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Introduction

Currently, with the progress of genetic research, more and 
more predispositions to hereditary diseases are discovered. 
As pangenomic analysis (genome-wide screening) cannot be 
realized routinely - partly for ethical reasons - it is necessary 
to predict which genes are the most likely to be mutated and 
then perform targeted genomic analysis.

In the oncogenetic routine, pedigrees are frequently used to 
diagnose hereditary predispositions. These contain two kinds 
of data: first the genealogy, i.e. the relations between members 
from which for example fertility and mortality parameters can 
be calculated and second, possible clinical information that 
may characterize the phenotype of a hereditary predisposition 
to a disease.  Overall, both types of information are necessary 
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Background: Cancer has always been a major domain requiring progress in statistics, methodology and bio-informatics.  
Oncogenetic, focusing on the relationship between genetics and cancer, is particularly concerned with “big data” issues, which 
includes genealogical pedigrees: their special structure – made of relations between members and possible clinical annotations 
- is too complex to be directly used for statistical purpose. This article describes a way to condense pedigrees so that they can be 
handled more easily and compared together. 

Method: our approach aggregates the genealogical and clinical information of pedigrees containing many generations.  
Condensed pedigrees, called “subtrees”, are composed of basic 2 or 3-generation pedigrees: for one whole pedigree, a subtree 
is calculated by the mean of all basic pedigrees it contains. These subtrees can then be grouped together for different subsets of 
families (for example breast/ovarian cancer families with or without BRCA mutation carrier). Such a grouping named “profile”, 
besides its reduced structure, is particularly interesting because for each studied characteristic, means and standard deviations 
are available. Moreover, distances between each subtree and various profiles can be calculated and used as a discriminant index.

Results: Subtrees and profiles were validated using a subset of 454 families (22.348 members) with a Lynch syndrome: in 84, at 
least one member carried an MMR deleterious mutation. Two profiles were computed depending on the presence or the absence 
of MMR mutation in the families. An ROC analysis showed that distances between each family subtree and both profiles were 
significant predictors for MMR mutations. 

Conclusion: Subtrees and profiles show interesting discriminant properties to study pedigree data. This method seems suitable 
to search for population differences between monogenic cancer risk models and multigenic ones.
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for the discovery of new deleterious mutations. Indeed, they 
enable to isolate pedigrees with special characteristics like 
the occurrence of typical cancer locations. Once this step is 
achieved, gene analysis on available DNA samples can be per-
formed with increased chances to point out one or more muta-
tions possibly responsible for the phenotype. 

Unfortunately, oncogenetic pedigrees are usually too complex 
to be analyzed other than visually. To solve this issue, some  
authors limit their inquiry to smaller pedigrees (only 3 to 4 
generations) [1]: although easier, this solution appears in fine 
deleterious because of the loss of phenotypic information 
that is spread all over generations. Another way to evaluate  
cancer or mutational risks of one family is to calculate scores.  
Concerning breast/ovarian cancer risk, different authors have 
developed indexes upon pedigrees such as Manchester [2], 
Eisinger [3] or BRCAPRO [4]. This kind of index combines 
clinical parameters included in pedigrees that, after a logistic 
regression, have kept a sufficient significance (i.e. for Manches-
ter score, only breast, ovarian, prostatic, pancreatic cancers  
reported in the family are used). But these methods only  
concern a reduced set of familial predispositions and limit 
the analysis to only a small part of pedigree data, mainly the  
occurrence of cancers within the family. We have exten 
ded such a research to uncommon information. It enabled us 
to conclude that fertility parameters could also help predict 
these risks [5]. However, much work still remains because 
first, the indexes available to calculate the familial risk of  
mutation are only adapted to breast/ovarian cancers and second,  
because known mutations account for only a minority of cancer  
predispositions: improving the way to select specific  
sub-groups of families is thus a necessary step for narrowing 
the research of new deleterious mutations to a reduced set of 
genes. 

In the literature, if we except indexes, no efficient methodology 
enables to a group or compare pedigrees. Specialized pedigree 
software exists but they concern animals [6,7] and they focus 
on the inbreeding level.

The approach proposed in the next chapter is a model-
ing of pedigrees into “subtrees”, i.e. family representations  
condensed into two or three generations by aggregating the 
information of all family members from all generations.  How 
to create profiles (global subtree for several families togeth-
er presenting similar characteristics) is the matter of anoth-
er paragraph. Finally, the use of profiles and subtrees will be 
demonstrated within a sample of 454 families at colon cancer 
risk extracted from the database of the Oncogenetic Depart-
ment of the comprehensive anticancer Center Jean Perrin. 

Methods

Description of pedigrees

A specialized function of the SEM software [8] has been  

developed to automatically shape the pedigrees (Figure 1).

 
Figure 1. Example of a simple pedigree (males are represented by 
a square and females by a circle. Every striped symbol represents a 
deceased individual and ones filled with black indicate a cancer).

Most symbols used to draw pedigree are common and have 
been recommended in the pedigree standardized nomen-
clature edited by Bennett et al. [9,10]. The «proband» is the  
person who requests the creation of the medical file. The  
proband, in the example (Figure1), is a woman: she is represent-
ed by a circle and pointed by a blue arrow. The pedigree is shaped 
with all the individuals who are related to her. Throughout this 
article, we will use the family represented in Figure 1 as an  
example. The Jean Perrin Center database contains families 
that include sometimes more than 600 members, consequently  
visual analysis becomes difficult and new representation types 
are necessary.

Modeling subtree method

The underlying structure of a pedigree is a reduced 2 or 3-gen-
eration pedigree that cumulates the information from all  
family members. These structures must be distinguished from 
pedigree branches (for example the paternal and maternal 
branches of a proband): branches try to isolate members of a 
pedigree carrying a particular genotype while subtrees gather 
reduced patterns that occur several times within a pedigree 
or a branch.  Three models are considered: a 2-generation  
subtree, a detailed 2-generation subtree, and a 3-generation 
subtree.

2-generation subtree

The way to constitute this 2-generation subtree is to find 
each pair of [mother or father]/ [son and daughter]. Male and  
female headers (parents) are separated because men and 
women are not exposed to the same cancer risk. With these 
pairs, all the information needed for the construction of the 
2-generation subtrees is available in the database and can be 
collected and aggregated as many times as pairs are available.



Once the individuals constituting subtrees are identified, all 
useful information is collected from clinical data registered 
in the database. The combination of the information for each 
item of the 2-generation subtree ends up with 6 composite 
“family members”. They cumulate the following information:

- number of female headers 
- number of male headers 
- number of males from the female header 
- number of females from the female header 
-  number of males from male header 
- number of females from the male header 
 
- number and patient’s age at the diagnosis of following  
cancers: 
         - breast male and female 
         - ovarian  
         - endometer  
         - prostatic  
         - colon 
         - pancreatic 
         - other cancers (cumulative) 
         - number of members without cancers

 
Although this list includes already 104 variables, it can be  
extended if needed.

With this 2-generation subtree, all the information is  
condensed whatever the size of the family and it becomes  
easier to compare 2 or more families. The proportion of  
cancers by location is represented by a pie chart within circles 

From the proband, we can find his/her parents, then the  
parents of proband’s parents, and so forth. Once members at 
the top of the pedigree have been identified (numbered 9, 10, 
24 and 25 in Figure 1), we can browse down the pedigree to 
keep only genetically related members: children of top mem-
bers can be selected, then children’s children and so on until 
the most recent generation. 

This pruning process excludes a few members who are not 
supposed to bring genetic information about the cancer risk. 
Else their presence would “feed the background noise”, and  
increase uselessly the overall variability (i.e. lower the preci-
sion of estimates). Pruned members are:

- all spouses who do not provide information about their par-
ents (numbers 2, 6, 13, 15, 17 and 22) 

- Childless members (numbers 11, 12 and 18)

- Latest generation members, they are usually too young to 
have children (numbers 14, 16, 20 and 23)

Finally, each pair “parent/child” can be deduced, keeping in 
mind that one person can be used as a parent as well as the 
child.

With this selection process, four male headers (numbers 9, 19, 
21 and 24) and eight female headers (numbers 1, 3, 4, 5, 7, 8, 
10, 25) are identified. Twelve 2-generation subtrees are thus 
available into the pedigree of figure 1 and a resulting subtree 
can be built. Basic 2-generation subtree is shaped as in figure 
2.
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Figure 2. Basic structure of 2-generation subtree built from the pedigree of Figure 1.



and squares at each level (Figure 2):

For the pedigree of figure 1, following characteristics are  
calculated by the software:

         - 8 female headers: 3 breast cancer (occurring in aver-
age at 49 years), 1 colon cancer (73 years) diagnosed and 50%  
without cancer

• 6 male children: 1 liver cancer and 1 ORL cancer, so 2 “other 
cancer” (70 years) diagnosed and 67% without cancer

• 8 female children: 3 breast cancer (49 years), 1 colon cancer 
(73 years) diagnosed and 50% without cancer

- 4 male headers: 1 lung cancer (48 years) diagnosed and 75% 
without cancer

• 4 male children: 1 liver cancer and 1 ORL cancer so 2 “other 
cancer” (70 years) diagnosed and 50% without cancer

• 2 female children: 1 colon cancer(73 years) diagnosed and 
50% without cancer

2-generation subtree with details about children

One might wonder if the birth rank may influence the risk for 
particular events (example, congenital malformations). This 
rank is available if dates of birth are known and the number 
of 1st boys, 1st girls, 2nd boys, etc. can be computed per head-
er. Only four children of each gender are retained, this enables 
to include a maximum of 8 children which is usually enough 

for most families. Another data is also interesting: childless  
members and miscarriages, which are also included in this  
detailed representation.

The member selection process does not differ from the one 
used for the 2-generation subtree. The same exclusions apply 
here and headers remain unchanged.

Figure 3 exhibits the basic pattern concerning figure-1  
pedigree: circles still represent females and squares males. 
For children, the 4 first vertical lines correspond to children’s 
rank (born first, born second...) and miscarriages (if any) are  
positioned at the 5th rank using a lozenge (none in fig. 
3). The size of squares and circles is proportional to the  
number of children for each item. The length of the vertical lines  
connecting parents to children depends on the parental mean 
age at their children’s birth. Proportions of childless adults have  
represented aside headers using squares and circles with 
a cross. Proportions of persons diagnosed with a cancer are  
represented underneath for the children with the same  
color-code as in figure 2.

3-generation subtree

To highlight possible “variations” of intergenerational  
cancer transmission, we decided to shape a 3-generation  
subtree. This 3rd synthetic representation includes 3 generations  
instead of 2: triplets are now identified, with parents/ 
children/grand-children for both genders at each level. The 
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Figure 3. Example of a 2-generation subtree with detailed information by children’s rank.



same process is applied to the members’ selection and the 
same information as previous 2-generation subtrees are  
collected. Figure 4 shows the basic structure of such a repre-
sentation drawn for our family example. 

Two recent articles [11,12] have reported that cancers, in 
mutated families, tended to appear at an earlier age over  
generations, i.e. daughters had breast cancers sooner than 
their mothers. Narod [13] suggested this could happen  
because daughters’ exposure time is necessary shorter and 
late cancers have not enough time to occur. We thus decided to 
add a correction so that intergenerational comparisons would 
not be biased by differences of elapsed lifetime (this consider-
ation seems less relevant in 2-generation subtrees because of 
the number of generations available in our pedigrees).

Correction of the cancer proportions at each level is made  
according to the average exposure time in “person-year”.  
Following ages are accumulated for each generation:

- the age of living persons without cancers (or age at death)

- the age at cancer diagnosis for other persons

Once the average age is calculated in person-years (P-Y) per 
generation, the cancer frequency of the Nth generation is  
multiplied by the ratio:

Average age in P-Y for the N-1 generation 
Average age in P-Y for the N generation

Combining several subtrees to create group profiles

A new concept needs to be introduced if several subtrees are 
to be grouped together in order to constitute “family profiles” 

or “group profiles”. Concerned families are selected when they 
present particular characteristics. For example, one might 
want to design a specific profile for BRCA mutated families,  
another one focusing families with several lung cancers, or in 
a completely different domain, families where several suicides 
are reported, and so on.

We have to choose between the three representations of  
subtrees. The first one, 2-generation subtree, seemed to be 
the more suitable to create these profiles because both other 
representations scatter too much the information (i.e. multiply 
the number of characteristics per subtree and thus diminish 
the density of parameters).

Three steps are necessary to build such profiles: 

- First, families with the chosen characteristics are selected 
and grouped into a set: this step depends on each software/
database that contains the family records. 

- At the second step, subtrees are designed for each family of 
the set, including as many characteristics as needed. 

- At the last step, all the information per subtree is combined 
into a more global object: for this, average and standard de-
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Figure 4. Basic structure of 3-generation subtree from the family of figure 1.



viation are calculated for each variable (i.e. personal, familial 
or clinical characteristic of interest) and registered in a new 
table of the database. The set of averages and variances per 
profile corresponds to a multidimensional object which can be  
represented by a barycenter surrounded by a “cloud of points”.

This group of distribution parameters can then be used to 
realize statistics, to compare several profiles, to calculate the 
distance between them and a new subtree and also identify 
particular families’ subset.

Statistical considerations

Several statistical tests are used in this study. Distribution  
parameters (mean and standard deviation) characterize  
numerical data and numbers / frequencies categorical  
variables. Best cutoffs optimizing sensitivity and specificity of  
predictive parameters are calculated using an ROC analy-
sis [14] while the performance of associated ROC curves is  
evaluated using their area under the curve (AUC) [15]. To 
build a score predictive for MMR mutation based on standard  
parameters cited in the literature, a logistic regression model 
was performed. The corresponding predictive score was calcu-
lated using its regression formula.

Results

An example of the use of subtrees and profiles is detailed  
hereafter. We first describe some characteristics of two  
profiles and then, we explain how these profiles can help  
predict the mutational risk.

Description of the family set (454 Lynch syndrome)

The accrual in our pedigree database started in 1988. Today 
it contains 6,500 families including over 190,000 individuals 
with clinical information (family diagnosis, mutated gene if 
any...). Most of these families correspond to a breast/ovarian 
cancer risk. Another important group represents the Lynch 
syndrome (or HNPCC = hereditary nonpolyposis colorec-
tal cancer). Less than 20% of families diagnosed with this  
syndrome will present a mutation in APC gene or one of main 
MMR genes (MLH1, MSH2, MSH6, PMS2). Thus, even using 
NGS analyzers, a systematic sequencing of all 5 genes is not 
relevant. Up to now in Lynch syndrome, no good algorithm  
developed using pedigree information can predict with a good 
accuracy the mutation probability [16]. Two main algorithms 
exist, but they have weak predictive properties: Amsterdam 
index [17,18] with sensitivity around 80% and specificity of 
46% and 68% across studies,  and the revised Bethesda index 
[19] associated with a 89% sensitivity and 58% specificity; to 
increase the prediction strength of these indexes, two comple-
mentary tests can be performed on blood sample: an Immu-
no-Histo-Chemical test (IHC) and a microsatellite instability 
test (MSI). They enable to bring up sensitivity and specificity 
to values close to 100% but they are not cheap. We thus decid-
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ed to check if profiles could help us develop a new strategy and 
enable to avoid the intermediate use of IHC/MSI test.

Two profiles have been calculated among families present-
ing with a Lynch syndrome. The first profile corresponded 
to 84 mutated families, with at least one member diagnosed 
with a deleterious mutation in APC gene or on a “mismatch 
repair” gene.  The second included 370 families without any  
member diagnosed with such mutations. All families needed 
also to contain at least 10 known members to be sufficient-
ly informative. Respectively 4,218 and 18,130 individuals  
belonged to these two profiles.

Means and SD were computed for about 100 parameters,  
respectively 23 and 21 per “synthetic” subtree mother or  
father and 14 or 12 per “synthetic” daughter or son (mothers’ 
daughters, mothers’ sons, fathers’ daughters, fathers’ sons) 
and 8 familial fertility scores: the number of features differed 
by gender because some cancers are gender-specific (pros-
tate, ovaries) and fertility parameters are calculated only for  
subtree headers. Some of these features are presented in table 
1 (mainly of the female header).

Obvious differences can be noticed between both profiles, 
in particular regarding ages at colon cancer diagnosis for 
both mothers and fathers (table 1). Cancer frequency is also  
doubled in fathers if a known deleterious mutation is  
diagnosed in their family.

Distance calculation between a profile and a subtree

Profiles enable statistical computations. A first method is to 
calculate distances (Fig. 5) between profiles and a new family 
(i.e. a subtree), in order to find the nearest one. Profiles can 
be represented as a cloud with a barycenter (average) and a 
width (using standard deviations). 

The spreading of the cloud can be figured by a disk and its  
radius by a double arrow between the center of the cloud and 
the edge. A new subtree corresponds to a new cloud which 
standard deviation is null, thus a point. Two kinds of distance 
were envisaged: Euclidean and correlation coefficient.

Several measures are possible:

- D = Distance between the center of the cloud and the new 
family (Figure 5, double arrow between the center of the cloud 
for profiles 1 and 2 and Subtree X)

- d = distance between the extremity of the cloud and the new 
family (Figure 5, the double arrow between the extremity of 
clouds (profiles 1 and 2) and Subtree X)

- R = ratio between the distance D and the associated cloud 
spreading (Standard Deviation) = D / SD



A previous comparison of the predictive values for BRCA  
mutations of each calculation mode among a very large sample 
of breast/ovarian cancer-prone families showed that the first  
Euclidean distance D performed slightly better than  
other methods (results not shown). We used the ratio D1/D2 
to study its discriminant power for MMR mutations. An ROC 
analysis was performed to compare this result with a logis-
tic regression calculated on best known significant clinical  
predictors. Figure 6 presents the two results:

The ROC analysis calculated using the ratio of Euclidean  
distances between subtrees and both profiles is associated with 
a good AUC (area under the curve) = 0.76 [0.70; 0.81], a 71% 
sensitivity and a 72% specificity. The positive predictive value 
(PPV) is limited = 38% while the negative one (NPV) is rather 
high = 91%. Overall 72% of families are well classified (70% 
of mutated families and 72% of not mutated ones). Prediction 
of mutation by the logistic regression selects only 5 clinical  
parameters calculated per the whole family (independent-
ly from filiation): the number of colon cancers, lower age at  
colon cancer, the number of endometrial cancers, prostatic 
cancers,and multiple cancers, this latter parameter diminish-
ing the likelihood of an MMR mutation. The regression formula 

Figure 5. Distances between profiles and a new family X.
 
associated with these clinical factors yields a slightly better 
ROC curve (blue curve in figure 6, difference p < 0.01): AUC 
= 8.5 [0.79; 0.90], sensitivity = 80%, specificity = 80%, PPV = 
48% and NPV = 95%. Well, the classified rate is 80% overall 
and for each subgroup. Despite the superiority of the well-ad-
justed regression model, profiles that require neither selection 
nor hypothesis on covariates, appear to possess interesting  
discriminant properties with a fair ROC AUC (> 0.70). 
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Profile 1 (N = 84) 
MMR mutated families 

Profile 2 (N = 370) 
Families without MMR mutation 

Label Mean Standard 
Deviation Mean Standard 

Deviation 

Header Female (number per subtree) 7.94 5.10 7.43 5.54 
Mothers' sons (N) 1.18 3.76 1.14 3.90 
Mothers' daughters (N) 1.08 3.50 1.17 3.98 
Childless women (N) 2.45 3.09 2.77 3.01 
Mean mothers' age at daughters’ birth  27.55 5.93 28.04 6.50 
Mean mothers' age at sons’ birth  27.36 6.24 28.24 6.57 
Mothers' age at 1st daughter’s birth 25.11 5.23 25.64 5.79 
Mothers' age at 1st son's birth 25.58 5.52 26.09 6.21 
Mothers' colon cancer frequency 0.13 0.53 0.09 0.39 
Mothers' age at colon cancer  53.92 15.76 58.14 16.23 
Mothers' breast cancer frequency 0.07 0.43 0.06 0.35 
Mothers' ovarian cancer frequency 0.02 0.14 0.01 0.12 
Mothers' pancreatic cancer frequency 0.01 0.09 0.01 0.09 
Mothers' endometer cancer frequency 0.07 0.42 0.02 0.22 
Other cancer frequency  in mothers 0.15 0.68 0.13 0.58 
Not documented cancers in mothers 0.08 0.43 0.07 0.37 
Fathers' colon cancer frequency 0.21 0.80 0.10 0.44 
Fathers' age at colon cancer  50.82 14.30 59.56 13.21 
 Table 1. Example of characteristics (among 104 available) calculated for 2 groups of families at colorectal cancer risk.



Figure 6. ROC curves comparing the predictive value for MMR  
mutations of best regression model and the ratio. of Euclidian  
distance between profiles (difference between curves: p < 0.01).

Discussion

Pedigrees used in oncogenetic contain a large amount of 
clinical and biological information. Besides, large pedigrees 
provide complementary information, in particular regarding  
natality/fertility. This approach by “subtrees” represents a 
helpful solution to use more widely all available data whatev-
er the size of pedigrees. Standardized and synthetic subtrees  
allow performing statistics on pedigrees, to build standard 
profiles according to specific characteristics and give indi-
cations about familial mutation risk. With the creation of  
profiles, the comparison between a new family (a single  
subtree) and various profiles becomes possible. This approach 
in our example concerning HNPCC predisposition, although 
not optimal, enabled to well classify most members carry-
ing an MMR mutation without requiring hypothesis and/or  
restriction about selected criteria. 

In the future, geneticists could gain time trying to “categorize” 
families with this method: they could be more specific when 
choosing which gene to sequence. We intend to test how the 
use of subtrees and profiles may help confirm or contradict, 
within our breast/ovaries cancer-prone families, a hypothesis 
regarding a monogenic or multigenic etiology.

A current weakness of our computer program is that it is 
only compatible with SEM software, used almost exclusive-
ly in the Jean Perrin Comprehensive Cancer Center. It should 
be re-developed for different working environments. The  
Microsoft Visual Basic source code is available on request to the  
corresponding author. 

The purpose of our work was to contribute to the study of 
familial risks for any type of cancer, in relation to known or 
unknown deleterious mutations. Of course, such an approach 
may also be considered for other purposes than mutational 
risk prediction. 
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