a contact pose is performed by
means of applying two-dimensional (p + ¢)*" order image
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moments, My, 4:
Mp,q = Z Z xprI(z7 y)a
r oy

where x, v, I(x,y), p, q are the two-dimensional coordinates
of each tactel in the image, pressure value, x-order, and y-
order, respectively. The authors carried out PCA to get
a reduced matrix formed by eigenvectors and applied k-
NN classifier in a recognition step. For benchmarking, 7
different contacts, including small point, large point, two-
point, full, edge, surface with hole, and waved surface,
have been acquired with a 4x7 array 10 times for training
and 10 times for testing. The use of PCA resulted in the
matrix containing eigenvectors of the size of 112 21 (d).

Pezzementi et al. [40] introduced Moment-Normalized
Translation-Invariant descriptor ( feature extractor ), in
which the two-dimensional spatial Fourier Transform has
been applied to image moments to add invariance to trans-
formations. The authors applied two different clustering
algorithms: k-means and GMMs; GMMs has shown a
higher recognition performance to the detriment of compu-
tational time. An image was normalized as well as in ap-
proaches described above. An algorithm similar to rapidly-
exploring random trees (RRT) has been implemented in
the exploratory stage. The recognition and exploration
techniques have been tested in simulation of 10 different
three-dimensional objects with 100 tactile images per ob-
ject. As in the above preprocessing steps, the images are
first normalized, resized by factor 2 to enhance the qual-
ity of the image due to the low resolution of 4 x 7, and
thresholded for calculation of image moments 21 (e).

As tactile contact patterns change with the time when
a robot squeezes a deformable object, one could extract a
set of features from a series of images from one tactile ar-
ray. Drimus et al. [49] proposed to use an explicit estimate
of an average pressure:

1
Pavg: mzm:zy:l(x7y)v

(5)

(6)

in which N, and N, are the number of sensing cells in
row and column of an array, and an implicit estimate of
contact area:

area = #ZZ(I(%Q) _Pavg)z (7)
Ny x Ny

as the features to recognize deformable objects. Then Dy-
namic Time Wrapping (DTW) applied to these features in
order to find the shortest path between two tactile images
from the same tactile sensor in two consequent moments
of time. As in the approach proposed by Schneider et al.
[145] and described above, the authors calculate the Eu-
clidean distance between two observations z1, zo. However,
the gripping distance is not taken into account and the dis-
tance between two observations is calculated by means of




DTW, applied on the features, when in the former ap-
proach the distance is directly calculated in image space:

(8)

Similar to Goger et al. [24], the k-NN classifier has been
carried out in a recognition step. It was shown that a
robot exploiting the above algorithm could distinguish a
spoilt fruit from a fresh fruit by applying palpations with
a two-fingered gripper and an 8x8 sensing array (Figure
21 (f).

In [148], instead of converting a tactile image to a bi-
nary image, authors apply PCA to a pressure profile and
extract orthonormal eigenvectors in the three-dimensional
space. In addition to these vectors (3 principal axis of
a profile), convexity and concavity of the pressure profile
are estimated by comparing a pressure value at a centroid
(center of pressure) and its surrounding area. Then con-
tact patterns are classified by applying naive Bayes ap-
proach to this set of features. Pressure values are normal-
ized and scaled to the range that is equivalent to that of
the number of sensing cells in x and y. Benchmarking has
been performed on recognition of 6 contact patterns with
a 5x9 sensing array (Figure 21 (g).

A rather high precision, 0.14mm, in localization of an
object in a hand has been achieved by use of GelSight sen-
sor [149] and by means of Binary Robust invariant scalable
keypoints (BRISK).

Several approaches use the same preprocessing and fea-
ture extraction methods as it can be noticed from Figure
21. When the spatial resolution of sensing arrays is not
high enough, the contact image is resized and augmented
by various interpolation methods (Figure 21 (c, d)). Then
the features can be extracted with a higher accuracy.

In the most of the cases, only the shape of the contact
pattern is of importance and, therefore, pressure values can
be normalized. However, it is not applicable in recognition
of deformable objects (Figure 21 (f)), because pressured
values used to estimate an average force.

Thresholding operation that result in a binary image
improves performance of feature extractors and used in the
approaches, in which two-dimensional PCA is applied to
get metrics for classifiers (Figure 21 (d, e)). In the cases
when the Euclidean distance between tactels is used as the
metric (Figure 21 (b)) or the three-dimensional contact
profile is of importance (Figure 21 (g)), the thresholding
operation can not be used.

d(z1,22) = DTW(P,,,, P7,,).

avg>’

4.8. Tactile Servoing

Humans often perform tactile servoing actions almost
subconsciously, for example, when they search in a pocket
a key. In cases when visual information is not available,
the motor responses are coupled with tactile feedback only.
In autonomous robot control theory, tactile feedback can
be used to servo objects. The concept of tactile servoing
is analogous to image-based visual servoing [153|, [154].
Robot motion driven by tactile feedback was implemented
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(@)

(b)

Figure 22: Contact pattern recognition and feature extraction from
a tactile image: (a) extracted feature of contact edge based on image
moments (blue line) and hough line transform (red line) [31]; (b)
geometrical shape derived from the tactile image: original tactile
image on the left and detected contour on the right [133].
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Figure 23: General control framework for dexterous manipulation
[157]. The path of information from command through control laws
to application on the dexterous hand using object impedance control
for rolling manipulation is shown. The highlighted blocks can be
replaced with tactile servoing control laws.

by Berger et al. [155] and then extended to tactile servo
concept by Sikka et al. [156] in the early 1990s. However,
tactile servoing is not well investigated, which is partially
due to the fact that tactile perception technology is not
as well developed as vision technology. A good resolution
and a high number of tactels in tactile array are needed to
improve the performance of tactile servoing algorithms.

In dexterous manipulation tasks, tactile servoing can
be assigned to the middle level of the control architec-
ture as proposed by Okamura et al. [157] for dexter-
ous end-effectors. The authors determined three levels
of control for dexterous manipulation: low-Level is for
impedance and active compliance control, kinematics, and
forces; mid-Level is responsible for manipulation phases,
transitions between the manipulation phases, and event
(i.e. contact) detection; high-Level is dedicated to plan-
ning a task and choosing a grasp (Figure 23).

In the current state-of-the-art, tactile servo schemes
have been proposed for only planar end-effectors with sin-
gle tactile array [31], [158]. Objects in the real world can
have many different shapes, but the types of contact that
have been detected so far are limited to a few particular
cases: plane on plane, line on plane, and point on plane.

An example of a basic tactile servoing control architec-
ture is shown in Figure 24. The motion planner specifies
the desired contact state, S;. Extracted features from the
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Figure 24: Architecture of a tactile servoing controller [158]. The
tactile feature extraction processes the contact information and pro-
vides features to control. Desired contact state, Sy, is compared
with the actual contact state, So. Sq is derived from actual tactile
feature,F,,. The errors in the contact state space are transformed to
the joint space of a robot.

tactile sensor, F,, are transformed to actual contact state,
S, when inverse sensor model is available; then S, is com-
pared with S; to generate the error. If an inverse sensor
model is not available, then the Tactile Jacobian is needed
to relate the variation in the tactile feature vector to that
in the contact state. The tactile servo solver generates an
error, dS, and informs the planner about the adjustment
of the desired contact state. The contact model block is
dedicated to transform the changes from the contact fea-
ture state to the position of the robot’s end-effector dX in
the task space. Finally, the Robot Inverse Jacobian is ap-
plied to calculate the robot’s joint values df from the error
of the end-effector position in Cartesian space. The robot
joint angles calculated via tactile feedback are expressed
as follows [159]:

Ot +1)=06(¢) +deb,

do = J,tdX,

X5 — Xa(t) 9)
dX = w(t < Tiey),
Xalt) = [ (Fa(t)),

where 6(t) and 6(t + 1) are the actual and calculated joint
angles, df is the error in joint angles, f:1(-) is the inverse
tactile model, J, '(-) is the robot inverse kinematics, X,
is the actual Cartesian position of the robot end-effector,
X is the desired final position, T, and t are the period
of time within which the robot reaches its final position
and time.

In [31], this tactile servo controller is extended by im-
plementing a selection matrix for combining various ser-
voing tasks, i.e. following an edge with a tactile array
attached to the planar end-effector or aligning the orienta-
tion with a detected edge. The inverted task Jacobian was
introduced to transform errors in the space of tactile im-
age features into errors in a motion twist in the Cartesian
space. Unlike the feature extraction through inverse tac-
tile sensor model in the former control scheme, tactile fea-
tures in the latter one are extracted using image processing
techniques such as PCA and Hough transformations. The
extracted tactile image features are then transformed to
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Figure 25: Block diagram of position-based force control using tactile
sensors [39]. The position of a hand is modified according to the
measured force and detected slip signal. The slip signal increases
the desired force. qg4, ¢y, and q are the desired joint angle, modified
desired joint angle, and actual joint angle, respectively. fq and f are
the desired and actual forces. The desired force increases when the
dynamic sensor detects vibrations.

motions:

- positional deviations are mapped into tangential motions
in x- and y- directions w.r.t the sensor frame;

- normal forces are mapped to motion in z-orientation w.r.t
the sensor frame;

- rotational error is mapped into rotational velocity around
z-axis w.r.t the sensor frame.

In [23], tactile information from a fingertip of the iCUB
humanoid robot is used to follow an edge of an object by
performing palpations. It was shown that the robot could
follow sophisticated contours when the recognition of the
contact pattern was performed after each palpation.

As the touch driven control algorithms are important
in exploratory actions, tactile servoing plays an essential
role the exploration of unknown objects. However, due
to imperfections of tactile sensing arrays, difficulties in in-
tegration of these arrays, and computational costs, which
impede to process the data to use within the control loops.
Tactile servoing [155] has been implemented on planar end-
effectors only [31].

4.4. Force Control with Tactile Sensors

In the robotics literature, tactile feedback, being mainly
used for event-driven manipulation [124], has been rarely
employed inside a control loop because of the noisy signals
coming from tactile sensors [8]. Most of the research in
force control with dexterous hands is aimed at controlling
the grasping force in order to achieve a stable grasp (Sec-
tion 4.1). Li et al. [31] control the normal force to keep
the robot in contact with an object during the edge ser-
voing task. Force and a Center of Pressure of the contact
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Figure 26: Surface contour following using the contact sensing finger
(control diagram). [160]. Rangeges(|fa|r) is a range of the desired
force,(| fn|m) is the measured normal force, (|fnl|r) is the friction
cone, (fn) and (f:) are the normal and tangential forces, P is the
contact point location, and (J~1) is the robot’s inverse kinematics.

Figure 27: Hand with ellipsoid f/t sensors following a surface (the
red dashed line) [104].

pattern are estimated by following equations:

c=f"1D fiei

,JER

F= fi

i,JER

(10)

where c¢;; are the discrete coordinates of the tactels, f and
fij are the total force and force of each tactel, respectively,
and R is the number of tactels in x- an y-directions.

Theshigivara et al. [39] obtain signals from both a
dynamic tactile array and a Center of Pressure (CoP) tac-
tile sensor to control the grasping force (Figure 25). The
desired force fy increases proportionally to the spectral
power of the vibrations that occur during the slip. Vibra-
tions are measured by dynamic tactile sensors. The actual
force, which is measured by CoP, is then subtracted the
modified desired force. The desired joint angle qg is then
calculated according to the force and vibrations.

In [38], tactile information derived from omne type of
tactile sensors only is used to control both grasping force
and slippage. The contact force is calculated according to
equation 10. During grasping, the desired force is com-
pared to actual forces of tactile sensors. In the lift and
hold phase, the applied force increases proportionally to
the actual force at each instance of the slip signal.

The above force controllers are used to ensure stable
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grasping. Another application of tactile sensors in force
control include the surface following motion. Following
unknown surface is an essential task to explore objects.
An advanced fingertip sensor with capability to measure
contact point locations, e.g. [104], could be used to ac-
complish such type of tasks. When the contact surface of
a fingertip is known, the contact location with the environ-
ment can be estimated by measuring forces and torques in
SE(3) [160]. A desired friction cone is given, and if the
normal force Fn is smaller than the smallest value of a
range, a finger moves towards the contact, and vice versa.
If the F,, is in the range, then the finger moves in the slid-
ing direction only. Errors in contact locations and forces
are transformed to joint angles ¢ through Jacobian matrix
J (Figure 26). A result of exploiting the controller for fol-
lowing a surface with a fingertip of a robot hand is shown
in Figure 27(red dashed line).

5. Conclusions and Future Research

Applications of tactile sensing in autonomous manipu-
lation and research trends in this field over the last two
decades have been reviewed. The major tactile sensor
types and computational techniques have been discussed.
Table 8 summarizes and compare the usefulnesses of dif-
ferent tactile data types in the reviewed robot hand appli-
cations.

Despite all the advances in sensor technologies and
their integration in robotic hands (described in Sections
2 and 3.1) and the development of new techniques to pro-
cess and interpret the data provided by them (described
in Section 4), there is still a wide scope of investigation in
the field of autonomous dexterous manipulation based on
tactile sensing. Research to be undertaken in the future
includes the following:

1) Design of dexterous robot hands with integrated tac-
tile sensors. Wires can be routed within the structure of
the robot hands to ensure efficient connection of embed-
ded sensors. The non-linear frictions in the tendon driven
robot hands and backlash of the actuators should be re-
duced to enhance manipulation performance. In the case
of electric robotic hands, tactile sensors are usually af-
fected by the noise of the electric motors actuating the
fingers [22]. In addition, mechanical vibrations transmit-
ted by the motors can interfere with vibration-based sen-
sors [38] for slippage detection. Therefore, new materials
(such as the fluidic hand [24]) and new isolation solutions
should be considered in order to remove these problems.

2) Multimodal object recognition exploiting geometric
model of the robot hands. Presence of multimodal infor-
mation requires algorithms that combine different percep-
tion modalities. Fusion of visual and tactile data can be
used for more precise estimation of the robot’s pose in the
world [161]. By considering tactile sensing arrays and the
structure of the hands, the shape recognition process can
be significantly accelerated compared to the single con-
tact tactile shape recognition when only one tactile sensor



Table 8: Advantages and disadvantages of the major tactile sensor types in the robot hand applications. Advantages and disadvantages are noted as "+" and "-", respectively
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explores an object surface. However, most of the tactile
object recognition approaches do not take into account
complex hand geometry so far.

Moreover, finding common features between visual and
tactile sensing modalities is a key point for smooth transi-
tion from visual-based to tactile-based control during the
exploration of unknown objects.

3) Reactive behavior with dynamic data. Although
force control algorithms (for example, hybrid position/force
control by Raibert and Craig [162]) have been investigated
since the early 1990s, there are a lot of unsolved problems
in grasping and autonomous manipulation tasks. In ex-
perimental results from the DARPA Autonomous Robotic
Manipulation program, Righetti et al. [2] have shown that
the robot could not react fast enough to unexpected dis-
turbances, an issue related to reactive behaviors. This
problem can be solved by dynamic tactile sensing, as it
was reviewed in section 4.1.2. Grasping based on the anal-
ysis of vibrations can be applied to address the problem of
reactive behavior.

4) Measurement of tangential forces. Slip detection
techniques based on friction force models do not suffer
from frequency interference as do vibration-based tech-
niques. However, friction force models require measure-
ments of both the normal and tangential reaction forces,
which cannot be retrieved from most of the pressure sens-
ing tactile sensors.

5) In-hand manipulation algorithms for both rigid and
deformable objects. In-hand manipulation has become in-
creasingly important in recent years. This task requires
a lot of computational effort, since the number of DoF of
the dexterous robot hand is as much as the whole body
of a humanoid robot. In-hand object manipulation is not
sufficiently addressed by current research and is one of the
areas that warrants further investigation.

Future research work in dexterous manipulation should
be focused on the investigation of autonomous control al-
gorithms that comprehensively use tactile feedback by ap-
plying tactile servoing and force controls, as well as on mul-
timodal object recognition and tactile-based stable grasp
estimation in order to enhance the performance of dexter-
ous manipulation and allow robots to operate in real world
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