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When a Metal-Insulator-Metal waveguide is coupled with a ring resonator, one expects, for a given
integer referring to cavity mode number, exactly one resonance phenomenon. However, numerical
simulations of the spectrum of the transmission of the structure highlight two resonances around
certain values of the resonance wavelength. This phenomenon was numerically studied thanks to a
Finite Difference Time Domain method. Until now, and to my knowledge, this phenomenon is
linked to a correlation between the standing waves forming in the ring at the resonance wavelength
and the faces and corners of the ring. In this document, I present a new physical analysis and
interpretation of the transmission spectrum anomaly of the square ring resonator. By using an
efficient polynomial modal method, I show that this phenomenon is due to the interference of hybrid
modes of the superstructure. Published by AIP Publishing. https://doi.org/10.1063/1.4999025

INTRODUCTION

Classical circular waveguides’ ring resonators1 have
been widely studied. They have been used in photonics inte-
grated circuits and dense wavelength division multiplexing
optical communication systems such as filters, add-drop cou-
plers, and a wavelength-division multiplexer. In 2007, a
square ring resonator (SRR) was studied by Hosseini and
Massoud.2 This SRR can be used as an ultracompact direc-
tional add-drop coupler between two parallel waveguides.
Several years later, other authors extended the scope of this
system to realize, for example, plasmon flow control in T-
splitters and waveguide cross junctions.3 Recently in 2015, a
novel surface plasmon based square-shaped ring resonator
with a bending Metal-Insulator-Metal (MIM) waveguide at
the optical spectral range was investigated by Yan et al. in
Ref. 4. The feature of this structure was often analyzed
thanks to a finite difference in the time domain (FDTD)
method and its transmission spectrum may highlight an
anomaly. This anomaly was observed and explained first in
Ref. 2 by suggesting a correlation between the standing
waves forming in the ring at the resonance kg and the faces
and corners of the ring. Although these observations and
analysis seem relevant, it is possible to deepen and complete
them by a modal analysis of the structure. Thus I present in
this paper another interpretation of this phenomenon which
relies on the multimode character of this type of structure.
My analysis is based on the propagation of plasmons through
the interference of two modes. These two modes result from
the coupling between the waveguide bus and the resonator.
Since the feature of devices at hand is linked to a plasmon
resonance phenomenon, it may be successfully treated as an
eigenvalue problem with specific boundary conditions, i.e., a
boundary value problem. This boundary value problem is
efficiently solved throughout a polynomial modal method

based on Gegenbauer expansion (MMGE).5–8 I first show
that this numerical scheme allows avoidance of any uncer-
tainties in the numerical model. A new physical analysis and
interpretation of the transmission spectrum anomaly is then
suggested.

STATEMENT OF THE PROBLEM

Figure 1 shows a typical filter based on the plasmonic
filter structure. It consists of a MIM waveguide and a SRR.
At the resonance wavelength kg, one expects that the funda-
mental mode of the MIM waveguide, whose propagation
constant is denoted by c0, may be coupled to the ring and
thus the flow of energy may be exchanged between resonator
modes. By neglecting edge effects and evanescent modes
contributions, the resonance condition is then written as

FIG. 1. Schematic of a plasmonic rectangular MIM resonator. Illustration of
the staircase concatenation of the MIM resonator according to the (Oz) and
(Ox) directions. The structure is divided into five layers IðkÞz ; k ¼ 1 : 5 in the
(Oz) direction and height intervals IðkÞx ; k ¼ 1 : 8 in the (Ox) direction. The
layers Ið1Þz (resp. Ið5Þz ) correspond to the input (resp. output) waveguide bus.a)kofi.edee@uca.fr
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2ðLx þ LzÞ ¼ ngkg: (1)

kg ¼ k=neff is the guide wavelength. neff ¼ c0=k0 denotes the
effective index and k is the free space wavelength. In this
equation (1) the integer ng stands for cavity mode number.
k0 ¼ 2p=k is the wave number. Referring to Eq. (1), for a
given value of the integer ng only one resonance is expected.
However, numerical simulations of the spectrum of the trans-
mission of the structure reported in Fig. 2 highlight two reso-
nances around certain values of kg. I present here an
interpretation of this phenomenon which relies on the multi-
mode character of this type of structure. My analysis is based
on the propagation of plasmons through the interference of
two modes, resulting from the coupling between the wave-
guide bus and the resonator.

POLYNOMIAL MODAL METHOD OF MIM WAVEGUIDE
MODELLING

First of all we must ensure that there are no uncertainties
in our polynomial numerical model. For that purpose, we are
interested in the effective index c0=k0 of a metal-insulator-
metal waveguide, which gives us a good test of robustness
of our numerical scheme. k0 denotes the wavenumber. The
dielectric is assumed to be air with relative permittivity
e ¼ 1. The metal is a silver whose complex relative permit-
tivity esilver is characterized through the Drude model

esilverðxÞ ¼ e1 %
xp

xðxþ iCÞ
; (2)

where the bulk plasma frequency xp ¼ 1:38& 1016, the
dumping frequency of the oscillations C ¼ 2:73& 1013, and
e1 ¼ 3:7 ¼ esilverðx ¼1Þ. x is the angular frequency. For
our numerical illustration, the gap d of the waveguide is set
to 50 nm. The propagation constant c0 of the fundamental
mode obeys the following dispersion relation:

tanh
d

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c2

0 % k2
0eair

q" #
¼ % eair

esilver

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c2

0 % k2
0esilver

c2
0 % k2

0eair

s

: (3)

Using this relation Eq. (3), the effective index c0=k0 of the
fundamental TM0 for k ¼ 1161 nm is equal to

c0=k0 ¼ 1:381850741177741% 0:003033434481031i: (4)

For the numerical evaluation through the subsectional polyno-
mial basis approach MMGE,5–8 the slot waveguide is subdi-
vided into four homogeneous domains (intervals) (Ið1Þx ; Ið2Þx ;
Ið3Þx ; Ið4Þx ) along the (Ox) axis with width (esub, d, esup, epml)
¼ (300, 50, 300, 50) nm and relative permittivity ðesilverðxÞ;
eair; esilverðxÞesilverðxÞÞ. See Fig. 3. The eigenvalue equation (5)

eðxÞ@1
1

eðxÞ
@1 þ k2

0eðxÞ
$ %

HyðxÞ ¼ c2HyðxÞ; (5)

is then solved in the TM polarization case and the eigenvalue
corresponding to the effective index of the fundamental mode
c0=k0 is computed. We present in Table I the convergence of
the result in the case of Gegenbauer polynomials GK

n ðxÞ with
K ¼ 0:5 with respect to a parameter Dim. The parameter Dim
denotes the number of polynomial basis functions allowing to
describe the electromagnetic field on Ix ¼ [k¼1:4 IðkÞx .The inter-
val Ið4Þx corresponds to the Perfectly Matched Layer (PML),
and in all the following computations, we set the PML thick-
ness to epml ¼ 50 nm, and its parameters vþ ig ¼ 10% 10i.
Cf.7 for the implementation of the PML in the present polyno-
mial modal method throughout a complex coordinates trans-
form. An accuracy of 10%7 is achieved for Dim¼ 12.

MODAL ANALYSIS OF THE SRR: INTERFERENCE
OF HYBRID MODES

In order to compute the transmission of the structure,
throughout the polynomial modal method based on
Gegenbauer polynomials GK

n ðxÞ expansion, the structure is
divided into nine intervals IðkÞx ; k ¼ 1 : 8 in the (Ox) direction
and five layers IðkÞz ; k ¼ 1 : 5 in the (O, z) direction (Fig. 3).
In each layer IðkÞz , the general solution /ðkÞðx; zÞ representing
the component

HðkÞy ðx; zÞ ¼ HðkÞþy ðx; zÞ þ HðkÞ%y ðx; zÞ; (6)

is expressed as the linear combination of:

• forward waves propagating along increasing values of z

HðkÞþy ðx; zÞ ¼
X

q

AðkÞq expð%ik0cðkÞq zÞ
X

n

wðkÞnq GK
n ðxÞ

¼
X

q

HðkÞþq ðx; zÞ: (7)

FIG. 2. Transmission spectrum of the MIM resonator. Numerical parame-
ters: Lx ¼ Lz ¼ 725 nm; g ¼ 25 nm; d ¼ 50 nm.

FIG. 3. Illustration of the numerical configuration for the modal analysis of
MIM waveguide. The structure is subdivided into four homogeneous
domains (intervals) (Ið1Þx ; Ið2Þx ; Ið3Þx ; Ið4Þx ) along the (Ox) axis with the thick-
ness (esub, d, esup, epml).
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• backward waves propagating along decreasing values of z

HðkÞ%y ðx; zÞ ¼
X

q

BðkÞq expðik0cðkÞp zÞ
X

n

wðkÞnq GnKðxÞ

¼
X

q

HðkÞ%q ðx; zÞ: (8)

Layers Ið2Þz ; Ið3Þz , and Ið4Þz correspond to the coupling region.
In the case when standing-waves are excited and live in the

cavity, the eigenvalues cð3Þp may provide a good estimation of
their effective indices in the (O, z) direction. The major part
of the coupling region may be considered as a superstructure

that consists of three parallel slot waveguides Ið2Þx ; Ið4Þx , and

Ið6Þx with width d ¼ 50 nm. The coupled modes theory sug-
gests that when the distance between these three waveguides
is large enough, there is no interaction between them and the
eigenvalues of the whole superstructure are just those of
each structure: the eigenvalues are three-degree degenerate;
otherwise, the coupling removes or lifts the degeneracy
involving a modification of the modes of each waveguide
eigenmode called hybrid modes. See Fig. 4. For this exam-

ple, the distance between Ið4Þx and Ið6Þx is set to Lz % d

¼ 675 nm. Since the distance between Ið4Þx and Ið6Þx is large
enough, one of the initial modes of the isolated waveguide

persists cð3Þ2 ¼ 1:3868% 0:0028i in the waveguide Ið6Þx for all

values of g. However, two hybrid modes cð3Þ1 and cð3Þ3 appear

in the coupled waveguides Ið2Þx and Ið4Þx for small values of g.

For example, for g ¼ 20 nm; cð3Þ1 ¼ 1:2867% 0:0016i and

cð3Þ3 ¼ 1:6035% 0:0065i. As a starting point of our analysis,

consider in the input port of the coupling layer Ið3Þz , the nor-
malised forward power sq ¼ Pq=Pinc (q¼ 1, 3) associated

with the hybrid modes cð3Þ1 and cð3Þ3 where

Pinc ¼ Real
X

q

ð

x
Eð3Þþq ðx; 0ÞconjðHð3Þþq ðx; 0ÞÞdx

" #
(9)

and

Pq ¼ Real

ð

x
Eð3Þþq ðx; 0ÞconjðHð3Þþq ðx; 0ÞÞdx

$ %
: (10)

Figure 5 presents the behaviour of s1;3 with respect to
different values of the frequency (freq ¼ x=2p 2 ½2:7;
3:3(THz). The transmission jtj2 is also reported in this figure.
One can remark that the energy exchange takes place
between both hybrid modes. The propagated energy is
injected inside the ring cavity after passing through the cou-
pling region where the energy is exchanged between weakly
coupled hybrid modes. For certain frequencies, 296.6 THz,
301.2 THz, and 304.4 THz, these modes carry power of
equal intensity and interfere destructively in the waveguide
bus inducing extremely weak field in the transmission, or
constructively, inducing excitation of the output port.
Figures 6, 7, and 8 present the modulus of the magnetic field
Hy(x,z) at the resonance frequencies 296.6 THz, 301.2 THz,
and 304.4 THz. At all these frequencies, the ring resonator is
always excited, but the interference process does not cancel
the field in the waveguide bus at 301.2 THz contrary to the
frequencies 296.6 THz and 304.4 THz where only a weak
field is induced in the transmission port.

FIG. 4. Illustration of the lift of degeneracy of eigenmodes of the superstruc-
ture for g 2 ½15; 145( nm. Numerical parameters: frequency¼ 296 THz,
Lx ¼ 725 nm; d ¼ 50 nm.

FIG. 5. Normalized forward power spectra s1 (resp. s3) associated with the
eigenmode cð3Þ1 (resp. cð3Þ3 ) for g ¼ 25 nm. Numerical parameters: Lx ¼ Lz

¼ 725 nm; d ¼ 50 nm.

TABLE I. Convergence of the effective index c0=k0 of the mode TM0 com-
puted thanks to modified Gegenbauer polynomials GK

n ðxÞ with K ¼ 0:5.
Numerical parameters: d ¼ 50 nm; esub ¼ esup ¼ 300 nm, epml ¼ 50 nm; v
%ig ¼ 10% 10i; k ¼ 1161 nm.

Dim effective index

6 1.381866066132478 - 0.003034206565412i

12 1.381850837595450 - 0.003033438956998i

18 1.381850741448333 - 0.003033436438067i

24 1.381850741387773 - 0.003033436451930i

30 1.381850741414873 - 0.003033436469400i

36 1.381850741426127 - 0.003033436500549i

42 1.381850741621650 - 0.003033436337988i

48 1.381850741453263 - 0.003033436384211i

54 1.381850741586496 - 0.003033436562868i

60 1.381850741240158 - 0.003033436406518i
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ELECTROMAGNETICALLY INDUCED TRANSPARENCY
BEHAVIOUR OF THE SRR

Let us first consider a set of four classical oscillators
coupled through a weak spring with eigen-frequencies
x1=2p, x2=2p; x3=2p; x4=2p and damping constants c1, c2,
c3, and c4. The coupling coefficients of these four oscillators
are denoted by !ij, i; j 2 f1; 2; 3; 4g. We assume that they are
submitted to two driving forces with the same circular

frequency x and amplitudes a1 and a4. If we denote by
xi ði ¼ 1; 2; 3; 4Þ the amplitudes of these oscillators, then it
can be easily demonstrated that the system of differential
equations describing the motion is given by

d2x1

dt2
þ c1

dx1

dt
þ x1x1 þ !12x2 þ !13x3 þ !14x4 ¼ a1eixt

d2x2

dt2
þ c2

dx2

dt
þ x2x2 þ !21x1 þ !23x3 þ !24x4 ¼ 0

d2x3

dt2
þ c3

dx3

dt
þ x3x3 þ !31x1 þ !32x2 þ !34x4 ¼ 0

d2x4

dt2
þ c4

dx4

dt
þ x4x4 þ !41x1 þ !42x2 þ !43x3 ¼ a4eixt:

8
>>>>>>>>>>>><

>>>>>>>>>>>>:

(11)

The steady-state harmonic solutions for the displace-
ments xiðtÞ are

xiðtÞ ¼ cie
ixt: (12)

It is then possible to exhibit a specific shape that combines
Lorentz and Fano resonances and an interference phenome-
non of some of these oscillators for suitable chosen values of
the parameters of this coupled system.

Figures 9, 10, and 11 present the spectral responses
jc2ðxÞj and jc3ðxÞj for different values of the parameters of
c2 and c3. The remaining numerical parameters are: x1=2p
¼ 2:93 s–1, x2=2p ¼ 2:96 s–1, x3=2p ¼ 3:04 s–1, x4=2p
¼ 3:09 s–1, c1 ¼ c4 ¼ 0:2; !12 ¼ !21 ¼ !23 ¼ !32 ¼ !34 ¼ !43

¼ 0; !13 ¼ !31 ¼ !24 ¼ !42 ¼ 0:05; a1 ¼ a4 ¼ 1; a2 ¼ a3 ¼ 0.
In Fig. 9, c2 ¼ c3 ¼ 0:5, while in Fig. 10, c2 ¼ c3 ¼ 0:4 and
these parameters are equal to c2 ¼ c3 ¼ 0:3 in Fig. 11. We
remark that the shape of the curves around the interference
area is essentially driven by the values of the damping con-
stants c2 and c3 of oscillators 2 and 3. Therefore, the number

FIG. 6. Modulus of Hyðx; zÞ at frequency 296.6 THz, for g¼ 25 nm.
Numerical parameters: Lx ¼ Lz ¼ 725 nm; g ¼ 25 nm; d ¼ 50 nm.

FIG. 7. Modulus of Hyðx; zÞ at frequency 301.2 THz, for g¼ 25 nm.
Numerical parameters: Lx ¼ Lz ¼ 725 nm; g ¼ 25 nm; d ¼ 50 nm.

FIG. 8. Modulus of Hyðx; zÞ at frequency 304.4 THz, for g¼ 25 nm.
Numerical parameters: Lx ¼ Lz ¼ 725 nm; g ¼ 25 nm; d ¼ 50 nm.

FIG. 9. Fano resonance illustration with two coupled oscillators. Numerical
parameters: x1=2p¼ 2:93; x2=2p¼ 2:99; x3=2p¼ 3:04; x4=2p¼ 3:09; c1

¼ c4 ¼ 0:2; c2 ¼ c3 ¼ 0:5; !13 ¼ !31 ¼ !14 ¼ !41 ¼ 0:05; a1 ¼ 1¼ a4 ¼ 1.
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of the interference area strongly depends on these damping
constants.

Let us secondly consider the problem of the coupling
between the MIM waveguide and the ring resonator. It is
possible to highlight an analogy between the behavior of the
previous four classical coupled oscillators and the anomaly
observed in the case of the SRR. To do so, let us define in
Eq. (13), at the bottom interface of layer 3, a local coefficient

of reflection rð3Þ1 (resp. rð3Þ3 ) of the eigenmodes corresponding

to the eigenvalues cð3Þ1 (resp. cð3Þ3 )

rð3Þ1 ðxÞ ¼
Að3Þ1 ðxÞ
Bð3Þ1 ðxÞ

; and rð3Þ3 ðxÞ ¼
Að3Þ3 ðxÞ
Bð3Þ3 ðxÞ

: (13)

Figures 12, 13, and 14 present the behavior of jrð3Þ1;3j with
respect to different values of the frequency (f ¼ x=2p
2 ½2:6; 3:5( THz) and for different values of the parameters
g: g¼ 15 in Fig. 12, g¼ 20 in Fig. 13, and g¼ 25 in Fig. 14,
The transmission jtj2 is also reported in these figures. The
spectral responses of both eigenmodes are similar to that
previously presented in Figs. 9, 10, and 11. By tuning the
parameter g which leads to the suppression of extinction at
the resonance frequency around the ring mode resonance
frequency, one may exhibit a specific shape that combines
Lorentz and Fano resonances and an interference phenom-
enon of some eigenmodes of the coupled system. More
generally, Fig. 15 presents the behaviour of the transmis-
sion spectrum for different values of g. One can remark
that transparency may be electromagnetically induced in
the transmission. The Electromagnetically Induced

FIG. 10. Fano resonance illustration with two coupled oscillators. Numerical
parameters: x1=2p ¼ 2:93; x2=2p ¼ 2:99; x3=2p ¼ 3:04; x4=2p ¼ 3:09; c1

¼ c4 ¼ 0:2; c2 ¼ c3 ¼ 0:4; !13 ¼ !31 ¼ !14 ¼ !41 ¼ 0:05; a1 ¼ 1 ¼ a4 ¼ 1.

FIG. 11. x1=2p ¼ 2:93; x2=2p ¼ 2:99; x3=2p ¼ 3:04; x4=2p ¼ 3:09; c1

¼ c4 ¼ 0:2; c2 ¼ c3 ¼ 0:3; !13 ¼ !31 ¼ !14 ¼ !41 ¼ 0:05; a1 ¼ 1¼ a4 ¼ 1.

FIG. 12. Transmission spectra (x=2p 2 ½260; 340( THz) of the MIM resona-
tor for g¼ 15. Other Numerical parameters: Lx ¼ Lz ¼ 725 nm; d ¼ 50 nm.

FIG. 13. Transmission spectra (x=2p 2 ½260; 340( THz) of the MIM resona-
tor for g¼ 20. Other Numerical parameters: Lx ¼ Lz ¼ 725 nm; d ¼ 50 nm.
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Transparency (EIT) phenomenon9,10 is well known to be
linked to an interference phenomenon. This phenomenon
cannot be explained through the resonance condition of
Eq. (1).

CONCLUSION

In the present work, the anomaly highlighted in the
transmission spectrum of a square ring resonator is well
explained thanks to a modal analysis. We demonstrate that
these anomalies are linked to the interferences of hybrid
modes of the superstructure. These modes have been effi-
ciently expanded on a series sum of Gegenbauer polynomials
and computed as eigenfunctions of a boundary value prob-
lem. This polynomial modal method is very stable, accurate,
and converges very rapidly. Our study clearly shows that the
split of the resonance in the transmission spectrum is linked

to an EIT phenomenon and this phenomenon cannot be well
explained with the resonance condition of the cavity of the
square ring resonator.
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