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Highlights

• Deal with consumer 360 cameras and spherical cameras
without a privileged direction.

• Initialize the time offsets and intrinsic parameters using
monocular structure-from-motion.

• Start multi-camera structure-from-motion with central and
global shutter assumptions.

• Refine all parameters including time offsets and line delay
thanks to a bundle adjustment.

• Experiment on long video sequences using helmet-held
multi-cameras.

Abstract

360 degree and spherical cameras become popular and are con-
venient for applications like immersive videos. They are of-
ten built by fixing together several fisheye cameras pointing in
different directions. However their complete self-calibration is
not easy since the consumer fisheyes are rolling shutter cam-
eras which can be unsynchronized. Our approach does not
require a calibration pattern. First the multi-camera model is
initialized thanks to assumptions that are suitable to an omni-
directional camera without a privileged direction: the cameras
have the same setting and are roughly equiangular. Second a
frame-accurate synchronization is estimated from the instanta-
neous angular velocities of each camera provided by monocu-
lar structure-from-motion. Third both inter-camera poses and
intrinsic parameters are refined using multi-camera structure-
from-motion and bundle adjustment. Last we introduce a bun-
dle adjustment that estimates not only the usual parameters but
also a sub-frame-accurate synchronization and the rolling shut-
ter. We experiment using videos taken by consumer cameras
mounted on a helmet and moving along trajectories of several
hundreds of meters or kilometers, and compare our results to
ground truth.

Keywords: Bundle adjustment, self-calibration, synchroniza-
tion, rolling shutter, multi-camera, structure-from-motion.

1. Introduction

Multi-cameras built by fixing together several consumer
cameras become popular thanks to their prices, high reso-
lutions, growing applications including 360 videos (e.g. in
YouTube), generation of virtual reality content [1, 2], 3D scene
modeling [3]. However such a multi-camera has drawbacks.

First the synchronization of the videos can be a problem.
In many cases like GoPro cameras [4], the manufacturer pro-
vides a wifi-based synchronization (the user starts all videos at
once by a single click). However the resulting time offsets be-
tween videos are too inaccurate for applications: about 0.04s
and sometimes above 0.1s in our experiments. Assume that a
central multi-camera moves at 20km/h (e.g. biking in a city)
and two cameras have a time offset equal to only 0.02s, then
explain consequences on a 360 video obtained by video stitch-
ing. If we neglect this offset, the two videos are stitched as if
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they have same camera centers at same frame number, although
the distance between these centers is 0.11m (20/3.6*0.02). This
generates artifacts in the 360 video due to foreground objects
that are in the field-of-view (FoV) shared by the two cameras.

Secondly, the low price of a consumer camera implies that
the camera is rolling shutter (RS). This means that two differ-
ent lines of pixels of a frame are acquired at different instants.
In a global shutter (GS) camera, all pixels have the same time.
If we do a GS approximation of a RS camera, we assume that
the camera poses are the same for all lines of a frame although
they are not. This can degrade the quality of results in applica-
tions such as 3D reconstruction [5], similarly as an inaccurate
synchronization degrades the quality of 360 videos.

Last the multi-camera is non-central, i.e. the baseline defined
by the distance between the centers of two cameras is not zero.
This is inadequate for applications that needs a central multi-
camera such as 360 video (the smaller the baseline, the better
the stitching quality). The user/manufacturer can reduce the
baseline (and the multi-camera price) thanks to a small number
of cameras. Here we use a DIY multi-camera composed of four
Gopro Hero 3 enclosed in a cardboard such that the baseline is
as small as possible. Since a small number of cameras also re-
duces the FoV shared by adjacent cameras, we avoid methods
that rely on this shared FoV such as image matching between
different monocular videos. A greater number of cameras can
be used [6] to increase the shared FoV, but both price and base-
line increase. We also experiment using a spherical camera [7]
having only two large FoV (fisheye-like) images.

Our self-calibration takes into account these drawbacks
(lack of synchronization, rolling shutter, almost central multi-
camera) and does not require a calibration pattern. First the
multi-camera model is initialized thanks to assumptions that
are suitable to an omnidirectional camera without a privileged
direction: the cameras have the same setting (frequency, im-
age resolution, FoV) and are roughly equiangular. Second a
frame-accurate synchronization is estimated from the instanta-
neous angular velocities of each camera provided by monocu-
lar structure-from-motion. Third both inter-camera poses and
intrinsic parameters are refined using multi-camera structure-
from-motion and bundle adjustment. Last we introduce a bun-
dle adjustment that estimates not only the usual parameters
but also the sub-frame-accurate synchronization and the rolling
shutter. We experiment using videos taken by multi-cameras
mounted on a helmet and moving along trajectories of sev-
eral hundreds of meters or kilometer, then compare our self-
calibration results with ground truth.

Sec. 2 briefly overviews previous work for each step of
our method and presents our contributions. Several abbrevi-
ations are used in the paper: BA (bundle adjustment), SfM
(structure-from-motion), GS (global shutter), RS (rolling shut-
ter), FA (frame-accurate), SFA (sub-frame-accurate), IAV (in-
stantaneous angular velocity), FoV (field-of-view), FpS (frame-
per-second).

2. Previous work

2.1. Initializing the intrinsic parameters

The intrinsic parameters of a monocular perspective cam-
era can be estimated without a calibration pattern using three
steps [8]: projective reconstruction from the given images, self-
calibration assuming that pixels are squares, and refinement us-
ing BA [9]. If the camera is an axially symmetric fisheye with
an approximately known FoV angle, two radial distortion pa-
rameters can also be estimated [10] (this extends the one radial
parameter case [11]). The initialization of these intrinsic pa-
rameters is not the paper topic. Here we initialize them assum-
ing that the monocular cameras are roughly equiangular with
an approximately known FoV. This is sufficient to experiment
our contribution (synchronization and bundle adjustment) and
we expect that a method like [10] improves the results.

2.2. Initializing the time offsets

Audio-based synchronization is possible if a distinct sound
is available (e.g. a clap) and if the cameras do not have au-
dio/video synchronization issues [1]. A survey of methods for
video-based synchronization can be found in [12], but these
require inter-camera matching or shared FoV or are designed
for non-jointly moving cameras. In our case, we benefit by
the assumption of jointly moving cameras but the shared FoV
can be too small to automatically obtain a decent matching be-
tween two cameras. In [13], transformations are estimated be-
tween consecutive frames of every video instead of trying to
match different videos. The estimated offset is the one that best
“compares” the transformations between two videos. One in-
tuitive example is the translation magnitude that is estimated
from tracked features: the larger the translation in one video,
the larger the translation in the other. However the transfor-
mations in [13] are heuristic (translation) or uncalibrated (ho-
mography/fundamental matrix) without radial distortion. Here
we propose to compare the IAV estimated by a monocular SfM
(Sec. 2.1), which does not have the above inconveniences.

2.3. Initializing the inter-camera poses

Once a 3D reconstruction is obtained for every camera
(Sec. 2.1) and the time offsets are known (Sec. 2.2), the recon-
structions are registered in the same coordinate system. In [14],
a similarity transformation is robustly estimated between two
reconstructions using a 3-point RANSAC algorithm and image
matching for 3D points in different reconstructions. In [15], the
relative pose between two cameras is directly estimated from
the pose sequences of their two reconstructions (if the cam-
era motion is not a pure translation). Averaging rotation (e.g.
[16]) can also be used if there is a non constant relative pose be-
tween two reconstructions due to the drift of reconstruction(s).
The initialization of the inter-camera poses is not the paper
topic. Here we initialize them assuming that the multi-camera is
roughly central with approximately known inter-camera poses:
n cameras that are symmetrically mounted around a symmetry
axis. This is enough to feed the bundle adjustment in our cases
and [15, 14] can solve this step in all cases.
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2.4. Global shutter multi-camera bundle adjustments
The BA in [17] refines the relative poses between the cameras

in addition to the usual parameters (poses of the multi-camera
and 3D points) by minimizing a reprojection error. However
the reprojection error is in the undistorted space of the classi-
cal polynomial distortion model [18]. This is due to the fact
that the forward-projection of this camera model does not have
a closed-form. The BA in [19] deals with points at infinity,
uses ray directions as observations, and transfers the uncertainty
from the measure image space to the ray space. The refinement
of intrinsic parameters is left as future work in [14, 17, 19].

Our multi-camera BA also refines intrinsic parameters (not
only inter-camera poses and the other 3D parameters) and min-
imizes the reprojection error in the right space: the distorted
space where the image points are detected. Under the standard
assumption that the image noise due to point detection follows
zero-mean normalized identical and independent Gaussian vec-
tors, our BA is the Maximum Likelihood Estimator (this as-
sumption is not true in the undistorted space, especially in case
of large distortions between undistorted and distorted spaces).

2.5. Rolling shutter bundle adjustments
Previous monocular BAs estimate the RS assuming that the

3D points are known in a calibration pattern [20] or enforce
a known RS coefficient [21, 22]. In the context of visual
SLAM [23], GS BA is applied to RS (monocular) camera
thanks to RS compensation: this method corrects beforehand
the RS effects on the feature tracks by estimating instantaneous
velocities of the camera. The previous multi-camera BAs es-
timate neither synchronization nor RS; only [24, 25] deal with
known RS but need other sensors.

Every RS BA has a model of the camera trajectory, which
provides the camera pose at each instant corresponding to each
line of a frame, and which should have a moderated number
of parameters to be estimated. In [21], one pose is estimated
at each frame by BA and the poses between two consecutive
frames are interpolated from the poses of these two frames.
The BA in [22] adds extra parameters to avoid this linear in-
terpolation assumption: it not only optimizes a pose but also
rotational and translation speeds at every keyframe. In [20], a
continuous-time trajectory model is used using B-splines and
the BA optimizes the knots of the splines. The method chooses
the number of knots and initializes their distribution along the
trajectory sequence. In [24], the relative pose between an inter-
frame pose and an optimized frame pose is provided by IMU
at high frequency. In [25], rotational and translation speeds are
also estimated at every frame (the FpS is only 4Hz) and the BA
enforces a relative pose constraint using GPS/INS data. The
visual-only RS approaches [23, 21, 22, 20] are experimented
on few meters long camera trajectories. Our approach is also
visual-only and deals with quite longer trajectories (hundreds of
meters, kilometers) since it only estimates poses at keyframes.

2.6. Self-calibration and synchronization of sensors
In the context of a general multi-sensor, [26] simultaneously

estimates the temporal and spatial registrations between sen-
sors. In the experiments, the multi-sensor is composed of a

camera and IMU. The best accuracy is obtained thanks to the
use of all measurements at once, a continuous-time represen-
tation (a B-spline for IMU poses) and maximum likelihood
estimation of the parameters (time offset, transformation be-
tween IMU and camera, IMU poses, and others). In [27], a
camera-inertial multi-sensor is self-calibrated (synchronization,
spatial registration, intrinsic parameters) by a sliding window
visual odometry. Thanks to an adequate continuous-time mo-
tion parametrization, it also deals with RS cameras and has a
better parametrization of the rotations. Indeed, it avoids the
singularities of the global and minimal parametrization of ro-
tations (e.g. in [26]), but assumes that the time between con-
secutive keyframes is uniform. Our work introduces a global
minimal rotation parametrization and deals with non-uniform
distribution of keyframes provided by standard SfM [28].

Recently, [29] synchronizes and self-calibrates consumer
cameras using BA in a different context: assumptions are re-
moved (rigidity on both multi-camera and scene), others are
added (FoV shared by cameras, physics-based motion priors
for moving objects), and the rolling shutter is not estimated.

2.7. Our contributions

Our multi-camera BA estimates the SFA synchronization and
the line delay coefficient of the RS. Furthermore, this is done
over long video datasets without additional sensors (hundreds
of meters or kilometers). The previous work do not do this.
In contrast to [17], our BA also estimates the intrinsic parame-
ters and minimizes the reprojection errors in the original image
space (not the rectified one) with the same polynomial distor-
tion model [18, 30]. Another contribution is the FA synchro-
nization that deals with cameras with small/empty shared FoV.
As mentioned in Secs. 2.1 and Sec. 2.3, our initialization does
not intend to compete with the accuracy and generality of pre-
vious initializations of intrinsic parameters and relative poses.

Contributions over our previous conference work [3, 31] are
the following: check approximations [24] in the computation
of the image projection that takes into account RS and synchro-
nization, refine simultaneously calibration and synchroniza-
tion/RS, deal with spherical cameras, more details on synchro-
nization and BA (rotation parametrization, sparsity of solved
system, derivatives of implicit reprojections errors). There
are also new experiments on synchronization (comparison with
ground truth, robustness of SFA refinement with respect to bad
FA initialization), stability of both SFA synchronization and RS
over time in long videos and with respect to keyframe sampling.

3. Overview of our algorithm

First the monocular camera model (we experiment the clas-
sical polynomial distortion model [30, 18, 17] and the uni-
fied camera model [32]) is initialized in Sec. 4 assuming that
the fisheyes are roughly equiangular and using an approximate
knowledge of their FoV angle.

Second we apply monocular SfM [28] and calibration refine-
ment by BA for every camera. However SfM can fail for a video
due to the combination of two difficulties: lack of texture and
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approximate calibration. We assume that there is at least one
textured enough video such that this is successful. Since the
cameras have the same setting, we benefit by the refined intrin-
sic parameters by BA to redo the monocular SfM of the other
videos. Thus a difficulty (approximate calibration) is reduced
for the less textured videos and the risk of failure decreases.

Third the FA synchronization between all videos is obtained
by using the method in Sec. 5. We skip few frames in each
video such that the sequels of the videos are FA synchronized:
from now frames with the same index are taken at the same time
up to the inverse of the FpS.

Fourth a central multi-camera calibration is initialized from
the estimated intrinsic monocular parameters and approximate
inter-camera rotations (Sec. 2.3).

Fifth we apply multi-camera SfM [28] followed by multi-
camera BA [17] by adding the intrinsic parameters as new es-
timated parameters. Up to now, we did three approximations:
global shutter, central multi-camera, and zero sub-frame resid-
ual time offsets. Furthermore we only applied the SfMs (both
monocular and multi-cameras) on the beginning of the videos
to obtain initial synchronization and calibration (the 2k first
frames in our experiments). Then the multi-camera SfM is ap-
plied a second time on the whole videos.

Last we apply the multi-camera BA in Sec. 6 for estimating
the SFA synchronization and the line delay with usual parame-
ters.

Sec. 7 explains how to efficiently compute non-closed form
image projections and their derivatives involved in BA. The ex-
periments and conclusion are in Secs. 8 and 9, respectively.

4. Equiangular initializations

Secs. 4.1 and 4.2 describe two monocular camera models
and their initializations (before all SfM and BA computations).
Both models involve the intrinsic parameter matrix K of a per-
spective camera: K has focal parameters fx and fy, principal
point z0 and zero skew. The classical polynomial distortion
model [30, 18, 17] is often used since its closed-form back-
projection is useful for SfM tasks and epipolar geometry. It has
several radial distortion parameters and can be applied to con-
sumer cameras like Gopro [4]. The unified camera model [32]
is also interesting since it deals with fisheyes having FoV larger
than 180◦ (like those of spherical camera [7]) although it only
has a single radial distortion parameter. The equiangular initial-
ization can be adapted to other camera models.

4.1. Polynomial distortion model

4.1.1. Back-projection
The function from the distorted (i.e. original) image to the

undistorted (i.e. rectified) image depends on radial distortion
parameters ki (tangential distortions are neglected). Let zd and
zu be the distorted and undistorted coordinates of a pixel. Their
normalized coordinates z̄d and z̄u meet

K

(
z̄d

1

)
=

(
zd

1

)
and K

(
z̄u

1

)
=

(
zu

1

)
. (1)

Let r̄d = ||z̄d || be the normalized radial distance in the distorted
image. The relation between distorted and undistorted coordi-
nates is

z̄u = (1 +

n∑
i=1

kir̄2i
d )z̄d. (2)

Lastly, the back-projected ray of pixel zd has direction
(
z̄>u 1

)>
in the camera coordinate system.

4.1.2. Initialization
Here we initialize ki, z0, fx and fy for an equiangular camera.

The camera is equiangular if the angle µ between the princi-
pal direction

(
0 0 1

)>
and the back-projected ray is propor-

tional to the (non-normalized) radial distance rd in the distorted
image. We have rd = ||zd − z0|| and tan µ = ||z̄u||. If the camera
is equiangular, fx = fy = f and there is a constant c such that
µ = crd. Thus µ = c f r̄d. Since ||z̄u|| = r̄d(1 +

∑n
i=1 kir̄2i

d ),

tan(c f r̄d) = tan µ = r̄d +

n∑
i=1

kir̄2i+1
d . (3)

Since tan is not a polynomial, Eq. 3 can not be exact. We use a
Taylor’s approximation

tan µ ≈
n∑

i=0

tiµ2i+1 = µ +
µ3

3
+

2µ5

5
+

17µ7

315
+ · · · (4)

and identify coefficients between Eqs 3 and 4. We obtain c f = 1
using t0 and ki = ti if i ≥ 0. In practice, we initialize z0 at the
image center and compute f = rd/µ for a pixel zd at the cen-
ter of an image border where the half-FoV µ is approximately
known.

4.2. Unified camera model

4.2.1. Forward projection

Let x =
(
x y z

)>
∈ R3 \ {0} be a 3D point in the camera

coordinate system. Let S be the unit sphere in R3 centered at
0 and let ξ ∈ R+. The projection p(x) of x by this model is
obtained as follows: first x is projected onto S, then x/||x|| is
projected onto the image plane by a perspective camera with
the center

(
0 0 −ξ

)>
and the intrinsic parameter matrix K.

Formerly,

p(x) = π(K(
x
||x||

+

00
ξ

)) where π(

u
v
w

) =

(
u/w
v/w

)
. (5)

4.2.2. Initialization
Here we initialize ξ, z0, fx and fy for an equiangular camera.

Let µ be the angle between the principal direction
(
0 0 1

)>
and the back-projected ray, which is a half-line started at 0 with
the direction x/||x||. Appendix A shows that

fx = fy = f ⇒ ||p(x) − z0||/ f =
sin µ

ξ + cos µ
. (6)
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If the camera is equiangular, fx = fy = f and there is a constant
c such that µ = c||p(x) − z0||. Since sin µ

ξ+cos µ is not linear in µ, we
approximate it thanks to Taylor’s expansions:

sin µ
ξ + cos µ

≈
µ − µ3/6

ξ + 1 − µ2/2
=

µ(1 − µ2/6)
(1 + ξ)(1 − µ2/(2ξ + 2))

=
µ

1 + ξ
(1 + µ2(

1
2ξ + 2

−
1
6

) + O(µ4)). (7)

We initialize ξ = 2 such that this approximation is linear in µ.
Now we distinguish two cases for the initialization of z0 and f .
If every pixel of the (rectangular) image has a back-projected
ray, we initialize z0 at the image center and take a point z1 at
the center of an image border where the half-FoV µ is approxi-
mately known. Otherwise, we assume that the pixels that have
back-projected rays form a disk whose radius and center can be
estimated. Then we initialize z0 by this center and take a point
z1 at the disk boundary where the half-FoV µ is approximately
known. In both cases, f is initialized by Eq. 6 using p(x) = z1.

5. Synchronization initialization

The synchronization initialization is required by the multi-
camera SfM-BA and has two steps. First Sec. 5.1 estimates
instantaneous angular velocities thanks to monocular SfM-BA
and global shutter approximation. Then time offsets are com-
puted by correlation of IAVs of different cameras; Secs. 5.2
and 5.3 describe the two- and multi-camera cases respectively.

5.1. Instantaneous angular velocity (IAV)
Every monocular video is reconstructed such that ev-

ery frame has a computed pose (both keyframes and non-
keyframes, not only keyframes as in the paper remainder). Thus
the keyframe-based SfM [28] is followed by pose calculations
for the non-keyframes and by BA. In practice, it is sufficient to
reconstruct few thousands of frames at the video beginning for
the synchronization initialization. Let Rt

i be the rotation of the
pose of the t-th frame in the reconstruction of the i-th video.
The IAV θt

i at the t-th frame (of the i-th video) is approximated
by the angle of rotation Rt+1

i (Rt
i)
>, i.e.

θt
i = arccos((trace(Rt+1

i (Rt
i)
>) − 1)/2). (8)

We omit the FpS coefficient since all cameras have the same.
Intuitively, two frames of different but jointly moving cameras
have same IAV if they are taken at the same time. This is shown
in Appendix B by taking account the fact that the Rt

i are ex-
pressed in arbitrary coordinate systems due to the monocular
SfM.

5.2. Synchronize two cameras
We compute an IAV table for every camera and find the time

offset that maximizes the correlation (ZNCC) between two such
tables (match two sub-tables with the same length in different
tables). The time offset oi, j between the i-th and j-th cameras
maximizes correlation ZNCCi, j between vectors θt

i and θt+oi, j

j .
We also introduce a simple SFA refinement method. The

sub-frame offsets are estimated like sub-pixelic disparity using

a quadratic fit [33]: first approximate the function from oi, j to
ZNCCi, j using a quadratic polynomial defined by its 3 values at
oi, j + {−1, 0,+1}; then estimate εi, j such that oi, j +εi, j maximizes
this polynomial. In contrast to the FA offsets oi, j ∈ Z, the SFA
offsets oi, j + εi, j ∈ R are not used for the input of our BA.

5.3. Consistently synchronize more than two cameras

We remind that the goal of the FA synchronization is to skip
si frames at the beginning of the i-th video such that the sequels
of the videos are FA synchronized (this is required for multi-
camera SfM). Thus oi, j = s j − si for all i , j, which in turn
imply that the sum of the offsets along every loop in the camera
graph should be zero (e.g. we should have o0,1 + o1,2 + o2,0 = 0
for loop 0 → 1 → 2 → 0). However such a sum can be non-
zero since the offsets are estimated independently.

There are several ways to deal with this loop constraint. First
only compute offsets o0,i. But this solution privileges a cam-
era. Second compute all offsets oi, j, generate candidate off-
sets around oi, j for every pair (i, j), and select the candidate
offsets that maximizes

∑
i, j ZNCCi, j such that the sum of can-

didate offsets along every loop is zero. We implement an in-
termediate and simple solution where every camera has the
same importance assuming that the cameras are symmetrically
mounted around a symmetry axis: we only consider the spa-
tial adjacency of the n cameras, i.e. we only compute offsets
o0,1, o1,2, · · · on−2,n−1, on−1,0 (instead of all oi, j) and only use the
loop 0→ 1→ · · · n−1→ 0 (instead of all loops) in the scheme
above. In practice, we found that it is sufficient to generate can-
didate offsets that differ from the initial ones by +1 or 0 or −1.
In the remainder of the paper, we use the notation oi, j for offsets
that meet the loop constraint.

6. Bundle adjustment for RS and synchronization

This is the last step of our method and it requires the multi-
camera initialization described in Sec. 6.1. Sec. 6.2 presents our
continuous-time parametrization of the multi-camera motion: it
is defined by the composition of a function M from a time in-
terval to R3 × Rk and a function R from Rk to the set of rota-
tions in R3. Sec. 6.3 describes a keyframe of the multi-camera,
where every line has a time that depends on the camera that
captures the line, its y-coordinate and the line delay. Sec. 6.4
approximates M(t) at a time t from the few M(ti) corresponding
to the beginnings of the keyframes; this is useful to moderate
the number of parameters estimated by BA. Sec. 6.5 provides a
simple method to compute the reprojection error minimized by
BA. Last Secs. 6.6 and 6.7 are more technical: we choose R in
the former and detail the sparse structure of the linear system
solved by BA in the latter.

6.1. Initialization

First we assume that the monocular videos are FA synchro-
nized by removing few frames at their beginning (Sec. 5). Then
we define the i-th frame of the multi-camera by a concatenation
of sub-images, every of them is the i-th frame of a monocu-
lar camera. From now on, we use word frame for “frame of
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the multi-camera” and the video is the sequence defined by all
these frames. Last we use a standard SfM based on keyframe
sub-sampling of the video (Appendix G) and local BA [28] as-
suming GS. We remind that the keyframes are the only frames
whose poses are refined by the BAs (this is useful for both time
computation and accuracy).

6.2. Parametrization of the multi-camera trajectory

Let R be a C1 continuous and surjective function that maps
Rk to the set of the 3D rotations (typical values are k ∈ {3, 4}).
We assume that there is a C3 continuous function M : R →
R3×Rk that parametrizes the motion of the multi-camera. More
precisely, M(t)T =

(
TM(t)T EM(t)T

)
where t ∈ R is the time,

TM(t) ∈ R3 is the translation and R(EM(t)) is the rotation of
the multi-camera pose. The columns of R(EM(t)) and TM(t) are
the vectors of the multi-camera coordinate system expressed in
world coordinates. The choice of R (including EM and k) is
detailed in Sec. 6.6 for the paper clarity.

Thanks to these notations and assumptions, we will approx-
imate M(t) by using values of M taken at few times t1, · · · , tm.
Then our model of the camera trajectory not only provides the
multi-camera pose at each instant corresponding to each line of
a frame, but it also has a moderated number of parameters to be
estimated by BA: the vector concatenating all M(ti), which has
dimension m(3 + k). Sec. 6.3 defines ti and Sec. 6.4 describes
our approximations of M(t) by using the M(ti).

6.3. Time, RS and synchronization parameters

The i-th keyframe is an image composed of sub-images taken
by the monocular cameras. Every line of every sub-image is
taken at its own time, which is described now. The 0-th line
of the 0-th sub-image in the i-th keyframe is taken at time ti,
assuming that the time exposure of a line is instantaneous [5].
Thus ti+1 − ti is a multiple of the inverse of the FpS. Since the
cameras are RS, the line delay τ is such that the y-th line of
the 0-th sub-image in the i-th keyframe is taken at time ti +

yτ. Let ∆ j ∈ R be the sub-frame residual time offset between
the j-th video and the 0-th video. Then the 0-th line of the
j-th sub-image in the i-th keyframe is taken at time ti + ∆ j.
Since we assume that all cameras have the same FpS and same
(and constant) τ, the y-th line of the j-th sub-image in the i-th
keyframe is taken at time ti + ∆ j + yτ. Fig. 1 illustrates the
trajectory M(t) of a multi-camera defined by four monocular
rolling shutter cameras having non-zero time offsets ∆ j.

6.4. Approximations for the multi-camera trajectory

Let ∆ = maxi(ti+1 − ti) and shortened notation mi = M(ti).
Thanks to the C3 continuity of M and Taylor’s expansions of M
at ti, we explicit two approximations M1(t) and M2(t) of M(t) in
the neighborhood of ti as functions of mi−1, mi and mi+1. These
approximations have remainders expressed in terms of ∆ and
|t − ti|. By neglecting these remainders, we compute M(t) for
the y-th line of the j-th camera/sub-image in the i-th keyframe
using t = ti + ∆ j + yτ (Sec. 6.3) during our BA.

Figure 1: Time continuous trajectory of a multi-camera. Left: four monocular
cameras at time ti, which have non-zero time offsets. Right: a rolling shutter
monocular camera, which moves and sees points at several times/lines in a
single frame.

6.4.1. Linear approximation M1 of M
We have Taylor’s linear expansion

M(t) = mi + (t − ti)M′(ti) + O(|t − ti|2) (9)

and express the derivative M′(ti) as a function of mi−1, mi and
mi+1. Let reals a > 0 and b > 0, vectors x, y, z in Rk+3, function
D1 such that

D1(x, y, z, a, b) =
bz

a(a + b)
−

ax
b(a + b)

+
(a − b)y

ab
, (10)

and shortened notation

Di
1 = D1(mi−1,mi,mi+1, ti+1 − ti, ti − ti−1). (11)

Appendix C shows that M′(ti) = Di
1 + O(∆2). We obtain

M1(t) = mi + (t − ti)Di
1 if t ≈ ti. (12)

If i = 0 (similarly if i = m), we use D0
1 =

m1−m0
t1−t0

.

6.4.2. Quadratic approximation M2 of M
Similarly, we have Taylor’s quadratic expansion of M at ti

and express the derivative M′′(ti) as a function of mi−1, mi and
mi+1. Let a, b, x, y, z as in Sec. 6.4.1, function D2 such that

D2(x, y, z, a, b) =
2z

a(a + b)
+

2x
b(a + b)

−
2y
ab
, (13)

and shortened notation

Di
2 = D2(mi−1,mi,mi+1, ti+1 − ti, ti − ti−1). (14)

Appendix C shows that M′′(ti) = Di
2 + O(∆). We obtain

M2(t) = mi + (t − ti)Di
1 +

(t − ti)2

2
Di

2 if t ≈ ti. (15)

If i = 0 (similarly if i = m), we use D0
1 =

m1−m0
t1−t0

and D0
2 = 0.

6.5. Reprojection error of the multi-camera
Since our BA minimizes the sum of squared modulus of re-

projection error for every inlier, this section describes the com-
putation of a reprojection error for a 3D point x ∈ R3 (in world
coordinates) and its inlier observation p̃ ∈ R2 in the j-th sub-
image of the i-th keyframe.
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First we introduce notations. Let p ∈ R2 be the projection of
x in the j-th sub-image of the i-th keyframe. The reprojection
error is p − p̃. Let (R j, t j) be the pose of the j-th camera in the
multi-camera frame. Let p j : R3 \ {0} → R2 be the projec-
tion function of the j-th camera. We assume that p j, R j, t j are
constant. The acquisition times of p = (x, y) and p̃ = (x̃, ỹ) are

tp = ti + ∆ j + yτ and tp̃ = ti + ∆ j + ỹτ. (16)

Second we detail the relation between p and x. Both EM(tp)
and TM(tp) (i.e. M(tp) in Sec. 6.2) are defined by one equa-
tion chosen among Eq. 12 and Eq. 15 using the index i of the
keyframe and t = tp. The coordinates of x in the multi-camera
coordinate system is

xM = R(EM(tp))>(x − TM(tp)). (17)

The coordinates of x in the j-th camera coordinate system and
the projection of x are

x j = R>j (xM − t j) and p = p j(x j). (18)

We see that p needs the computation of xM , which in turn needs
the computation of (the y coordinate of) p.

Such a problem is solved thanks to an approximation in [24]:
tp is replaced by tp̃ in Eq. 17, i.e. we assume that the multi-
camera pose is the same at times tp̃ and tp. We think that this
is acceptable since |tp̃ − tp| ≤ τ||p − p̃|| and the magnitude order
of τ is 10−5 s/pixel and p̃ is an inlier (i.e. ||p − p̃|| ≤ 4 pixels).
Sec. 7.3 presents another solution without this approximation.

6.6. Parametrization of rotations

Sec. 6.6.1 lists useful properties of R (reminder: R is a func-
tion introduced in Sec. 6.2 which maps Rk to the set of the 3D
rotations). Then Sec. 6.6.2 explains our choice of R to meet the
properties in Sec. 6.6.1.

6.6.1. Details on R properties
First we note that R is a global parametrization used for the

whole camera trajectory (we do not use local parametrizations,
i.e. different parametrizations for different keyframes). Second
the C1 continuity of R is needed by BA for the derivative com-
putations of the reprojection errors. Third we follow [20] by
using a minimal (non-redundant) parametrization R of the rota-
tions to limit the number of estimated parameters. Thus k = 3.

Fourth BA needs another property. According to Secs. 6.2
and 6.3, mi = M(ti) =

(
TM(ti)> EM(ti)>

)>
∈ R6 is one of the

parameter vectors estimated by BA such that (TM(ti),R(EM(ti)))
is the pose (of the first line) of the i-th keyframe. Since the set of
all rotations in a neighborhood of a current estimate of rotation
R(EM(ti)) should be reachable by the parametrization R during
every BA iteration [9], the jacobian ∂R of R should be rank 3 at
EM(ti). In other words, EM(ti) should not be a singularity of R.

Unfortunately, every 3D parametrization R of the rotation set
has singularities [34]. Thus we choose R in Sec. 6.6.2 such that
all its singularities are far from the multi-camera motion that
we want to refine using BA.

6.6.2. Choice of a minimal parametrization R
First we consider R candidates and describe constraints that

they induce on a class of multi-camera motions: all yaw mo-
tions are possible but pitch and roll are small. Such motions are
very common for a helmet-held multi-camera and an user ex-
ploring the environment without special objective like grasping
at object on the ground (and also for a car-fixed multi-camera).

Even the popular exponential map ω 7→ exp([ω]×) has sin-
gularities: they form concentric spheres with center 0 and radii
that are multiples of 2π [35]. This can be seen thanks to the
equivalent angle-axis (θ,n) representation where ||n|| = 1 and
ω = θn. Thus the range of the angle θ is equal to 4π for every
axis n. If we choose R(ω) = exp([ω]×) as in [20] and would
like to avoid the singularities, the multi-camera should avoid
multiple turns on the left (or right) around buildings and avoid
straight trajectory segments where ||ω|| ≈ 2πk and k ∈ Z∗.

We also detail the case of Euler’s parametrization

E(α, β, γ) = Rz(γ)Ry(β)Rx(α) (19)

where Rx(α), Ry(β) and Rz(γ) are the rotations about respective
axes

(
1 0 0

)>
,
(
0 1 0

)>
,
(
0 0 1

)>
and with respective

angles α, β, γ. The singularities (α, β, γ) of E form parallel and
equidistant planes of equations β = π/2 + pπ such that p ∈
Z [34]. If we choose R = E and the coordinate systems (both
world and multi-camera) are such that ∀i,R(EM(ti)) ≈ Rx(αi),
we are far from the singularities. If the coordinate systems are
such that ∀i,R(EM(ti)) ≈ Ry(π/2)Rx(αi), we are close to the
singularities.

Last we choose R inspired by the Euler’s case above. Let

R(α, β, γ) = ARz(γ)Ry(β)Rx(α)B (20)

where rotations A and B do not depend on (α, β, γ). We estimate
A and B such that β is close to 0 for all keyframe rotations of the
multi-camera trajectory before the BA in Sec. 6 (technical de-
tails in Appendix D). Now the camera motion in our class is far
from all singularities. Note that the local Euler parametrization,
that is used in BA [9], is a special case of this parametrization.

6.7. Sparsity of the reduced camera system (RCS)

In this section, we explicit the sparsity of the RCS that is
solved by BA [9]. This is important for efficient computations.

6.7.1. Notations and global structure of the RCS
The m vectors mi = M(ti) are the parameters of the multi-

camera trajectory (Sec. 6.2), they meet mi ∈ R6 (Sec. 6.6.1),
and we define M =

(
m>1 · · · m>m

)>
∈ R6m. Let m′ ∈ Rm′

be the other optimized camera parameters among intrinsic pa-
rameters, camera poses in multi-camera coordinates, line delay
and time offsets. Since these other optimized parameters are the
sames at all keyframes, m′ � 6m. For example, m = 1000 and
m′ ≤ 4+4∗15 = 64 if the multi-camera has four Gopro cameras:
there are line delay τ, time offsets ∆1, ∆2, ∆3 (Sec. 6.3), and
every camera has parameters fx, fy, u0, v0, k1 · · · k5 (Sec. 4.1.1)
and 6D pose in multi-camera coordinates. Let X be the vec-
tor that concatenates points xl ∈ R3 in world coordinates. The
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Figure 2: Shape of the standard (left) and our (right) Z for a video sequence
with 1573 keyframes and closed loops and same inliers.

projection function of xl in the i-th keyframe is concisely writ-
ten ϕ(mi−1,mi,mi+1,m′, xl) for both approximations in Sec. 6.4
(omit mi−1 if i = 1 and omit mi+1 if i = m). Let

H =
∑(

∂ϕ
∂M

∂ϕ
∂m′

∂ϕ
∂X

)> (
∂ϕ
∂M

∂ϕ
∂m′

∂ϕ
∂X

)
=

 U U′ W

(U′)> U′′ W′

W> (W′)> V

 . (21)

Here H is the approximated hessian of the cost function mini-
mized by BA. It is defined as a sum for all 2D inliers (detailed
notations are omitted). The RCS is(

U U′

(U′)> U′′

)
−

(
W

W′

)
V−1

(
W

W′

)>
=

(
Z Z′

(Z′)> Z′′

)
. (22)

We have Z = U − WV−1W> ∈ R6m×6m, Z′ ∈ R6m×m′ and Z′′ ∈
Rm′×m′ . Since m′ � 6m, Z is the preponderant block in the RCS
and we only focus on the Z sparsity.

6.7.2. Sparsity of Z
Here we represent Z by a shape included in Z2, i.e. a set of

pixels in an image such that every pixel corresponds to a non-
zero 6 × 6-block of Z. Then we show in Appendix E that the
shape of our Z (which involves SFA and RS using projection
function ϕ(mi−1,mi,mi+1,m′, xl)) is included in a dilation of
the shape of the standard Z (which involves FA and GS us-
ing projection function ϕ(mi,m′, xl)) by {−1, 0,+1}2. We re-
mind that this dilation is an operation morphology that expands
a shape by one pixel in both dimensions and both directions.
Thus our RCS is slightly less sparse that the standard RCS (in
practice it is very similar according to the example in Fig. 2).

In the case where the loops are not closed in the video and
the track length is bounded by l, the standard Z is a 6×6-block-
wise band matrix with bandwidth l (Sec. A6.7.1 in [8]) and our
Z is a 6 × 6-block-wise band matrix with bandwidth l + 1.

7. Non-closed-form image projections

Sec. 7 computes the projection p and its derivatives with re-
spect to a vector θ of parameters optimized by BA, although p
does not have a closed-form expression from θ. This is needed
by BA and occurs in two cases in this paper. The general case

is described in Sec. 7.1 assuming that p and θ meet an equation
that implicitly defines p for a given value of θ. Then Secs. 7.2
and 7.3 apply the general case in two cases: the projection
of the polynomial distortion model (reminder: Sec. 4.1.1 only
computes the back-projection) and the exact projection using
a continuous-time trajectory model (reminder: Sec. 6.5 only
computes an approximate projection). This problem and its so-
lution are similar to those of a general non-central catadioptric
camera (Appendix D in [36]).

7.1. General case
We know an approximate value p̃ of p (p̃ is an inlier detected

in an image), a C1 continuous function g(z, θ) from R2 × Rp to
R2 such that p is the solution z of g(z, θ) = 0, and the current
value θ0 of θ (provided by initialization or previous iteration of
BA). First p is estimated by non-linear least-squares minimiz-
ing z 7→ ||g(z, θ0)||2. In practice, we use the iterative Gauss-
Newton’s method starting from z = p̃ with no more than 5 iter-
ations (Newton’s method can also be used). Then the implicit
function Theorem implies that we locally have a C1 continuous
function ψ such that p = ψ(θ) if det ∂g

∂z , 0. By differentiating
g(ψ(θ), θ) = 0 using the Chain rule, we obtain

∂p
∂θ

=
∂ψ

∂θ
= −(

∂g
∂z

)−1 ∂g
∂θ
. (23)

7.2. Case 1: polynomial distortion model
Here we focus on the projection p = p j(x j) in Eq. 18 using

the camera model in Sec. 4.1.1 and assuming that the 3D point
x j is known (in camera coordinates). First we define θ and g by

θ = ( fx, fy, z0, k1, k2, · · · , kn, x j), zu = π(Kx j), (24)(
u
v

)
= z,

(
u0
v0

)
= z0, r̄2 =

(u − u0)2

f 2
x

+
(v − v0)2

f 2
y

, (25)

g(z, θ) = (1 +

n∑
i=1

kir̄2i)(z − z0) − zu + z0. (26)

Then we show that g(p, θ) = 0. Since
(
z̄>u 1

)>
in Sec. 4.1.1

and x j are colinear, zu is the same in Sec. 4.1.1 and Eq. 24.
Furthermore, p = z = zd implies that r̄d (in Sec. 4.1.1) and r̄
are the same. We obtain g(p, θ) = 0 by multiplying Eq. 2 on the

left by
(

fx 0
0 fy

)
. Last we apply Sec. 7.1: find p by minimizing

z 7→ ||g(z, θ0)||2 and use Eq. 23 for p derivatives:
∂p
∂ki

= −(
∂g
∂z

)−1r̄2i(z − z0), (27)

∂p
∂x j

= (
∂g
∂z

)−1 ∂zu

∂x j
. (28)

Using a similar function g, Appendix F shows that(
∂p
∂ fx

∂p
∂ fy

∂p
∂u0

∂p
∂v0

)
=

 u−u0
fx

0 1 0
0 v−v0

fy
0 1

 . (29)

Eqs. 27, 28 and 29 need z = p and θ = θ0.
We note that the derivative computations in Eq. 28 are easy

from those of a standard perspective camera (i.e. ∂zu
∂x j

): multiply

on the left by ( ∂g
∂z )−1. This also holds for derivatives with respect

to the parameters defining x j (Eq. 18) thanks to the Chain rule.
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7.3. Case 2: exact calculation for RS and synchronization
Here we focus on the projection p by the j-th camera in the

i-th keyframe of the 3D point x in world coordinates without
the approximation in Sec. 6.5. Let p(θ j,m, x) be the projection
of x where m = M(t) is the parameter of the multi-camera pose
(reminder: M(t) is introduced in Sec. 6.2) and the vector θ j

concatenates the intrinsic/distortion parameters and the pose of
the j-th camera in the multi-camera coordinate system. The
acquisition time of p is

t(∆ j, τ,p) = ti + ∆ j + τ
(
0 1

)
p. (30)

and we use notation M(mi−1,mi,mi+1, t) for the chosen approx-
imation (Eq. 12 or Eq. 15). Thus we have

p = p(θ j,M(mi−1,mi,mi+1, t(∆ j, τ,p)), x). (31)

Now we define θ and g by

θ = (θ j,mi−1,mi,mi+1,∆ j, τ, x), (32)
g(z, θ) = p(θ j,M(mi−1,mi,mi+1, t(∆ j, τ, z)), x) − z.(33)

We see that g(p, θ) = 0. Then we apply Sec. 7.1: find p by
minimizing z 7→ ||g(z, θ0)||2 and use Eq. 23 for the p derivatives.

If we use the linear trajectory approximation M1 (Eq. 12), we
have a simple expression

∂g
∂z

=
∂p
∂m

∂M
∂t

∂t(∆ j, τ, z)
∂z

− I2 (34)

= τ
∂p
∂m

Di
1

(
0 1

)
− I2 ∈ R2×2. (35)

We note that the derivative computations without approxima-
tion (Eq. 23) can be deduced from those with approximation
(i.e. ∂p

∂θ
=

∂g
∂θ

(p̃, θ0)): replace p̃ by p in the derivative by θ and
multiply it on the left by −( ∂g

∂z )−1.

8. Experiments

8.1. Datasets
Secs. 8.1.1 and 8.1.2 present cameras and video sequences

that are used in the experiments, respectively. Tab. 1 summa-
rizes our dataset (both cameras and videos).

8.1.1. Cameras
The consumer multi-cameras are modeled by several rigidly

mounted monocular cameras and the user fixes them on a hel-
met. We assume that all calibrations parameters (time offsets
∆ j, line delay τ, intrinsics, radial distortion, relative poses) are
constant during a video acquisition. The camera gain is not
fixed and evolves independently for every camera.

First there are 360 cameras composed of four GoPro Hero 3
cameras [4], that are started by a single click on a wifi remote.
The user can choose the relative poses of the cameras: they are
enclosed in a cardboard for small baseline or are fixed by using
the housings provided with the cameras (larger baseline).

Second there is a spherical camera modeled by two oppo-
site fisheyes (no relative pose choice) that are synchronized.
The Ricoh Theta S multi-camera [7] has a very small baseline

Figure 3: Cameras (four Gopro Hero 3 in a cardboard) and images for BC1,
WT and BC2. The rolling shutter always goes from right to left, the image
motion goes toward left on the two left columns and goes toward right on the
two right columns.

thanks to the use of a prism mirror in front of a monocular cam-
era (its FoV is split in two equal parts, each of them sees more
than a half-sphere as a real fisheye does).

We also experiment on a professional multi-camera (Point-
Grey Ladybug 2 [37]) since its ground truth is provided by the
manufacturer (as a table of rays) and also for experimenting on
an ideal multi-camera with global shutter and perfect synchro-
nization. Except in a synthetic case, the other cameras have
incomplete ground truth (a strobe always provides τ).

8.1.2. Videos
There are three real multi-camera videos taken under various

conditions using four GoPro cameras (BC1: bike riding in a
city, WT: walking in a town, FH: paragliding flying at very low
height above a hill). WT is taken in the early morning during
summer to avoid moving car and people, but the lighting is low.
BC1 has sunny lighting (with contre-jours) and most cars are
parked. WT and BC1 have the same calibration setting, FH
has larger baseline and lower FpS and better angular resolution.
Fig. 3 shows images and cameras of BC1 and WT, Fig. 4 shows
images and cameras of FH.

BikeCity2 (BC2) is generated by ray-tracing of a synthetic
urban scene having real textures and by moving the camera
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Name (short name) Camera f r (mr) b (cm) τ (µs) f ∆ j l (m) f r FoV k f r #Tracks ||βi||∞

BikeCity1 (BC1) 4*Gopro 3 100 1.56 7.5 9.10 ? 2500 50.4k 90 2047 343k 0.223
WalkTown (WT) 4*Gopro 3 100 1.56 7.5 9.10 ? 900 70.3k 90 1363 240k 0.268

FlyHill (FH) 4*Gopro 3 48 1.06 18 11.3 ? 1250 8.6k 90 627 432k 0.494
BikeCity2 (BC2) 4*Gopro 3 100 1.56 7.5 9.12 i/4 615 12.5k 90 225 51k 0.074

CarCity (CC) Ladybug 2 15 1.90 6 0 0 2500 7.7k 72 891 282k 0.068
WalkUniv (WU) Theta S 30 3.85 1.5 -32.1 0 1260 29.4k 200 1287 154k 0.129

Table 1: Datasets: FpS f , angular resolution r (millirad.), diameter b of multi-camera centers, line delay τ (ground truth), time offset f ∆ j (ground truth), approximate
trajectory length l, numbers of frames f r and keyframes k f r, FoV angle used for initialization, maximum of angles |βi | (radians) of our parametrization in Sec. 6.6.2.

Figure 4: Cameras (four Gopro Hero 3 in their housings) and images for FH.
The rolling shutter always goes from top to bottom, the image motion goes
forward/toward right/backward/toward left.

Figure 5: Spherical camera (Ricoh Theta S) and image for WU. Both rolling
shutter and image motion go from bottom to top (τ is negative, the bottom line
is the oldest).

along a trajectory that mimics that of BC1 (the “pose noise”,
i.e. the relative pose between consecutive frames, are similar in
both videos). We obtain a video for each camera by compress-
ing the output images using ffmpeg and options “-c:v libx264
-preset slow -crf 18”. BC2 has ground truth: f ∆1 = 0.25,
f ∆2 = 0.5, f ∆3 = 0.75 and similar τ as BC1 (reminder: if
f ∆ j = 1 and f is the FpS, ∆ j is the time between two consecu-
tive frames). Fig. 3 also shows images of BC2.

There is also video WU (walking in the campus of the UCA
university) using a spherical camera: the Ricoh Theta S (Fig. 5).

Last CarCity is taken by the Ladybug 2 and has a similar tra-
jectory as BC1. However, it is mounted on a car (using a mast)
and is about 4 meters above the ground, as shown in Fig. 6. The
images are uncompressed (all others are videos compressed us-
ing H.264).

Figure 6: Cameras (PointGrey Ladybug 2) and images for CC. The cameras are
global shutter. The camera pointing toward the sky is not used in experiments.

8.2. Main notations
We use shortened notations:

• #2D= number of 2D inliers

• GT= ground truth,

• f = FpS

• RMS= RMS error in pixels in the original (distorted) im-
age space,

• BA= bundle adjustment.

• method gs.sfa is the SFA refinement in Sec. 5.2

• ymax is the number of lines of a monocular image (ymax =

768 for CC, ymax = 1440 for FH, ymax = 960 for
BC1,WT,BC2 and WU).

Our BA is named by a combination of several notations that
describes the estimated parameters:

• C (central approx.) estimates all rotations R j and fixes all
translations t j = 0 (reminder: (R j, t j) is the pose of the j-th
camera in the multi-camera frame)

• NC (non-central) estimates all (R j, t j)

• RS (rolling shutter) estimates the line delay τ

• GS (global shutter) fixes τ = 0

• SFA (sub-frame accurate) estimates all time offsets ∆ j
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• FA (frame accurate) fixes all ∆ j = 0

• INT (intrinsics) estimates all intrinsic parameters:
( fx, fy, u0, v0, ξ) or ( fx, fy, u0, v0, k1 · · · k5) depending on
the camera model chosen in Sec. 4.2.1 or Sec. 4.1.1
respectively; every camera has its own parameters.

Thus GS.NC.SFA.INT (or gs.nc.sfa.int) is a BA that fixes τ = 0
and estimates simultaneously all ∆ j, R j, t j and intrinsic param-
eters and keyframe poses mi and 3D points. The threshold for
the inlier selection is set to 4 pixels in all videos. Every BA
has three inlier updates, each one is followed by a Levenberg-
Marquardt minimization for these inliers. A succession of two
BAs is possible, e.g. gs.c.fa.int+rs.c.sfa.

The error e(∆) is the sum of the absolute errors of all f ∆ j.
The error e(τ) is the relative error of τ. We also define the error
of the estimated multi-camera calibration by a single number d,
which is the RMS for all multi-camera pixels of the angle be-
tween rays of the two calibrations (the estimated one and the GT
one) that back-project the same pixel. There are two reasons to
do this. First the accuracy is only needed for the ray directions
in applications (SfM, video stitching, 3d modeling of a scene)
in the central case. Second parameters can compensate them-
selves if their estimations are biased (e.g. the rotation/principal
point near-ambiguity for one view [38]). Now we detail the
computation of d. Since the rays of the estimated calibration
and the rays of the GT calibration can be expressed in differ-
ent coordinate systems, we estimate a registration between both
coordinate systems before computing angles between rays. The
registration is defined by a rotation R, that maps one ray set to
the other ray set (ignoring translation of ray origins). More pre-
cisely, R is the minimizer of e(R) =

∑N
i=1 ||r

gt
i − Rr

est
i ||

2 where
rest

i (respectively, rgt
i ) is the ray direction of the i-th pixel by the

estimated (respectively, GT) multi-camera calibration. Our dis-
tance is d =

√
e(R)/N where N is the number of (sampled) rays

in a multi-camera image. Note that d is expressed in radians
if d � 1; we always convert it in pixels by dividing it by the
angular resolution r in Tab. 1.

8.3. Frame-accurate synchronization

Here we experiment the FA synchronization summarized in
Sec. 3 and detailed in Sec. 5.

Fig. 7 draws the IAV (defined in Eq. 8) for consecutive
frames taken in a rectilinear segment of the trajectory and
the correlation function (that maps FA offset candidate o0,1 to
ZNCC0,1) for cameras 0 and 1. This is done for biking (BC1),
walking (WT) and car+mast (CC). There are similar variations
of the IAV for different cameras and a single maximum of the
ZNCC except for WT. Two consecutive offsets of WT have very
similar greatest ZNCC values and the other ZNCC values are
below, which suggest a half-frame residual time offset. These
examples can convince the reader that we have enough infor-
mation in the IAV to obtain a FA synchronization (at least if the
cameras are helmet-held or mounted on a car thanks to a mast).

Tab. 2 shows the FA time offsets for all sequences. First
we examine o j, j+1 for the four Gopro Hero 3 cameras in BC1,
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Figure 7: IAV for two cameras (left) and their correlation curves (right) for
rectilinear trajectory segments of trajectories of BC1 (top), WT (middle) and
CC (bottom). In the left, we have frame numbers (x-axes) and IAVs in radian
(y-axes). In the right, we have offset candidates o0,1 ∈ Z (x-axes) and its corre-
lation ZNCC0,1 ∈ [−1, 1] (y-axes).

11



o0,1 o1,2 o2,3 o3,4 Zncc1 Zncc2

BC1 -5 3 4 na 3.912 3.884
WT -15 -1 14 na 3.919 3.918
FH -1 1 -2 na 3.991 3.983

BC2 0 0 0 na 3.915 3.907
CC 0 0 0 0 4.987 4.347
WU 0 na na na 0.993 0.677

Table 2: FA time offsets o j, j+1 with loop constraint. Zncc1 is the greatest sum
of the ZNCCs of the n computed time offsets, and Zncc2 is the second greatest
ZNCC (thus −n ≤ Zncci ≤ +n). We remind that o j, j+1 counts a signed number
of frames between the j-th and the j+1-th videos (it is “na” if the multi-camera
has less than j + 2 cameras, i.e. if n < j + 2).

WT and FH. Different experiments have different o j, j+1 al-
though they are taken by the same cameras. Thus synchro-
nization should be done at every experiment. Furthermore, the
wifi-based synchronization of the Gopro is not very accurate:
about 0.04s and sometimes above 0.1s (reminder: their FpS is
100Hz or 48Hz). Second we check that the o j, j+1 are FA accu-
rate when their ground truths are known (BC2, CC and WU).

8.4. Intrinsic parameters using GS.X.FA.INT

Before exploring BA for rolling shutter and synchronization
in the next Sections, Sec. 8.4 experiments BA using two ap-
proximations: global shutter and zero sub-frame residual time
offsets. In other words, we investigate the BA in [17] with two
modifications: estimating the intrinsic parameters and minimiz-
ing the reprojection errors in the right image space. Sec. 8.4.1
compares error minimizations in the original and rectified im-
age spaces using the polynomial distortion model. Sec. 8.4.2
compares results obtained without or with the central approxi-
mation.

We remind that the BA input is obtained as summarized
in Sec. 3: initialization of multi-camera calibration on the
video beginning (SfM and GS.C.FA.INT applied to the 2k first
frames) followed by multi-camera SfM applied to the whole
video. Note that the FoV angles used for equiangular initializa-
tion (Sec. 4) are in the FoV column of Tab. 1.

8.4.1. Polynomial distortion model: original vs. rectified er-
rors

Tab. 3 compares the calibrations obtained by minimizing the
reprojection errors in original (i.e. distorted) and rectified (i.e.
undistorted) image spaces using GS.C.FA.INT applied to the 2k
first frames of the CC video (the beginning of our method). Col-
umn “init” gives details on the initialization of the calibration:
“72” means that we use an initial FoV angle equals to 360/5◦

for monocular camera and “pat” means that we use the calibra-
tion estimated using a planar calibration pattern [30]. Although
the numbers of 2D inliers are similar, the calibration error d of
the distorted case is quite better (about 6 times smaller) than that
of the rectified one. Such a difference can be explained as fol-
lows: there are large distortions between rectified and distorted
images, the BAs minimize errors in different image spaces (rec-
tified and distorted), and the distorted space is the right one to
obtain a Maximum Likelihood Estimator (more details at the

Error init Method #2D RMS d
Rectified 72 gs.c.fa.int 213335 1.216 9.575

pat gs.fa 213015 1.225 1.023
Distorted 72 gs.c.fa.int 213495 0.932 1.683

pat gs.fa 213108 0.946 1.023

Table 3: Comparing accuracy of gs.fa.X using rectified and distorted reprojec-
tion errors on 2k first frames of CC (reminder: d is in pixels).

Method d RMS #2D d RMS #2D
gs.c.fa 3.379 0.728 204k 1.685 0.938 965k

gs.c.fa.int 2.018 0.723 204k 1.173 0.938 965k
gs.nc.fa 3.397 0.727 204k 1.684 0.938 965k

gs.nc.fa.int 1.417 0.723 204k 1.313 0.937 965k

Table 4: Accuracies of gs.fa.X for BC2 (left) and CC (right).

end of Sec. 2.4). Tab. 3 also provides the numbers of 2D inliers
and RMS for GS.FA that enforces calibration “pat” during BA;
our RMS and inliers are slightly better but the calibration error
d of “pat” is the best. In the paper remainder, we always use the
reprojection error in the original space.

8.4.2. Central vs. non-central
Tab. 4 compares calibration error d (and RMS and 2D inliers)

obtained using GS.C.FA.INT, GS.NC.FA.INT, GS.C.FA and
GS.NC.FA applied to videos BC2 and CC. First GS.C.FA.INT
provides a better (smaller) d than GS.C.FA since the intrin-
sic parameters (INT) are estimated from a longer video. The
comparison between GS.NC.FA.INT and GS.NC.FA is similar.
Second we compare GS.C.FA and GS.NC.FA and see that the
non-central refinement (NC) changes almost nothing if INT is
not refined. If INT is refined, the NC refinement improves the
BC2 calibration but it does not improve (even degrades) the CC
calibration. We interpret this result as follows: the central ap-
proximation is more tenable for CC than for BC2, since CC has
a larger ratio between camera-scene distance and baseline than
BC2. We also note that the RMS and 2D inliers are similar in
all cases.

Tab. 5 provides accuracies of the intrinsic parameters of the
first BC2 camera using GS.C.FA.INT and GS.NC.FA.INT. The
absolute errors of fx, fy, u0, v0 are about 2 pixels or less; the
relative errors of k1 is good and those of ki are bad if i > 2. The
NC-values of fx, fy and u0 are slightly better than those of C.

8.5. Rolling shutter and sub-frame accurate synchronization

First Sec. 8.5.1 provides all estimation errors of several BAs
for videos BC2 and CC, that have complete ground truth. Sec-
ond Sec. 8.5.2 provides SFA time offsets, line delay, and top
view of reconstruction for every video using RS.C.SFA.INT.

8.5.1. Accuracies
Tab. 6 provides the errors e(∆), e(τ) and d (Sec. 8.2) for

several BAs estimating both SFA time offsets ∆ j and line de-
lay τ (Sec. 6). We compare GS.C.FA.INT+RS.C.SFA and
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gs.c.fa.int gs.nc.fa.int
G.T. value error value error

fx 580.773 582.809 2.037 581.296 0.523
fy 581.266 582.844 1.578 582.605 1.339
u0 640.827 640.989 0.162 640.978 0.151
v0 469.056 471.305 2.249 471.540 2.284
k1 0.368 0.368 7e-4 0.368 6e-4
k2 0.067 0.063 0.061 0.062 0.062
k3 0.013 0.026 1.001 0.025 0.970
k4 0.002 -0.013 6.463 -0.013 6.378
k5 0.013 0.018 0.434 0.018 0.420

Table 5: Accuracies of intrinsic parameters of the first camera (BC2) using
gs.X.fa.int. Reminder: we use absolute errors in pixels for fx, fy, u0, v0 and
relative errors for the kis.

RS.C.SFA.INT, i.e. we compare separate and simultaneous es-
timations of INT and RS.SFA parameters. We also compare
these central BAs and their non-central versions, and the SFA
synchronization without BA in Sec. 5.2.

First we experiment on the only RS sequence that has com-
plete ground truth: BC2. We see that the simultaneous estima-
tion of INT and RS.SFA has quite smaller e(τ) and smaller d
than separate estimations (both C and NC BAs). However the
separate case has a twice smaller e(∆) than the simultaneous
case, which in turn is more than twice smaller than that of the
SFA refinement without BA. We remind that e(∆) cumulates
absolute errors of SFA synchronization: a value of 0.1 (for the
simultaneous case) means that the mean SFA sync. error of n
cameras is only 0.1/(n− 1). The NC BAs also greatly reduce d.

Second we experiment on CC, which is the only real se-
quence with complete ground truth. Since it is GS, the rela-
tive error e(τ) is not a number and we replace it by ymax f τ (the
smaller absolute value, the best result). We see that all BAs pro-
vides small |ymax f τ| compared to that of consumer RS cameras:
we obtain values in [0.002, 0.009], which are small compared
to typical values in [0.8, 0.9] of consumer RS cameras. Fur-
thermore, all e(∆) are smaller than 0.055 for five cameras; d
increases and e(∆) decreases by the NC BAs. The SFA refine-
ment without BA provides the smallest e(∆).

8.5.2. Time offsets, line delays and reconstruction
Tab. 7 shows time offsets f ∆ j, normalized line delay ymax f τ

and error e(τ) for all videos by applying RS.C.SFA.INT. We
see that error e(τ) is less than 7.2% except in the WT case. In
the WT case, τ is over-estimated (ymax f τ is even greater than
its theoretical maximum value 1) and has large error e(τ) equal
to 16%. In contrast to this, e(τ) in the BC1 case looks lucky.
In fact, the τ value in a single experiment should be moderated
since it depends on the keyframe choice (this will be experi-
mented in Sec. 8.6). Note that a negative τ (for WU) simply
means that the time of the y-th line increases when y decreases.

Last Figs. 8 and 9 show a top view of the RS.C.SFA.INT re-
constructions (both keyframes locations and 3D point cloud).
In the WU case, we observe a non-negligible drift since the
beginning and end of the trajectory should be the same (the

Methods applied to BC2 e(∆) e(τ) d
gs.c.fa.int+rs.c.sfa 0.057 14.6% 1.970

rs.c.sfa.int 0.097 2.7% 1.476
gs.nc.fa.int+rs.nc.sfa 0.051 12.2% 1.312

rs.nc.sfa.int 0.111 3.7% 0.366
gs.sfa (in Sec. 5.2) 0.215 na na

Methods applied to CC e(∆) ymax f τ d
gs.c.fa.int+rs.c.sfa 0.052 -0.0052 1.176

rs.c.sfa.int 0.055 -0.0069 1.167
gs.nc.fa.int+rs.nc.sfa 0.034 -0.0020 1.322

rs.nc.sfa.int 0.039 0.0086 1.313
gs.sfa (in Sec. 5.2) 6e-3 na na

Table 6: Accuracies of rs.sfa.X.(int) for BC2 and for CC.

f ∆1 f ∆2 f ∆3 ymax f τ GT e(τ)
BC1 -0.334 -0.153 0.132 0.8755 0.8736 0.2%
WT -0.583 -0.320 -0.795 1.013 0.8736 16.0%
FH 0.287 0.203 -0.326 0.8372 0.7810 7.2%

BC2 0.246 0.546 0.797 0.8989 0.8755 2.7%
CC -0.017 -0.013 -0.006 -0.0069 0 nan
WU 0.001 na na -0.8882 -0.9244 3.9%

Table 7: SFA time offsets and line delay accuracy for all datasets using
rs.c.sfa.int. Here GT is the ground truth of ymax f τ.

drift is less noticeable in the other examples). There are several
reasons: we do not enforce loop closure, the incremental multi-
camera SfM by local BA [28] is done using an intermediate cal-
ibration computed from only 2k first frames, and the final BA
(RS.C.SFA.INT) does not remove the drift. We redo the incre-
mental SfM using the final multi-camera calibration (computed
from the whole sequence by RS.C.SFA.INT) and see that an
important part of drift is removed. This suggests that the final
multi-camera calibration is better than the intermediate one.

8.6. Stability with respect to keyframe sampling

Now we experiment the stability of our results (SFA syn-
chronization, line delay and calibration) with respect to moder-
ated changes of the keyframe sampling. The keyframe sam-
pling is tuned by a single threshold N3, which is a lower
bound for the number of matches between three consecutive
keyframes (more details in Appendix G). For every value
N3 ∈ {400, 425, 450, 475, 500}, we apply multi-camera SfM
based on keyframe sampling followed by RS.C.SFA.INT and
then discuss the results. The initial multi-camera calibration
and FA synchronization are the same for all N3 and are com-
puted from the video beginning as in the other experiments.

The left of Tab. 8 shows estimation errors e(∆), e(τ) and d.
There are 206 keyframes if N3 = 400 and 248 keyframes if
N3 = 500. The variations of errors are important: from single
to double for e(∆), from single to quadruple for e(τ), and about
30% for d. We provide an explanation in Sec. 8.6.1 and a cor-
rection of the results in Sec. 8.6.2. Tab. 9 shows time offsets
f ∆ j and error e(τ) for the longest sequence BC1. The variation
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Figure 8: Top views of RS.C.SFA.INT reconstructions of BC1, WT, FH, BC2
and CC (from top to bottom) without loop closure. The input videos of BC1,
WT and FH are taken by four Gopro cameras mounted on a helmet. The FH
trajectory has a lot of sharp S turns.

Figure 9: Top views of WU reconstructions without loop closure. The input
video is taken by the Ricoh Theta S mounted on a helmet. The drift is between
the two arrows. Top: result of RS.C.SFA.INT. Bottom: incremental SfM [28]
that is redone using the calibration estimated by RS.C.SFA.INT.
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rs.c.sfa.int rs.c.sfa.int+rs.c.sfa.int.h
N3 e(∆) e(τ) d e(∆) e(τ) d
400 0.089 1.9% 1.466 0.091 2.4% 1.458
425 0.131 3.0% 1.570 0.123 0.8% 1.563
450 0.097 2.7% 1.476 0.110 2.8% 1.541
475 0.191 7.4% 1.867 0.136 5.5% 1.710
500 0.199 2.7% 1.664 0.101 0.4% 1.499

mean 0.141 3.5% 1.609 0.112 2.4% 1.554
max/min 2.23 4.0 1.27 1.49 12.3 1.17

Table 8: Accuracy stability with respect to keyframe sampling for BC2 using
rs.c.sfa.int (left) and rs.c.sfa.int+rs.c.sfa.int.h (right) with h = 70%.

N3 k f r f ∆1 f ∆2 f ∆3 ymax f τ e(τ)
400 1813 -0.341 -0.171 0.131 0.8920 2.1%
425 1929 -0.337 -0.155 0.131 0.8882 1.6%
450 2047 -0.334 -0.153 0.132 0.8755 0.2%
475 2166 -0.366 -0.156 0.134 0.9399 7.5%
500 2256 -0.337 -0.141 0.130 0.8786 0.5%

mean 2042 -0.343 -0.155 0.132 0.8948 2.4%
mx-mn 443 0.032 0.030 0.004 0.0644 7.3%

Table 9: Stabilities of time offsets and line delay with respect to keyframe sam-
pling for BC1 using rs.c.sfa.int. The number of keyframe is k f r.

of e(τ) are also important; the variation of f ∆ j are less than
0.032.

8.6.1. Analysis
We remind that the reprojection errors in the i-th keyframe

are computed using the approximation in Eq. 12 of the multi-
camera trajectory M(t) where t ≈ ti: M(t) is a linear combina-
tion of mi−1, mi and mi+1, and M is linear in time t − ti. The
better this approximation, the smaller the reprojection errors in
the i-th keyframe.

At first glance, the estimation errors decrease if N3 increases:
if N3 increases, the keyframe density increases, thus the accu-
racy of these approximations is better (the remainders O(∆) and
O(∆2) in Sec. 6.4 decrease), the reprojection errors decrease
and last the estimation errors decreases). However, the errors in
Tab. 8 are not decreasing series but look noisy.

Here is a second explanation. The true value of M(t) near ti
can be different to its approximated value for some i, e.g. if the
true speed vector M′(ti) is different to the speed vector Di

1 com-
puted using the multi-camera poses of neighboring keyframes
i− 1 and i + 1 in Eq. 11. Then a keyframe with bad approxima-
tion has high reprojection errors and act as an outlier perturbing
the BA. The estimation errors in the left of Tab. 8 depend on the
set of this kind of outliers, which in turn depends on N3.

8.6.2. Correction
The idea is simple: if the i-th keyframe has high reprojection

errors, we redefine its approximation by M(t) = mi + (t − ti)di

if t ≈ ti thanks to a new velocity parameter di ∈ R6 that is
estimated by BA like mi. Then the camera motion is not con-
strained by keyframes i−1 and i + 1 if t ≈ ti, and we expect that

Name #di f ∆1 f ∆2 f ∆3 ymax f τ e(τ)
BC1 141 -0.349 -0.152 0.112 0.9177 5.0%
WT 126 -0.541 -0.322 -0.789 0.9139 4.6%
FH 130 0.284 0.208 -0.329 0.8435 8.0%

BC2 15 0.261 0.548 0.801 0.9001 2.8%
CC 3 -0.004 -0.015 -0.011 -0.0009 nan
WU 131 -0.001 na na -0.8772 5.1%

Table 10: SFA time offsets and line delay accuracy for all datasets using
rs.c.sfa.int+rs.c.sfa.int.h with h = 70% (to be compared with Tab. 7). The
number of keyframes with additional velocity parameter is #di.

the resulting reprojection errors of the i-th keyframe decrease
such that the i-th keyframe does no act as an outlier of the BA.

In practice, we start from a current estimation obtained by
RS.C.SFA.INT and introduce an user defined percentage h.
Let ch be the h-fractile over all reprojection errors. For every
keyframe, we compute the RMS of its own reprojection errors.
If this RMS is greater than ch, the keyframe has an additional
velocity parameter di as above (otherwise it does not have).
We name RS.C.SFA.INT.h the new BA obtained by modifying
RS.C.SFA.INT like this.

Tab. 8 provides estimation errors e(∆), e(τ), d of both
RS.C.SFA.INT and RS.C.SFA.INT+RS.C.SFA.INT.h using
h = 70%. Thanks to the correction, all errors are improved
in the following sense: both mean and maximum of every error
are reduced, the variations of e(∆) and d are damped (the varia-
tions of e(τ) expressed using ratio max/min are not damped due
to a small error 0.4% for N3 = 500).

Last Tab. 10 shows time offsets f ∆ j, normalized line
delay ymax f τ and error e(τ) for all videos by applying
RS.C.SFA.INT+RS.C.SFA.INT.h. We see that all errors e(τ)
have the same magnitude order (in interval [2.8, 8]). This con-
trasts to Tab. 7 using N3 = 450, where e(τ) is small for BC1 and
large for WT.

8.7. Robustness with respect to FA synchronization
We would like to know whether an error in the FA synchro-

nization can be corrected by SFA synchronization. Such an er-
ror can have two reasons: the IAV variations are insufficient
in the video beginning for FA accurate synchronization, or a
consumer camera skips frame(s) for any technical reasons. We
simulate such an error by skipping x frames of camera 1 (re-
minder: camera 0 is the first one), then we use multi-camera
SfM followed by RS.C.SFA.INT and compare the results for
x ∈ {0, 1, 2, 3}.

Tab. 11 shows errors e(∆), e(τ), d and time offsets f ∆ j esti-
mated for BC2. We see that e(∆) and d increases moderately if
x = 1, e(∆) is multiplied by 2.5 and e(τ) by 3.9 if x = 2, and all
errors increase a lot if x = 3.

8.8. Variations of τ and ∆ j in a long sequence
Here we examine the variations of τ and ∆ j in a long se-

quence. We split the GS.C.FA.INT reconstruction of BC1
into six segments of 300 keyframes (segments 0-299, 300-599,
etc) and independently apply RS.C.SFA.INT to every segment.
Tab. 12 shows the results.

15



x f ∆1 f ∆2 f ∆3 e(∆) e(τ) d
0 0.246 0.546 0.797 0.097 2.7% 1.476
1 1.342 0.505 0.769 0.117 1.0% 1.743
2 2.026 0.489 0.760 0.245 10.5% 1.298
3 2.472 0.532 0.781 0.841 10.4% 3.244

Table 11: Accuracies of rs.c.sfa.int applied to BC2 if we skip x additional
frame(s) of camera 1. The ideal result meets f ∆1 = x + 0.25.

s f ∆1 f ∆2 f ∆3 ymax f τ e(τ)
0 -0.443 -0.180 0.014 1.0570 20.1%
1 -0.417 -0.152 0.014 0.9347 6.9%
2 -0.306 -0.073 0.028 0.7678 12.2%
3 -0.308 -0.163 0.115 0.9225 5.6%
4 -0.271 -0.157 0.178 0.9056 3.7%
5 -0.299 -0.105 0.199 0.8394 3.9%

mean -0.341 -0.138 0.091 0.9045 8.7%
max-min 0.172 0.107 0.185 0.2892 16.4%

Table 12: Stabilities of time offsets and line delay over time in long sequence
BC1 using rs.c.sfa.int. The s-th video segment is taken between keyframes
300s and 300(s + 1) − 1.

The variations of f ∆ j are moderated (less than 0.2) and the
f ∆ j globally increase over time, i.e. when s increases. At first
glance, we could expect that we can detect a frame skipped by
a camera (if any) by an increase/decrease of 1 as in Sec. 8.7.
However this is not the case. Since all cameras are in the same
manufacturing series and have the same setting, all cameras
skip similar numbers of frames (if any) in a segment, which in
turn would imply that we do not observe large time offset per-
turbations. Furthermore we could interpret the slow increase of
the f ∆ js as follows: the FpS of camera 0 is slightly lower than
those of the other cameras.

The variations of τ are important (especially in the first half
part of BC1) and τ globally decreases over time. The variations
of τ are reduced if we take a larger video segment size, e.g.
we divide by two the ymax f τ range (max-min in Tab. 12) with
500 keyframes per segment.

8.9. Other experiments
All previous experiments are done using the linear approxi-

mation of M(t) in Eq. 12 and using the approximation tp = tp̃
in Eq. 17. Tab. 13 shows the results for all videos using the
quadratic approximation of M(t) in Eq. 15 or using Sec. 7.3
(i.e. without the approximation tp = tp̃ in Eq. 17). We do not
observe significant improvements of e(τ) compared to those in
Tab. 7 except for FH using Eq. 15. By recomputing errors e(∆)
and d for BC2 and CC using these two changes, we obtain very
similar results as in Tab. 6: e(∆) difference is less than 0.004
and d difference is less than 0.01.

9. Conclusion

This article introduces the first self-calibration method for a
multi-camera moving in an scene, that simultaneously estimates
intrinsic parameters, inter-camera poses, time offsets and line

Name f ∆1 f ∆2 f ∆3 ymax f τ e(τ)
rs.c.sfa.int using Eq. 15 (instead of Eq. 12)

BC1 -0.337 -0.157 0.127 0.8624 1.3%
WT -0.580 -0.323 -0.791 0.9974 14.2%
FH 0.284 0.201 -0.326 0.8252 5.7%

BC2 0.249 0.551 0.798 0.9020 3.0%
CC -0.017 -0.013 -0.005 -0.0082 nan
WU -2e-4 na na -0.8896 3.8%

rs.c.sfa.int using Sec. 7.3 (without approx. tp = tp̃ in Eq. 17)
BC1 -0.334 -0.153 0.131 0.8758 0.25%
WT -0.581 -0.320 -0.793 1.0061 15.2%
FH 0.287 0.203 -0.326 0.8381 7.3%

BC2 0.245 0.547 0.796 0.9028 3.1%
CC -0.017 -0.014 -0.005 -0.0096 nan
WU 0.001 na na -0.8689 6.0%

Table 13: SFA time offsets and line delay accuracy for all datasets using
rs.c.sfa.int (to be compared with Tab. 7).

delay in addition to the usual parameters (3D points and multi-
camera poses). We start by a rough calibration assuming that
the multi-camera is central and omnidirectional without privi-
leged direction. Then we estimate frame-accurate time offsets
using monocular structure-from-motion and bundle adjustment
(SfM and BA) without assumption on the field-of-view shared
by adjacent cameras. Last we apply multi-camera SfM and BA
twice: using simple and complicated camera models. The for-
mer forces to 0 line delay, sub-frame residual time offsets and
baseline between cameras; then the former initializes the latter.

We experiment in a context that we believe useful for applica-
tions (3D modeling and 360 videos): several consumer cameras
or a spherical camera mounted on a helmet and moving along
long trajectories by walking and biking (among others). Long
trajectories are useful for calibration accuracy and are allowed
since our BA only refines the keyframes provided by SfM. We
compare central and non-central results, provide accuracy for
calibration/line delay/time offsets with respect to ground truth,
examine the influence of the tuning of keyframe selection, show
variations of time offsets in a long sequence, experiment and
compare different approximations (for time continuous camera
trajectory and for reprojection errors).

However the method has a limitation: the image deforma-
tions due to rolling shutter should be moderated for SfM (be-
fore the final BA that refines all parameters including line de-
lay) since SfM uses the global shutter approximation. Fur-
thermore several improvements and future work are possible.
First the initialization, which is not the paper topic, can be im-
proved thanks to previous work for both intrinsic parameters
and inter-camera poses. Second a preprocessing should select
segment(s) in the video where we safely apply SfM. Third vari-
ants of the method can be experimented, e.g. by using non-
minimal parametrization of rotations, alternative keyframe se-
lections and other camera models. Last, we should examine the
improvements in applications provided by our non-zero line de-
lay and sub-frame-accurate time offsets.
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Figure A.10: Notations in two cases: ξ > 1 (left) and 0 < ξ < 1 (right).
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Thanks to CNRS, Université Clermont Auvergne and Institut
Pascal for funding Maxime Lhuillier and Thanh-Tin Nguyen.

Appendix A. Properties of the unified camera model

We remind that this model is described in Sec. 4.2 using a
perspective camera. Let k =

(
0 0 1

)>
, c =

(
0 0 −ξ

)>
and 3D point x. Let ν be the angle between k and a ray of the
perspective camera (a half-line started at c and including x/||x||).
Let µ be the angle between k and a ray of the unified camera (a
half-line started at 0 with direction x/||x||).

Appendix A.1. Theoretical field-of-view
Fig. A.10 shows notations ν, µ, µ0 (a value of µ), x/||x||, c and

k in two cases: ξ > 1 and 0 < ξ < 1. In both cases, µ0 is the
maximum value of µ that ensures that there is only one back-
projected ray direction corresponding to the projection p(x) by
the unified camera model. The angle µ0 is the half-angle of the
theoretical FoV of this model, i.e. by ignoring the bounded size
of the image and the projection of the camera itself. The FoV in
the paper core ignores nothing and is included in the theoretical
FoV.

If ξ = 0, the unified camera model is the standard perspective
camera model with the camera center c = 0. Since x/||x|| is in
front of the perspective camera, the theoretical FoV is the half-
space z > 0 and µ0 = π/2.

If 0 < ξ < 1, c is inside the unit sphere S. Since x/||x|| is
in front of the perspective camera, the theoretical FoV is the
half-space z > −ξ and cos µ0 = −ξ.

If ξ > 1, c is outside S and S is entirely in front of the per-
spective camera. The projection of S by p is an ellipse and its
interior. Let C be the cone that is tangent to S with apex c, i.e.
the union of every line (cy) that intersects S at a single point y.
We have y>(c−y) = 0 and k>y < 0 and cos µ0 = k>y = 1/(−ξ).
For example, ξ = 2 (in Sec. 4.2.2) implies that µ ≤ µ0 = 2π/3.

Appendix A.2. Angle of back-projected ray
There is a relation between ν and µ in all cases. Using

notation
(
x1 x2 x3

)>
= x/||x||, we have cos µ = x3 and

sin µ =

√
x2

1 + x2
2. Since x/||x|| is in front of the perspective

camera, ξ + x3 > 0 and tan ν =

√
x2

1 + x2
2/(ξ + x3). Thus

tan ν =
sin µ

ξ + cos µ
. (A.1)

Since p(x) = ( fxx1/(ξ + x3) + u0, fyx2/(ξ + x3) + v0) and p(k) =

(u0, v0) = z0,

fx = fy = f ⇒ ||p(x) − z0||/ f = tan ν =
sin µ

ξ + cos µ
. (A.2)

Appendix B. IAV property

Here we show that the IAV in Eq. 8 is the same for two frames
of different but jointly moving cameras if they are taken at the
same time. We remind properties of a change of basis in R3

expressed by rotation matrices: the columns of RA,B are vectors
of B expressed using coordinates in A, we have R>A,B = RB,A and
RA,B = RA,CRC,B.

Since the monocular SfMs are not done in the same coordi-
nate system, the notation Rt

i used in Eq. 8 is ambiguous. Here
we write instead Rt

wi,i
where wi is the (world) basis where is re-

constructed the i-th video (vectors of the i-th camera at frame t
expressed using coordinates in wi). Furthermore, we note that
Rwi,w j and Ri, j do not depend on frame numbers (the former is
obvious, the latter is due to the fact that the cameras are rigidly
mounted). If the ti-th frame of the i-th camera and the t j-th
frame of the j-th camera are taken at the same time,

Rw j,wiR
ti
wi,i

= R
t j

w j, j
R j,i. (B.1)

Since the cameras have the same FpS, we also have

Rw j,wiR
ti+1
wi,i

= R
t j+1
w j, j
R j,i. (B.2)

Thanks to Eqs. B.1 and B.2, we obtain

R
t j+1
w j, j

(Rt j

w j, j
)> = Rw j,wiR

ti+1
wi,i

(Rti
wi,i

)>R>w j,wi
. (B.3)

Since trace(XY) = trace(YX), we obtain

trace(Rt j+1
w j, j

(Rt j

w j, j
)>) = trace(Rti+1

wi,i
(Rti

wi,i
)>). (B.4)

Thus θt j

j = θti
i according to Eq. 8.

Appendix C. Derivatives of the camera motion M(t)

The notations used in Appendix C.1 and Appendix C.2 are
defined in Secs. 6.4.1 and 6.4.2, respectively.

Appendix C.1. Approximation of M′(ti)
First we show that

M′(t) = D1(M(t − b),M(t),M(t + a), a, b) + O(a2 + b2)(C.1)

if a > 0 and b > 0. Since M is C3 continuous,

M(t + a) = M(t) + aM′(t) +
a2

2
M′′(t) + O(a3) (C.2)

M(t − b) = M(t) − bM′(t) +
b2

2
M′′(t) + O(b3). (C.3)

We eliminate M′′(t) by summing b
a (Eq. C.2) - a

b (Eq. C.3):

b
a

M(t + a) −
a
b

M(t − b) = (
b
a
−

a
b

)M(t)
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+(b + a)M′(t) + bO(a2) + aO(b2). (C.4)

Since a > 0 and b > 0,

M′(t) =
1

a + b
(
b
a

M(t + a) −
a
b

M(t − b)

+(
a
b
−

b
a

)M(t)) + O(a2 + b2). (C.5)

Second we use Eq. C.1 with t = ti, a = ti+1 − ti, b = ti − ti−1,
∆ = maxi(ti+1 − ti), and obtain

M′(ti) = D1(M(ti−1),M(ti),M(ti+1),
ti+1 − ti, ti − ti−1) + O(∆2). (C.6)

Appendix C.2. Approximation of M′′(ti)

First we show that

M′′(t) = D2(M(t − b),M(t),M(t + a), a, b) + O(a + b)(C.7)

We eliminate M′(t) by summing b(Eq. C.2)+a(Eq. C.3):

bM(t + a) + aM(t − b) = (a + b)M(t)

+
ab
2

(a + b)M′′(t) + O(ba3 + ab3). (C.8)

Since a > 0 and b > 0,

M′′(t) =
2M(t + a)
a(a + b)

+
2M(t − b)
b(a + b)

−
2M(t)

ab
+ O(a + b).(C.9)

Second we use Eq. C.7 with t = ti, a = ti+1 − ti, b = ti − ti−1,
∆ = maxi(ti+1 − ti), and obtain

M′′(ti) = D2(M(ti−1),M(ti),M(ti+1),
ti+1 − ti, ti − ti−1) + O(∆). (C.10)

Appendix D. Estimation of rotations A and B

Here we not only compute A and B in the definition of our
rotation parametrization R (Eq. 20), but also initialize EM(ti).
Let R0

i be the rotation of the i-th keyframe estimated by GS BA
(before the final BA in Sec. 6). Using the definitions of EM and
ti in Secs. 6.2 and 6.3, EM(ti) is initialized such that R(EM(ti)) =

R0
i . We also check that EM(ti) is far from the singularities of R.

Let k =
(
0 0 1

)T
. Since the multi-camera trajectory

has small pitch and roll, there are rotations A and B such that
∀i, A−1R0

i B
−1 is almost a rotation around k (details in Appendix

D.1). Let angles (αi, βi, γi) be such that E(αi, βi, γi) = A−1R0
i B
−1

and E is defined in Eq. 19 and βi is close to 0 (details in Ap-
pendix D.2). We initialize EM(ti) =

(
αi βi γi

)>
. Thanks to

Eqs. 20 and 19, we obtain

R(EM(ti)) = R(αi, βi, γi) = AE(αi, βi, γi)B = R0
i . (D.1)

According to Sec. 6.6.2, EM(ti) is a singularity of E iff βi ∈

π/2 + πZ. Since R has the same singularities as E (proof in Ap-
pendix D.3) and βi is close to 0, EM(ti) is far from the singular-
ities of R.

Appendix D.1. Technical Details: Estimate A and B
Let R(v, θ) be the rotation with axis v and angle θ. Since the

multi-camera trajectory has small pitch and roll (Sec. 6.6.2),
all (R0

i )TR0
j are roughly rotations sharing a same axis v ∈ R3.

Thus there are rotation R and angle θi such that R0
i ≈ RR(v, θi).

For all i and j, (R0
i )TR0

j ≈ R(v, θ j − θi). Let vi, j be the axis of
(R0

i )TR0
j . First we search v as the most colinear vector to all

vi, j, i.e. v maximizes
∑

i, j(vT
i, jv)2. Thus v is the eigen vector

of the largest eigen value of the symmetric matrix
∑

i, j vi, jvT
i, j.

Second we estimate rotation R̃ such that R̃R0
i ≈ R(v, θ′i ). Since

R0
i ≈ RR(v, θi), R0

i v ≈ Rv. Let ṽ =
∑

i R
0
i v/||

∑
i R

0
i v||. Thus

ṽ ≈ Rv ≈ R0
i v. Let R̃ be a rotation such that R̃ṽ = v. Since

R̃R0
i v ≈ R̃ṽ = v, R̃R0

i ≈ R(v, θ′i ). Third we estimate A and B.
Let R′ be a rotation such that R′v = k. We obtain R′R̃R0

i R
′T ≈

R(k, γi). Thus A−1 = R′R̃ and B−1 = R′T .

Appendix D.2. Estimate (αi, βi, γi)
Since E is surjective on the set of 3D rotations, the an-

gles αi, βi and γi exist. Furthermore, they are defined up
2π multiples. We choose βi that has the smallest |βi|. Since
E(αi, βi, γi) ≈ R(k, γi), βi is close to 0. We also remind that
EM(t) is continuous (Sec. 6.2) and |ti − ti+1| is small thanks to
the keyframe sampling. Thus the γi series is chosen such that
|γi − γi−1| is as small as possible, and we do similarly for αi

(|βi − βi−1| is also small).

Appendix D.3. R and E have the same singularities
Here we show that ker ∂R = ker ∂(ARB) if A and B are two

invertible 3 × 3 matrices. Let x ∈ ker ∂R, Ri j be the coefficients
of R, and ∂Ri j be the gradient of Ri j with respect to parameters
(α, β, γ). Thus ∂Ri j.x = 0 and

(∂(ARB)i j).x = (∂(
∑
k,l

AikRklBl j)).x

=
∑
k,l

AikBl j(∂Rkl).x = 0. (D.2)

We see that ∂(ARB).x = 0, i.e. ker ∂R ⊆ ker ∂(ARB). Since A
and B are invertible, we use this inclusion (replace R by ARB,
replace A by A−1, replace B by B−1) and obtain

ker ∂(ARB) ⊆ ker ∂(A−1(ARB)B−1) = ker ∂R. (D.3)

Appendix E. Sparsity of Z in the RCS (Eq. 22)

Appendix E.1. Notations and prerequisites
If L1 and L2 are two lists of integers, we use notations

L1 + L2 = {i1 + i2, i1 ∈ L1, i2 ∈ L2}, (E.1)
L1 × L2 = {(i1, i2), i1 ∈ L1, i2 ∈ L2}, (E.2)

(L1)2 = L1 × L1. (E.3)

We also use Eq. E.1 if L1 and L2 are two lists of integer pairs.
If a matrix A is partitioned by blocks Ai (horizontally or verti-
cally), we define an index list

L(A) = {i, Ai , 0}. (E.4)
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If a matrix A is partitioned by blocks Ai, j (both horizontally and
vertically), we define a list of index pairs

L(A) = {(i, j), Ai, j , 0}. (E.5)

If matrices A and B are horizontally partitioned by blocks Ai and
B j respectively, A>B is partitioned by blocks A>i B j and for these
blocks we have

L(A>B) ⊆ L(A) × L(B). (E.6)

If C =
∑

i Ci and all Ci have the same block partition,

L(C) ⊆ ∪iL(Ci). (E.7)

If all blocks considered by L have the same size a × b, we can
write La×b instead of L.

In practice, it is improbable that a product or sum of non-
zero matrices is zero. Thus we replace the inclusions above by
equalities in our proof, i.e. we use

L(A>B) = L(A) × L(B) and L(C) = ∪iL(Ci). (E.8)

Let Zg and Zr be the 6m × 6m top-left blocks of the RCS
in the standard case and our case (more details in Sec. 6.7.2),
respectively. In the next section, we show that

L6×6(Zr) = L6×6(Zg) + {−1, 0, 1}2. (E.9)

In these expressions and the following ones, we implicitly omit
integers that are below 1 and above m (e.g. we omit i−1 if i = 1
and omit i + 1 if i = m).

Appendix E.2. Proof of Eq. E.9
The image projection function of the l-th 3D point in the i-

th multi-camera pose is ϕg
i,l in the standard case and ϕr

i,l in our
case. According to Sec. 6.7.2, we have

ϕ
g
i,l = ϕ(mi,m′, xl) and ϕr

i,l = ϕ(mi−1,mi,mi+1,m′, xl).(E.10)

Thus
∂ϕ

g
i,l

∂mi′
, 0 iff i′ = i, and

∂ϕr
i,l

∂mi′
, 0 iff i′ ∈ {i − 1, i, i + 1}. We

rewrite this using the notations in Appendix E.1:

L2×6(
∂ϕ

g
i,l

∂M
) = {i} and L2×6(

∂ϕr
i,l

∂M
) = {i − 1, i, i + 1}. (E.11)

Notations ϕi,l and Z, U · · · are used in expressions that hold for
both “r” and “g” upper-indices added to these notations. Let
Vl be the list of keyframe indices where the l-th point is inlier.
According to Eqs. 21 and 22, we have Z = U − WV−1W> where

U =
∑
i∈Vl

(
∂ϕi,l

∂M
)>
∂ϕi,l

∂M
, W =

∑
i∈Vl

(
∂ϕi,l

∂M
)>
∂ϕi,l

∂X
, (E.12)

V =
∑
i∈Vl

(
∂ϕi,l

∂X
)>
∂ϕi,l

∂X
. (E.13)

Since L6×6(U) = ∪i∈Vl (L2×6( ∂ϕi,l

∂M ))2, we have

L6×6(Ug) = ∪i{(i, i)} and (E.14)
L6×6(Ur) = ∪i{i − 1, i, i + 1}2 (E.15)

= {−1, 0,+1}2 + ∪i{(i, i)}. (E.16)

Furthermore, W in Eq. 21 is horizontally partitioned in blocks
Wl =

∑
i∈Vl

( ∂ϕi,l

∂M )> ∂ϕi,l

∂xl
. Since

L6×3(Wl) = ∪i∈Vl L6×3((
∂ϕi,l

∂M
)>
∂ϕi,l

∂xl
) (E.17)

= ∪i∈Vl L2×6(
∂ϕi,l

∂M
), (E.18)

we have

L6×3(Wg
l ) = Vl and L6×3(Wr

l ) = Vl + {−1, 0,+1}. (E.19)

Since V in Eq. 21 is block-wise diagonal with invertible blocks
Vl =

∑
i∈Vl

( ∂ϕi,l

∂xl
)> ∂ϕi,l

∂xl
and WV−1W> =

∑
l WlV

−1
l W

>
l , we have

L6×6(WV−1(W)>) = ∪l(L6×3(Wl))2. Thus

L6×6(WgV−1(Wg)>) = ∪l(Vl)2 and (E.20)
L6×6(WrV−1(Wr)>) = ∪l(Vl + {−1, 0,+1})2 (E.21)

= {−1, 0,+1}2 + ∪l(Vl)2. (E.22)

Thus

L6×6(Zg) = ∪i{(i, i)} ∪l (Vl)2 and (E.23)
L6×6(Zr) = {−1, 0,+1}2 + (∪i{(i, i)} ∪l (Vl)2). (E.24)

We obtain Eq. E.9.

Appendix F. Proof of Eq. 29

Let

θ = ( fx, fy, u0, v0, k1, k2, · · · , kn, x j), (F.1)

z =

(
u
v

)
, z̄ =

( u−u0
fx

v−v0
fy

)>
, z̄u = π(x j), (F.2)

g(z, θ) = (1 +

n∑
i=1

ki||z̄||2i)z̄ − z̄u. (F.3)

Thanks to Eqs. 1 and 2 and since p = zd, we have g(p, θ) = 0.
First we note that

∂z̄
∂(u0, v0)

= −

(
1/ fx 0

0 1/ fy

)
= −

∂z̄
∂z
, (F.4)

∂z̄
∂( fx, fy)

=
∂z̄
∂z

 u0−u
fx

0
0 v0−v

fy

 . (F.5)

Thus

∂g
∂z

=
∂g
∂z̄
∂z̄
∂z
, (F.6)

∂g
∂(u0, v0)

=
∂g
∂z̄

∂z̄
∂(u0, v0)

= −
∂g
∂z̄
∂z̄
∂z

= −
∂g
∂z
, (F.7)

∂g
∂( fx, fy)

=
∂g
∂z̄

∂z̄
∂( fx, fy)

=
∂g
∂z

 u0−u
fx

0
0 v0−v

fy

 . (F.8)

Last we obtain Eq. 29 using Eqs. F.7, F.8 and 23.
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Appendix G. Keyframe sub-sampling of the videos

The keyframe sub-sampling is that in Sec. 2.3 of [39] with
an improvement if the multi-camera motion is slow. It is based
on counting the number of Harris points matched using ZNCC
correlation between the current frame and its two preceding
keyframes. Every frame is considered in increasing order of
its index. First the current frame is rejected if its image mo-
tion compared to that of the last keyframe is small, i.e. if 70%
of its matches have a 2D motion less than 5 pixels. Second,
a non-rejected current frame is selected as a keyframe if (1) it
has at least N2 matches with the previous keyframe and (2) it
has at least N3 matches with the two previous keyframes and
(3) the next frame does not meet (1) or (2). We always use
N3 = N2/2, use N3 = 450 for the multi-frame of four Go-
pro cameras at 100 FpS, N3 = 1200 for four Gopro cameras at
48 FpS, N3 = 625 for Ladybug 2 and N3 = 300 for Theta S.
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