
HAL Id: hal-01661182
https://uca.hal.science/hal-01661182

Submitted on 11 Dec 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Automatic Discovery of Topologies and Addressing for
Linear Wireless Sensors Networks

Moussa Déthié Sarr, François Delobel, Michel Misson, Ibrahima Niang

To cite this version:
Moussa Déthié Sarr, François Delobel, Michel Misson, Ibrahima Niang. Automatic Discovery of
Topologies and Addressing for Linear Wireless Sensors Networks. Wireless Days (WD), 2012 IFIP,
Nov 2012, Dublin, Ireland. pp.1-7, �10.1109/WD.2012.6402801�. �hal-01661182�

https://uca.hal.science/hal-01661182
https://hal.archives-ouvertes.fr

Automatic Discovery of Topologies and Addressing for Linear

Wireless Sensors Networks

Moussa Déthié Sarr1,4, François Delobel2,3, Michel Misson2,3 and Ibrahima Niang4

1Clermont Université, Université Blaise Pascal, LIMOS,

BP 10448, F-63000 Clermont-Ferrand, France
2CNRS, UMR 6158, LIMOS,

F-63175, Aubière, France
3Clermont Université, Université d’Auvergne, LIMOS,

BP 10448, F-63000 Clermont-Ferrand, France
4 Université Cheikh Anta Diop, LID,

BP 5005, Dakar, Sénégal
Emails: {sarr,delobel,misson}@sancy.clermont-universite.fr, iniang@ucad.sn

Abstract

Wireless sensor networks are a collection of sen-
sor nodes that collaborate to sense a specific
event in a given environment. When sensors
monitor a structure organized linearly (e.g.,
pipelines, rivers, railways), they are organized
in Linear WSN (LWSN, constituted by con-
nected portions of lines), with different prop-
erties than a uniformly deployed WSN. The
distributed address allocation in the ZigBee
cluster-tree suffers from limitations in LWSN:
the number of children is limited, as well as the
maximum number of children routers, and the
maximum tree depth. Stochastic address as-
signment, also available in ZigBee, has a high
cost in exchanged messages and requires an ex-
pensive (in terms of messages and memory)
routing process. This paper proposes an auto-
matic discovery of topologies for linear wireless
sensor networks combined with an efficient ad-
dressing mechanism. We show that our proposi-
tion avoids the waste of addresses while keeping
the number of messages exchanged proportional
to the number of nodes in the network.
Index terms— Linear Wireless Sensors Networks,
LWSN, Addressing, Routing, Automatic Deployment,
Topology Discovery, Clustering

1 Introduction

Wireless Sensor Networks (WSNs) allow data collec-
tion in many application fields (bridge structure [1],
railways [2], volcanoes [3], rivers, animals [4], and
health [5] monitoring). The physical topology of a
WSN depends on the zone to be monitored. WSNs
are organized using logical topologies (star, mesh, clus-
ter tree) [6], [7]. The cluster-tree topology is the most
used because it is easy to maintain and does not re-
quire a sophisticated routing protocol. Two kinds of

nodes are usually used for those topologies, one having
routing facilities, the other having a minimal imple-
mentation to support one or more sensor or actuator.
The IEEE 802.15.4 standard named respectively each
of them: Full Function Devices (FFDs) and Reduced
Function Devices (RFDs). A FFD acts as a personal
area network coordinator, coordinator or simple de-
vice. One PAN coordinator exists in WSN. A RFD is
most often used as a data sensing node and is always
associated with one and only one FFD.

A Linear WSN [8] is a special case of physical topol-
ogy where nodes are deployed along lines. Linear
WSNs can collect data in environments that cover lin-
ear zones such as rivers, bridges [1], water[9], gas or oil
pipelines [10], production chains.

In WSNs, addressing and routing algorithms are usu-
ally designed for general topologies such as mesh or
cluster tree topologies. In [7] and [9], solutions for ad-
dressing and routing are proposed for Linear WSN but
present some drawbacks (see Section 2).

Therefore, we propose a solution for discovering
topologies without prior knowledge, and use it to pro-
pose an efficient addressing mechanism for a hierar-
chical routing scheme without wasting too many ad-
dresses. In Section 2, we discuss the state of the art of
address allocation. In Section 3, we present our topol-
ogy discovery mechanism. In Section 4, we describe
our addressing scheme. Section 5 presents our simu-
lation results. Finally, Section 6 concludes the paper
and presents some perspectives for future work.

2 Addressing Mechanism in Lin-
ear Wireless Sensor Networks

The, ZigBee standard [7] for WSNs provides the stan-
dard address assignment mechanisms. In the following,
we describe the mechanisms, and an address assign-
ment in long thin WSNs.

1

2.1 Stochastic Address Assignment
Mechanism

ZigBee Stochastic Address Assignment Mechanism
(SAAM) attributes addresses randomly. In large net-
works, this method has a high probability of generating
address conflicts, so SAAM uses a reparation algorithm
to solve these conflicts. The AODV [11] routing proto-
col is used to route packets in the network.

However, the address conflict resolution adds delay
in the network establishment phase. The use of the
AODV flooding algorithm has a high control overhead.
The cost of this algorithm is high as there is a trade-
off between memory for caching the routing tables and
number of messages sent. Motes usually have low mem-
ory [12], so keeping a large route cache is usually not a
good solution. Power capacity is also limited, and net-
work speed is not comparable to the speed of a wired
network commonly used with AODV, this control over-
head (either during the addressing phase, or during the
network usage) is a major issue. So SAAM and AODV
routing are not efficient ideas for linear WSNs.

2.2 Distributed Address Assignment
Mechanism

ZigBee Distributed Address Assignment Mechanism
(DAAM) for the cluster-tree proposes a hierarchical
addressing and routing mechanism based on the maxi-
mum number of children (Cm) per node, the maximum
number of children routers (Rm) per node, and the
maximum tree depth (Lm). This mechanism provides
easy and fast allocation and routing.

Figure 1: Waste of addresses on a ZigBee cluster-tree
(RM=2, Cm=2, Lm=9).

In linear WSNs (LWSNs), DAAM is not appropri-
ate. It can result in a huge waste of addresses on linear
parts (see Figure 1) and orphan nodes [13]. In fact,
with the characteristics of LWSNs, the maximum num-
ber of addresses that can be allocated within the limits
of the address space wich is 216 = 65536 can be com-
puted according to Equation 1 and is shown in Table
1. Finally in DAAM, the available addresses are not
well balanced in the network (see Figure 1).

Amax = Cskip(0)×Rm+ Cm−Rm, (1)

where

Cskip(d) =

{
1 + Cm× (Lm− d− 1) if Rm = 1,
1+Cm−Rm−Cm×RmLm−d−1

1−Rm otherwise.

Cluster-tree parameters
Cm Rm Lm available addresses

2 2 15 65534
3 3 9 29523
4 4 7 21844

Table 1: Available addresses with different cluster-tree
parameters, in DAAM.

2.3 Addressing Mechanism in Long
Thin Wireless Sensor Networks
Based on ZigBee

In [9], the authors propose a long linear network topol-
ogy called Long Thin Wireless Sensor Network (LT-
WSN) based on ZigBee. In this topology, all nodes are
FFDs and are divided into clusters (as shown in Figure
2). In each cluster, two new roles are defined: a cluster
head and a bridge. Those nodes have to be manually
selected amongst all nodes.

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�

�
�
�

A

B B1 B2 B3

Coordinator

Bridge

Basic node

Cluster head

F F1 F3 F3

E E1 E2 E3 E4

C C1 C2

D D1 D2 D3 D4

C3

Figure 2: A Long Thin WSN as proposed in [9]

The authors propose to divide the 16-bit network
address of the nodes in two parts: the first part is a
cluster ID and the second part is a node ID. Then, the
network administrator calculates the address blocks to
allocate to the clusters from the logical network (GL)
(shown in Figure 3), where each node in the logical
network represents a cluster in Figure 2. With this
logical network, the network administrator fixes two
parameters: the maximum tree depth in GL (CLm) ,
and the maximum number of children per node in the
logical network CCm

Then, the network administrator manually assigns
the same cluster ID to each node of a cluster while
the node ID are allocated sequentially. If CCm = 1,
GL has no branch and the cluster IDs are attributed
in a sequential manner. If CCm ≥ 2, the cluster IDs
are assigned in a recursive manner as in ZigBee. From
CCm, and CLm, the administrator computes a pa-
rameter called CCskip to derive the starting cluster
ID of cluster children.

CCskip(d) =
1− CCmCLm−d

1− CCm
(2)

2

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

CCm = 2
A

D

CLm = 4

IDCcoor : 0

CCskip = 15

CCskip = 7

IDC : 1

CCskip = 7

IDC : 16

IDC : 2

CCskip = 1

CCskip = 1

IDC : 10F

E

CCskip = 3

IDC : 13

B

CCskip = 3
IDC : 9C

Figure 3: A Logical network of Figure 2

The cluster ID of the PAN coordinator cluster is 0. For
each node at depth d in GL, if the current cluster ID
is IDC , then the i − th child cluster is assigned the
following cluster ID :

IDCi = IDC + (i− 1) ∗ CCskip(d) + 1. (3)

After cluster ID attribution and node deployment, each
node of the network periodically broadcasts HELLO
packets including its address with its cluster ID to start
the Node ID attribution phase.

However, in this topology, if a bridge or a cluster
head fails, the routing of data becomes impossible be-
cause all inter cluster transmissions are routed through
the bridge-cluster head links even if some other commu-
nication links exist between nodes of different clusters.
Manual intervention is also necessary to elect a new
cluster head or bridge because these nodes are defined
manually by the network administrator at the startup
of the network. Also, address assignment of clusters
can cause a waste of addresses as in DAAM because
the computation of the cluster ID addresses is based
on the initial network parameters (CCm,CLm).

3 Discovering the Logical Topol-
ogy

3.1 Centralized algorithm

Two main sources of information can be considered
when trying to discovery a coherent logical topology
without knowing the physical topology: either an es-
timation of the quality of a link (Received Signal
Strength Indication (RSSI) or Link Quality Indication
(LQI)), or the possibility to establish a stable link be-
tween two motes. RSSI (and LQI) can be considered as
attractive, being more precise than the sole existence
of a communication link, but results in [14][15] have
shown that RSSI is not a good indicator for distance.
So, we choose to focus on the valid links between motes.

We consider a graph where nodes are the motes, and
where an edge is added between two nodes if and only
if the two corresponding motes are neighbors (the radio
links are supposed to be symmetrical). Solving the ad-
dress problem is equivalent to finding a spanning tree

with a minimum number of branching nodes. Minimiz-
ing the number of branches allows to identify the dis-
junctions in linear parts of the physical topology. This
problem is different from a traditional minimum span-
ning tree problem because the cost function is global
and dynamic, and is not a static weight associated to
each edge.

The centralized version of our algorithm is a greedy
algorithm, similar to the Prim’s algorithm (Jarnik’s
Algorithm)[16][17] that extends a connected subset of
a graph at each iteration, but with a custom objec-
tive function instead of the usual static weight of the
edges. The objective function to maximize is dynamic
(it varies during the algorithm). We use it while ex-
amining the edges from the connected part C of the
graph (nodes which have already been added) to the
remaining nodes belonging to R. Let a ∈ C and b ∈ R
be two vertices and (a, b) be an edge, we are interested
in the following criteria (classified by importance):

• the number of neighbors that a and b have in com-
mon common(a, b): this is the main factor, and it
is strongly linked to the proximity of nodes a and
b;

• the number of sons of a, sons(a): we try to avoid
creating too many branches and want to keep this
value equal to 1;

• The total number of neighbors of the two nodes,
neighbors(a): we try to first connect nodes with
low connectivity, because the algorithm has to
connect them and would have less choices for con-
necting them later.

So, we try to maximize the objective function

objective(a, b)
def
= α × common(a, b) − sons(a) − β ×

(neighbors(a) + neighbors(b)). α should be larger than
the maximum number of sons of a node, and β should
be smaller than 1/(neighbors(a) + neighbors(b)). For
our tests, we use α = 10 and β = 1

1000 .

Such an algorithm would be inefficient when deploy-
ing on real case problem as it is centralized. Therefore,
we propose a distributed version of the algorithm.

3.2 Distributed version

The centralized part of our algorithm is the part where
the vertex with the smallest cost is chosen amongst all
vertices. Nevertheless, as all nodes in C are already
associated to the network, having messages exchanged
through C could be implemented in a distributed man-
ner, but would require sending many messages (flood
the connected network). So, we designed a distributed
version of the algorithm where the chosen edge is only a
local maximum, therefore requiring much less commu-
nication: instead of choosing the best edge amongst all
the edges, an edge is added to C if and only if no better
edge can be found at a distance of challenge− radius
hops. Experiments showed that challenge−radius = 3
is a good compromise between cost and efficiency.

3

3.3 Protocol implementing the dis-
tributed algorithm

Every mote in the network uses the same protocol
named DiscoProto. The coordinator node (the root of
the tree) has to be manually selected and is in charge
of starting a topology discovery process.

1- Waiting for a father
do/ Answer to FatherOffer messages

2- Collecting sons
do/ See Algorithm 1 and 3 (FatherOffer, ChallengeOffer...)

3- Only associated nodes around
do/ Store size information for every son

A father has chosen me

No answer to the FatherOffer

4- Wait for address
entry/ Send size information to father
do/ Wait for address block provided by father

Every son has answered

5- Propagating addresses
entry/ Propagate address sub-blocks to sons

Father sent an address block

0- Neighborhood Discovery
do/ Send Broadcast periodically

Received a FatherOffer

Figure 4: State diagram of Discoproto.

Figure 4 shows the six possible states of a mote.
State 0 is the startup state in which a node periodi-
cally broadcasts HELLO messages so that every node
can discover its neighbors (the period of broadcasts
and the duration of a cycle has been empirically cho-
sen and their precise definition is left as future work,
using a more realistic simulator). This is required be-
cause the computation of the objective function de-
pends on the knowledge of the neighborhood. As soon
as a FatherOffer message is received, the mote enters
state 1.

State 1 lasts until the node gets associated. The only
thing a mote does in State 1 is to answer FatherOffer
sent by an already-connected node by computing and
sending the objective value of the vertex at that time
(see Algorithm 2).

When a node was chosen as a son by a father mote, it
enters State 2 (it is associated) and begins looking for
possible sons. For that, it performs two operations: it
runs Algorithm 1, and it diffuses and/or answers Chal-
lengeOffer messages from other associated nodes (see
Algorithm 4). When no node answers the fatherhood

offer in a given time, the mote enters state 3.

Algorithm 1: Collecting Sons (action for State 2).
Result: Finds new sons, ends when no candidate is found.
Input: A set of neighbors
Input: MACAddr the MAC address of the node
Input: sonsTimeout the delay left for sons to answer a

fatherOffer. (1s)
Input: challengeTimeout the delay left for radius-neighbors to

answer a challengeOffer. (Defaults to 2s)

challenge-radius ← 3 // maximum hop count

while state = 2 do
offer ← ∅ // Memorize the best offer (mote, quality)
received.

// offer is asynchronously modified by Algorithm 3
fatherOffer ← (MACAddr, neighbors,sons)
Broadcast(fatherOffer) // Sons will answer as defined in
Algorithm 2
sleep(sonsTimeout) // Leave some time for asynchronous
answer from

// unassociated neighbors giving an offer (See
Algorithms 2 and 3).
if offer 6= ∅ then

// At least one son answered to the association
request

better ← false // better will be modified
asynchronously

// in Algorithm 4
challengeOffer ← (MACAddr, challenge-radius, offer)
Broadcast (challengeOffer) // Ask all associated

// nodes around if they have a better offer
sleep(challengeTimeout) // Leave some time for
radius-neighbors

// to answer. See Algorithm 4
if better = false then // If no radius-neighbors can
do better

sons ← sons ∪ offer.node

else
// No neighbor has answered
state ← 3

Algorithm 2: Answer to a FatherOffer (action for
State 1).
Result: Reacts to the reception of a fatherOffer. Computes

the value of the objective and answers to the potential
father.

Input: A fatherOffer from an associated node, including the
neighboring of the father.

if fatherAddr = ∅ then // The node is not associated
objective ← Objective (fatherOffer.sons,fatherOffer.neighbors ,
sons, neighbors)
sonOffer ← (MACAddr, objective)
Unicast (fatherOffer.MACAddr, sonOffer)

Algorithm 3: Answer to a SonOffer (action for
State 2).
Result: Reacts to the reception of a sonOffer by memorizing

the attribute offer if it is better than the current one.
Input: A sonOffer from a candidate node (in reply to a

FatherOffer), including the objective value.

if offer = ∅ ∨ offer.objective < sonOffer.objective then
// Better solution

offer ← sonOffer

State 3 is the beginning of the addressing process,
which is detailed in the next section. In State 3, a
node waits for all its sons to send information about the
size of its subtree. When this is done, the mote enters
state 4. When entering State 4, a node sends the size
of its subtree to its father, and then waits for a range
of addresses from its father, entering State 5. When a

4

Algorithm 4: Answer to a ChallengeOffer (action
for State 2).
Result: Reacts to the reception of a ChallengeOffer. Sets

attribute offer to newly received offer if better.
Eventually propagates the ChallengeOffer to its
neighbors. Changes the attribute better (used in
Algorithm 1) to true if a better offer was received.
Sends a better offer to the ChallengeOffer emitter if
local offer is better.

Input: offer: The current best offer
Input: newOffer: the newly received offer

if newOffer.objective > offer.objective then
offer ← newOffer
better ← true

if newOffer.objective < offer.objective then
nextStep ← newOffer.path.last
destPath ← newOffer.path −{nextStep}
Unicast (nextStep, offer, destPath)

if newOffer.challengeRadius ≥ 1 ∧ MACAddr /∈ newOffer.path
then

newOffer.challengeRadius ← newOffer.radius−1
newOffer.path ← newOffer.path ∪ MACAddr
Broadcast (newOffer)

node receives a range of addresses, it dispatches them
between its son, keeping a few for itself. The node is
then fully associated, with an address.

4 Addressing

We propose a hierarchical addressing scheme based on
the topology discovered by our algorithm (see previous
section). When in State 3 (see Figure 4), a node is not
accepting sons anymore. It waits until it knows the
size sent by each of its sons, and memorizes it. When
all the information is available, the size of each subtree
is summed up, and this information is propagated to
the father node. At a cost of one message per node, we
can propagate the size value in the tree, and memorize
it locally.

When the coordinator node has been informed of
the size of the whole tree, address propagation begins.
Addresses are allocated from the root of the tree and
are propagated from father to sons. When a node m
receives a block of address [a1, a2] and an availability
coefficient R, it chooses a1 as its own address. Then,
it keeps addresses from [a1 + 1, a1 +R] as available ad-
dresses in case another node has to be adopted later.
The remaining block [a1 + R + 1, a2] has to be shared
between the nsons subtrees of m (denoted by sonim). It
is done by splitting [a1 +R+ 1, a2] between the sons of
m, proportionally to size(sonim). Each son receives its
own block of address, and the availability coefficient,
and the whole process is repeated until the end of the
tree. This address allocation is deterministic and gen-
erates one message per node in the network.

The total number of exchanged messages is easy to
calculate: each node sends a message to its father when
all its subtrees are associated. Each node receives a
message from its father indicating a range of addresses
to share. The total number of (unicast) messages re-
quired for the addressing is therefore equal to twice the
number of nodes in the network.

5 Evaluation

We wrote a DiscoProto simulator in Ruby [18]. Each
mote is implemented using its own thread, so they
all run in parallel. Motes communicate through mes-
sage exchanges, both unicast and multicast. All the
messages are sent asynchronously and logged. We
have not implemented any MAC layer and two nodes
can communicate if the distance between them is be-
low the maximum range. The code for the simula-
tor is available at http://sancy.clermont-universite.fr/
∼delobel/DiscoProto.

We also designed a random physical topology genera-
tor for linear networks. This generator creates topolo-
gies depending on the maximum range allowing two
motes to communicate, the average distance between
two motes, the average frequency of branches creation,
and the number of motes.

The complete set of data consists in 21380 simu-
lated topologies, with either 50, 100, 200 or 500 motes.
Frequency is set to 0.05. On the whole test, the
average ratio of number of disjunctions (nodes with
more than one son in the discovered logical topol-
ogy) by number of generated branches (generated dur-
ing the physical topology generation) is 1.03, with
a standard deviation of 0.31. In many cases, short
branches or branches close enough to another branch
could be merged into a single discovered branch. In
every case, all the nodes were connected as we gen-
erate only topologies where the distance between two
nodes is below the reception distance. The topologies
which were automatically generated are too large to be
reproduced in this paper.

5.1 Closeness to the physical topology

Figure 5 presents the number of count disjunctions
computed as a function of the number of branches
which occurred during the generation. Both values
are linearly correlated. On some examples, the com-
puted topology has less disjunctions than the generated
topology has branches. It is caused by short branches
in the generated topology, or branches very close to
another portion of the network which can be merged
with another without any additional disjunction.

5.2 Control overhead to discover the
logical topology

Figures 6 and 7 present the number of broadcast and
unicast messages sent during the topology discovery
phase. The average number of messages sent is propor-
tional to the number of nodes in the network, but the
standard deviation (95% confidence interval are shown
on the Figure 6, and 7) is high as challenge offers are
often denied when the physical topology is dense. It
should be noted that the distribution of number of
frames (unicasts and broadcasts) is not Gaussian, as
show on Figures 9, 11, 8, and 10 (similar distribution
occur for a topologies with 100 or 200 nodes).

5

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 0 5 10 15 20 25 30 35 40

N
u

m
b

e
r

o
f

d
is

ju
n

c
ti
o

n
s

Number of branches

Average number of disjunction by number of branches

Figure 5: Number of disjunctions found vs number of
generated branches.

-2000

 0

 2000

 4000

 6000

 8000

 10000

 12000

 0 100 200 300 400 500

Average with standard deviation

Figure 6: Number of broadcast messages sent to build
the topology.

-10000

-5000

 0

 5000

 10000

 15000

 20000

 25000

 0 100 200 300 400 500

Average with standard deviation

Figure 7: Number of unicast messages sent to build the
topology.

 0

 100

 200

 300

 400

 500

 600

 700

 196 461 726 991 1256 1521

Number of messages

Figure 8: Distribution of
total number of broad-
casts for various 50 nodes
topologies.

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 147 864 1581 2298 3015 3732

Number of messages

Figure 9: Distribution
of total number of uni-
casts for various 50 nodes
topologies.

 0

 50

 100

 150

 200

 250

 300

 350

 2229 4777 7325 9873 12421 14969

Number of messages

Figure 10: Distribution
of total number of broad-
casts for various 500
nodes topologies.

 0

 100

 200

 300

 400

 500

 600

 700

 800

 1723 9737 17751 25765 33779 41793

Number of messages

Figure 11: Distribution
of total number of uni-
casts for various 500
nodes topologies.

5.3 Distribution of addresses in the
network

Our main issue with hierarchical addressing is that in
the particular case of linear networks, the available
addresses are not well balanced in the network. Fig-
ure 12 presents the topology discovered by running the
TopoProto simulator on the topology presented in Fig-
ure 3, with the addresses given by our addressing mech-
anism. We choose in this example R = 2, and observe
that the available addresses are uniformly shared be-
tween all the nodes in the network. This property will
ease the possibility to welcome dynamic nodes incom-
ing (this part is left for further work). The number of
disjunctions found is slightly inferior to the number of
linear parts.

Figure 12: Simple topology discovered by TopoProto

More generally, in a topology with n nodes, we can
use exactly n addresses (with no available address).
If the parameter R is chosen, n ∗ R addresses will be
allocated, andR−1 available addresses will be available
for each node.

6

5.4 Generalization to a non linear net-
work

Out TopoProto a protocol could run on non linear net-
works (e.g., a random network topology) but this would
lead to poor results in term of both time and logical
topology. The time for building the whole network
would be longer as the number of challenges would
be high because of the density. As the protocol tries
to minimize the number of nodes with multiple sons,
the logical topology built for random physical topolo-
gies would have uselessy long branches which would
increase the duration of communications.

6 Conclusion

In this paper, we proposed a discovery mechanism for
the topology of a linear WSN. In our protocol, only
the PAN is chosen manually. We propose an addressing
scheme which overcomes the ZigBee DAAM limitations
while keeping the simplicity, low memory footprint and
effectiveness of a hierarchical addressing and routing
scheme.

The next step is to implement our protocol on the
NS-2 simulator, using a proper IEEE 802.15.4 Medium
Access Control layer, to measure the effect of link losses
and collisions, and to compare our protocol with Zig-
Bee DAAM protocol. We also plan to deal with dy-
namic topologies to recover from a node or from a
link destruction and deal with new nodes incoming,
without rebuilding the whole network or routing ta-
ble (roughly, the idea is to implement permutations of
nodes with consecutive blocks of addresses, and have
nodes be back in a son discovery state). Another as-
pect we plan to study is to find solutions for balancing
available addresses in the network when a shortage has
been produced by a massive increase of nodes in a small
part of the network.

We would like to thank Alexandre Guitton for careful
reading and useful suggestions.

References

[1] S. Kim, S. Pakzad, D. Culler, J. Demmel,
G. Fenves, S. Glaser, and M. Turon, “Health mon-
itoring of civil infrastructures using wireless sensor
networks,” in IPSN ’07: Proceedings of the 6th in-
ternational conference on Information processing
in sensor networks. ACM Press, 2007, pp. 254–
263.

[2] M. Zimmerling, W. Dargie, and J. M. Reason,
“Localized power-aware routing in linear wireless
sensor networks,” in Proceedings of the 2nd ACM
international conference on Context-awareness
for self-managing systems, ser. CASEMANS ’08.
New York, NY, USA: ACM, 2008, p. 24–33.
[Online]. Available: http://doi.acm.org/10.1145/
1367943.1367946

[3] K. Lorincz, M. Welsh, O. Marcillo, J. Johnson,
M. Ruiz, and J. Lees, “Deploying a wireless sensor
network on an active volcano,” in IEEE Internet
Computing, 2006, pp. 18–25.

[4] E. S. Nadimi, H. T. Søgaard, T. Bak,
and F. W. Oudshoorn, “ZigBee-based wire-
less sensor networks for monitoring animal
presence and pasture time in a strip of new
grass,” Computers and electronics in agricul-
ture, vol. 61, no. 2, p. 79–87, 2008. [On-
line]. Available: http://www.sciencedirect.com/
science/article/pii/S0168169907002013

[5] C. R. Baker, K. Armijo, S. Belka, M. Benhabib,
V. Bhargava, N. Burkhart, A. Der Minassians,
G. Dervisoglu, L. Gutnik, M. B. Haick et al.,
“Wireless sensor networks for home health
care,” in Advanced Information Networking and
Applications Workshops, 2007, AINAW’07. 21st
International Conference on, vol. 2, 2007, p.
832–837. [Online]. Available: http://ieeexplore.
ieee.org/xpls/abs all.jsp?arnumber=4224209

[6] I. C. Society, Part 15.4: Wireless Medium Access
Control (MAC) and Physical Layer (PHY) Spec-
ifications for Low-Rate Wirelees Personal Area
Networks (WPANs), ieee std 802.15.4 2006 ed.,
IEEE Computer Society, 2006.

[7] Z. Alliance, ZigBee Specification, zigbee docu-
ment 053474r17 ed., ZigBee Standard Organiza-
tion, January 2008.

[8] I. Jawhar, N. Mohamed, and D. P. Agrawal, “Lin-
ear wireless sensor networks: Classification and
applications,” J. Netw. Comput. Appl., pp. 1671–
1682, September 2011.

[9] Y.-C. L. Meng-Shiuan Pan, Hua-Wei Fang and
Y.-C. Tseng, “Address assignment and routing
schemes for zigbee-based long-thin wireless sensor
networks,” in IEEE Vehicular Technology Confer-
ence ’08, Spring 2008, 2008, pp. 173–177.

[10] I. Stoianov, L. Nachman, S. Madden, and
T. Tokmouline, “Pipenet: A Wireless Sensor
Network for Pipeline Monitoring,” in ACM IPSN,
2007. [Online]. Available: http://db.csail.mit.
edu/pubs/ipsn278-nachman.pdf

[11] C. Perkins, E. Belding-Royer, and S. Das,
Ad hoc On-Demand Distance Vector (AODV)
Routing, ser. Request for Comments. IETF,
Jul. 2003, no. 3561, published: RFC 3561
(Experimental). [Online]. Available: http://www.
ietf.org/rfc/rfc3561.txt

[12] M. Inc, “Wireless modules specifi-
cations for LOTUS, IRIS, MICAZ,
MICA2, TELEOSB.” [Online]. Avail-
able: http://www.memsic.com/products/
wireless-sensor-networks/wireless-modules.html

7

[13] M.-S. Pan, C.-H. Tsai, and Y.-C. Tseng, “The or-
phan problem in zigbee wireless networks,” IEEE
Transactions on Mobile Computing, vol. 8, pp.
1573–1584, 2009.

[14] F. V. Karel Heurtefeux, “Is RSSI a good choice
for localization in wireless sensor network?” in
IEEE 26th International Conference on Advanced
Information Networking and Application (Aina),
2012, pp. 732–739.

[15] J. Luo, X. Xu, and Q. Zhang, “Understanding
link feature of wireless sensor networks in outdoor
space: A measurement study,” in GLOBECOM.
IEEE, 2011, pp. 1–5.

[16] V. Jarńık, “ O Jistém Problému Minimálńım
(About a Certain Minimal Problem) (in Czech,
German summary),” Práce Mor. Pŕırodoved. Spol.
v Brne VI, vol. 4, pp. 57–63, 1930.

[17] R. C. Prim, “Shortest connection networks and
some generalizations,” Bell System Technology
Journal, vol. 36, pp. 1389–1401, 1957.

[18] Y. Matsumoto and K. Ishituka, Ruby program-
ming language. Addison Wesley Publishing Com-
pany, 2002.

8

