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This paper proposes a control strategy to achieve high accurate path tracking in off-road conditions. The approach
is based on adaptive and predictive techniques to account for sliding effects and actuator properties. An extended
kinematic model is designed using sideslip angles definition. An observer is proposed to estimate on-line these va-
riables, independently from the reference path and robot velocity. Thanks to the proposed approach, high accurate
path tracking can then be achieved whatever the shape of the reference path and the task to be achieved (practical
stabilization or moving object tracking).
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1. Introduction

Because of its promising benefits for everyday life in different areas (transportation, agriculture, sur-
veillance, etc.), mobile robotics has been the object of intensive research. To cover the diversity of practical
applications, several problems have to be addressed, such as terrain crossing [25], posture stabilization [10]
or path tracking [19]. Specifically, for the path tracking case, generic solutions have been proposed when
robot motion satisfies pure rolling without sliding assumptions : they are based on the classification of kine-
matic models of mobile robots introduced in [4], from which various control techniques can be considered,
such as exact linearization as proposed in [23]. As long as mobile robots move on terrains with high grip
conditions at rather low speeds, such as in urban applications, non-sliding assumptions are realistic and
the above-mentioned control approaches are satisfactory [13]. In contrast, in the more and more popular
off-road applications, such as exploration [3] or agriculture [2, 11], robots move on natural grounds, with
non-ideal and varying grip conditions. As a result, the actual robot behavior is quite different from the one
predicted by the kinematic models derived from non-sliding assumptions [8]. The tracking control laws
have then to be adapted to the changing interaction between robot and environment, otherwise convergence
to the reference path may no longer be ensured [14].

To meet this aim, several approaches may be considered. First, the sliding effects can be described as a
perturbation acting on the classical model [1] and robust control techniques can then be designed in order to
reject this perturbation, as achieved in [7, 18, 20]. These approaches propose however two difficulties : on
one hand, the bounds on the sliding perturbation to be provided to the robust control laws are rather difficult
to appreciate, and on the other hand these control laws often appear conservative and/or may generate
oscillating behaviors. Alternatively, the sliding effects can be incorporated into extended robot models.
Control laws accounting explicitly for these effects can then be designed and achieve high performances
(and robust control techniques can possibly supplement these control laws to address other unmodeled
perturbations).
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Figure 1.: Extended kinematic model

In order to tackle low grip conditions, the use of dynamical representations permits to account for their
influence on robot behavior [9], but requires the knowledge of numerous parameters, difficult to be known,
and which are moreover variable in uncertain environment. Alternatively, the motion description using
an extended kinematic model accounting for sideslip angles, as proposed in [15] and generalized in [26],
permits to account for skidding effects without introducing complex parameters. The use of extended ki-
nematic models implies the on-line estimation of sideslip angles, which are hardly measurable directly. As
achieved in previous work [17], the indirect estimation using observer theory is possible with a satisfactory
accuracy. Nevertheless, these previously developed approaches suffer for several drawbacks. First, they are
related to the trajectory to be followed, which may introduce noises and discontinuities. Secondly, a sin-
gularity is present when the velocity is null, which implies some switches with respect to the robot speed.
To clear up the limitations of the former observer, this paper proposes a new observer, based on absolute
motion (without a trajectory to be followed) and advanced observer functions allowing to be independent
from the velocity. As a consequence, very general path tracking applications in off-road conditions can be
achieved safely and with high accuracy.

The paper is organized as follows. First, robot modeling is addressed. In order to account for sliding
effects, extended kinematic models are considered and expressed in an absolute frame and in a frame
attached to the reference path. Next, sideslip angle estimation is investigated. The observer proposed in [6]
is first recalled and then the new robust observer, which is the main contribution of this paper, is derived.
The adaptive and predictive path tracking control law proposed in [6] is next briefly exposed. Finally,
experimental results are provided to demonstrate the efficiency of the overall control strategy.

2. Modeling

As highlighted previously, high accurate path tracking cannot be achieved in off-road context if grip
conditions are not taken into consideration. Basically, the motion control of wheeled mobile robots is
based on pure kinematic models, classified in [4]. The assumption of a local even ground (all the wheels
are in contact with the soil) permits to consider a reduced number of wheels. For a car-like mobile robot,
the two front steering wheels are viewed as a unique tire with a unique steering angle, while the rear axle
is reduced to a unique wheel. A huge literature (as it can be illustrated for instance in [24]) shows the
relevance of such a modeling for robots as long as the robots do not slide. The rolling without sliding
assumption gives the orientation of the speed vector at each contact point, which is no more the case when
the robot moves on a natural environment. Complex models permit to consider such a phenomenon (some
examples of dynamical models, considering specifically tire/ground interaction, may be found in [22] or
in [5]). Nevertheless, such models require a lot of parameters, which cannot be estimated in a varying
environment. Such models are then mainly dedicated to car and tire design or simulation, but are hardly
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tractable for control purpose.
Alternatively, extended kinematic models have been designed in [14] and generalized in [27] in order to
account for the influence of sliding in the motion control. Specifically, the model proposed in [15] for
car-like mobile robots is considered here : as for the non-sliding case (see e.g. [21]), the robot is viewed as
a bicycle model with one steerable wheel for the front axle and a second one for the rear axle, see Figure 1.
Nevertheless, in order for sliding effects to be taken into account, the orientation of the speed vector at
wheel centers is no longer assumed to be superimposed with the tire orientation, but differs from it by
time-varying angles βF and βR (for the front and rear axles) named sideslip angles.

Modeling can be carried out either in an absolute frame or in a frame attached to the path to be followed.
In the first case, a possible robot state vector consists in the 3-tuple (X, Y , θ ), where (X,Y ) stand

for the coordinates of the center of the robot rear axle in the absolute frame and θ is the robot centerline
orientation with respect to that frame, see Figure 1. In addition, let v δ and L denote the linear velocity
at the center of the robot rear axle, the front wheel steering angle and the robot wheelbase, respectively.
Relying on these notations, the equations of the extended kinematic model in the absolute frame are quite
straightforward : 

Ẋ = v cos(θ + βR)

Ẏ = v sin(θ + βR)

θ̇ = v cos(βR) tan(δ+β
F )−tan(βR)
L

(1)

In the second case, the robot configuration can be described without ambiguity by the 3-tuple ( s, y , θ̃ ),
where s denotes the curvilinear abscissa of the center of the robot rear axle with respect to the reference
path Γ (i.e. the distance achieved by the robot along the path to be followed), when y and θ̃ stand for the
robot lateral and angular deviations with respect to Γ, see Figure 1. Let also c(s) denote the curvature of the
reference path Γ at abscissa s. It can then be established, see for instance [15], that the extended kinematic
model expressed in the frame attached to the reference path, also named Frénet frame, is :

ṡ = v cos(θ̃+βR)
1−c(s) y

ẏ = v sin(θ̃ + βR)

˙̃
θ = v

[
cos(βR) tan(δ+βF )−tan(βR)

L − . . .

. . . c(s) cos(θ̃+β
R)

1−c(s) y

] (2)

The model singularity 1 − c(s) y = 0 is never encountered in practice when the path tracking is properly
initialized : the robot is never located at the curvature center of the reference path. The five classes of
kinematic models introduced in [4] to describe the motion of any mobile robot in the non-sliding case can
all be extended in the same way when sliding effects have to be taken into account, see for instance [26],
and the exact linearizing properties of chained systems can then be applied. As a consequence, if the values
of the sideslip angles βF and βR can be supplied online (see next section), the numerous control approaches
developed for mobile robots in the non-sliding case remains straightforwardly applicable.

For the path tracking problem addressed here for the car-like mobile robot, model (2) appears more
convenient than model (1), since the control objective can be expressed directly in terms of the state va-
riables : the control law should ensure the convergence of y and θ̃ with zero. Consequently, control design
in section 4 is carried out from model (2). In contrast, for the online estimation of the sideslip angles, mo-
del (2) is this time far less attractive : since state variables are defined with respect to the reference path, any
perturbation in the reference path (noisy values or discontinuities) leads to inconsistent changes in the state
variable values that, if reported into equations (2), could be “explained” only by large sideslip angle values.
In other words, perturbations in the reference path would be misinterpreted as large sliding and this may
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seriously damage control law performances. As a consequence, in order for sideslip angle estimation to be
insensitive to reference path imperfections, it appears preferable to design sliding observer from model (1),
as detailed in the next section.

Such extended kinematic models are devoted to control purpose. As a result, they do not aim at describing
accurately all the robot dynamics. The objective is to determine the influence of control variables on the
general robot motion. The inaccuracies are neglected and basically expected to be compensated by the
adaptive control strategy hereafter described.

3. Sideslip angle estimation

The sideslip angle observer proposed in this paper is detailed in section 3.2. Beforehand, since the
capabilities of this new observer designed from model (1) are compared in section 5 with those of a previous
observer developed from model (2), this former observer is briefly recalled in section 3.1. The objective is
to estimate the sideslip angles βF and βR representative of the influence of sliding on the robot’s behavior,
without adding sensors.

3.1. Previous approach

The path tracking control law to be designed in section 4 from model (2) should be supplied online with
relevant values for the sideslip angles βF and βR. Since these two variables cannot be easily measured, an
indirect measurement should be proposed. In [6], an observer based also on model (2) has been developed
using the duality principle between observation and control. More precisely, in the sequel the 2-dimensional
vector ζ = [ y θ̃ ]T gathers the actual lateral and angular deviations supplied by the robot sensors and

ζ̂ = [ ŷ
ˆ̃
θ ]T is an estimation of this vector evaluated from the following state-space model :

˙̂
ζ = fF (ζ̂, δ, 0) +B(ζ̂, δ)u (3)

The virtual control input of this model is the estimation to be determined of the two sideslip angles, i.e.
u = [ β̂F β̂R ]T , the function fF (ζ̂, δ, u) is the right-hand side terms of the two last equations in model (2)
where the actual values y, θ̃, βF and βR have been replaced by the estimated ones ζ̂ and u, and eventually
B(ζ̂, δ) is the partial derivative of fF with respect to u evaluated at u = [ 0 0 ]T : B(ζ̂, δ) = ∂fF

∂u (ζ̂, δ, 0).
State-space model (3) can then be understood as the Taylor series expansion of the two last equations in
model (2) in the variable u up to the first order and evaluated around u = [ 0 0 ]T . The expression of
B(ζ̂, δ) can be easily computed from (2) :

B(ζ̂, δ) =

 0 v cos(
ˆ̃
θ)

v
L cos2 δ v c(s) sin(

ˆ̃
θ)

1−c(s)ŷ −
v
L

 (4)

This matrix is clearly invertible provided that ˆ̃
θ 6= π

2 [π] and v 6= 0. If the robot is properly initialized (i.e.
if its initial deviations with respect to the reference path are not very large), the first condition is satisfied.
In addition, the sideslip angle estimation will be frozen at low speeds so that the second condition may be
satisfied as well. Next, since B(ζ̂, δ) is invertible, exponential convergence of the estimated state ζ̂ with the
measured one ζ can be easily imposed by computing the estimated sideslip angles u as follows :

u = B(ζ̂, δ)−1
(
G e− fF (ζ̂, δ, 0) + ζ̇

)
(5)
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where e = ζ̂ − ζ and G is a 2 × 2 Hurwitz matrix introduced for convergence rate tuning (reporting (5)
into (3) leads to ė = Ge). More details can be found in [6]. The convergence of e with zero means that
model (3) with control law (5) is representative of the robot actual behavior, and consequently the sideslip
angles supplied by (5) can be considered as representative of actual sliding conditions. Adaptation law (5)
is therefore a first sliding observer, to be compared in section 5 to the new observer proposed below.

3.2. New observer

The previous observation strategy appears natural, since the same model (2) is used for control and
estimation. Nevertheless, it requires the inversion of matrix B(ζ̂, δ) defined by (4), which is impossible
when the robot velocity v approaches zero, and moreover all the state variables are defined with respect to
the reference path, so that this observer is sensitive to any imperfection in the reference path, as detailed
at the end of section 2. Consequently, an alternative observation approach is proposed here relying on
model (1) expressed in an absolute frame. Moreover, a different observation strategy is used, so that the
observer does no longer need to be frozen when the robot moves slowly or stops.

3.2.1. Notation

In order to design the proposed observer, the non-linear model (1) is first rewritten as follows :

ξ̇ =

[
ξ̇pos
ξ̇β

]
=

[
f(ξ, v, δ)

02×1

]
(6)

where the 5-dimensional state vector ξ is constituted of ξpos = [X Y θ ]T , which represents the absolute
robot posture (position and orientation) supposed to be measured, and ξβ = [βF βR ]T , which gathers
the two sideslip angles to be estimated. The function f(ξ, v, δ) is directly the right-hand side terms of
model (1) :

f(ξ, δ, v) =

 v cos(θ + βR)
v sin(θ + βR)

v cos(βR) tan(δ+β
F )−tan(βR)
L

 (7)

and the derivative of sideslip angles is here considered null. Expressions for the derivative of the sideslip
angles could have been obtained from dynamical equations of motion, see for instance [22], but in that case
numerous parameters badly known or largely varying would have been mandatory, see [17]. In this paper,
an extended kinematic modeling has been preferred in order to avoid such a difficulty. So, to be consistent
with this choice, the derivative of sideslip angles is here neglected and the short observer settling time
(via gain tuning) is supposed to compensate for the lack of knowledge in sideslip angle dynamics. This is
completely satisfactory as long as the mobile robot moves at moderate speed, as shown in section 5.

3.2.2. Observer equations

From state space model (6), the following observer is proposed :

˙̂
ξ =

 ˙̂
ξpos
˙̂
ξβ

 =

[
f(ξpos, ξ̂β, δ, v) + αpos

αβ

]
(8)

where ξ̂ = [ξ̂pos ξ̂β]T is the observed state and αpos and αβ are 3-dimensional and 2-dimensional functions,
respectively. Next, the objective is to design these two functions so that the observation error ξ̃ = ξ − ξ̂
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tends to zero. Since ξpos is assumed to be measured, the observed state ξ̂pos does not matter, the main goal
here is to find a relevant estimation ξ̂β of ξβ . It is shown below that this objective can be met with the two
following functions : {

αpos = Kpos ξ̃pos

αβ = Kβ

[
∂f
ξβ

(ξpos, ξ̂β, δ, v)
]T

ξ̃pos
(9)

where ξ̃pos = ξpos − ξ̂pos is the observation error related to robot posture, which can be measured, Kpos is
a diagonal positive 3× 3 matrix and Kβ is a positive scalar.

3.2.3. Sketch of proof

Let us consider the Lyapunov candidate function V defined by :

V = V1 + V2 (10)

with :  V1 = 1
2 ξ̃

T
posKβ ξ̃pos

V2 = 1
2 ξ̃

T
β ξ̃β

(11)

Functions V1 and V2 (and consequently V ) are clearly positive and their time derivatives are : V̇1 = Kβ
˙̃
ξTpos ξ̃pos

V̇2 = ξ̃Tβ
˙̃
ξβ

(12)

From (6) and (8), it can also be computed that :{
˙̃
ξpos = f(ξpos, ξβ, δ, v)− f(ξpos, ξ̂β, δ, v)− αpos

˙̃
ξβ = ξ̇β − αβ

(13)

At this step, the two following assumptions are introduced :
1. The observation error on sideslip angles (i.e. ξ̃β) is small enough so that a Taylor series expansion of

function f(ξpos, ξ̂β, δ, v) around ξ̂β can be considered :

f(ξpos, ξβ, δ, v) = f(ξpos, ξ̂β, δ, v) + ∂f
ξβ

(ξpos, ξ̂β, δ, v) ξ̃β

2. The time derivative of actual sideslip angles ξ̇β is negligible, or at least compensated by the corres-

ponding observer dynamics ˙̂
ξβ imposed by αβ .

Considering these assumptions in equations (13) and replacing also αpos and αβ by their expressions (9)
lead to : 

˙̃
ξpos = ∂f

ξβ
(ξpos, ξ̂β, δ, v) ξ̃β −Kpos ξ̃pos

˙̃
ξβ = −Kβ

[
∂f
ξβ

(ξpos, ξ̂β, δ, v)
]T

ξ̃pos
(14)
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Injecting now these expressions into the time derivative of the Lyapunov functions shown in (12) ensures
that : 

V̇1 = −Kβ ξ̃
T
posKpos ξ̃pos + . . .

. . . Kβ ξ̃
T
β

[
∂f
ξβ

(ξpos, ξ̂β, δ, v)
]T

ξ̃pos

V̇2 = −Kβ ξ̃
T
β

[
∂f
ξβ

(ξpos, ξ̂β, δ, v)
]T

ξ̃pos

(15)

and, in view of (10), the time derivative of the complete Lyapunov function is :

V̇ = −Kβ ξ̃
T
posKpos ξ̃pos (16)

Since Kβ is a positive scalar and Kpos is a positive definite diagonal matrix, V̇ is negative and equal to
zero if and only if ξ̃pos = 0. It then follows that ξ̃pos converges with zero, i.e. the observed position and
orientation converge with their corresponding measure. Next, in order to investigate the behavior of ξ̃β , let
us inject ξ̃pos = 0 into the observer error dynamic (14). It can be established that :

∂f
ξβ

(ξpos, ξ̂β, δ, v) ξ̃β → 0 (17)

Computations show that the partial derivative of f with respect to ξβ is null only when the velocity v is null
and is not singular provided that θ + β̂R 6= π

2 [π] and δ + β̂F 6= π
2 [π], both conditions that are satisfied

in practice. As a consequence, when the robot is moving, the observer (8) with the chosen functions (9)
ensures that the overall observation error tends to zero : ξ̃ = 0. In particular, this demonstrates that the
estimated sideslip angles converge with the actual (but unmeasured) ones : ξ̂β → ξβ . As a result, a relevant
estimation of sideslip angles (β̂F , β̂R) is available and representative of the actual robot motion.

4. Control law

4.1. Adaptive control law design

The two observers presented above can supply online relevant estimations of the sideslip angles β̂F and
β̂R. As a result, all the variables in model (2) are available and this model can then be used to address path
tracking.

Since the state variables of model (2) are defined with respect to the reference path, the control objective
can be expressed in a very simple way : y and θ̃ should converge with zero, whatever the velocity v. In
the non-sliding case, it has been shown in [23] that this objective can be achieved by turning the non-linear
model (2) (with βF = βR = 0) into a so-called chained form by means of state and control transformations,
in order to rely eventually on standard linear control techniques. Since the structure of extended kinematic
models is unchanged with respect to the kinematic models derived in the non-sliding case, this control
approach can still be considered here. Specifically, the state and control transformations (18) and (19)
permit to convert the extended kinematic model (2) into the chained form (20) :

[s, y, θ̃] → [a1, a2, a3] = [s, y, (1− c(s) y) tan(θ̃ + βR)] (18)

[v, δ] → [m1,m2] = [v cos(θ̃+β
R)

1−c(s) y , da3

dt ] (19)
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ȧ1 = d a1

dt = m1

ȧ2 = d a2

dt = a3m1

ȧ3 = d a3

dt = m2

(20)

Next, since a closed loop behavior independent from the velocity is desired, the derivative with respect
to time is replaced by a derivation with respect to the curvilinear abscissa s = a1. More precisely, by
introducing the notation a′i = d ai

d a1
, system (20) can be rewritten as :


a′1 = 1

a′2 = a3

a′3 = m3

(21)

where m3 = m2

m1
is a new virtual control variable related to the actual control variable δ according to (18)

and (19). Convergence of the robot lateral deviation y with zero can then be ensured by choosing the
following expression for the virtual control variable m3 :

m3 =
m2

m1
= −Kd a3 −Kp a2 (Kd,Kp > 0) (22)

since it leads to the following 2nd order differential equation :

y′′ +Kd y
′ +Kp y = 0 (23)

The settling distance (instead of settling time) can be tuned via the two positive gains Kp and Kd, homo-
geneous to proportional and differential actions.

Eventually, the steering angle δ to be applied may be deduced from (22) by inverting transformations (18)
and (19). The final expression for the adaptive steering law is :

δ = arctan
(

tan(β̂R) + ...

L
cos(β̂R)

[
c(s) cos θ̃1

α + A cos3 θ̃1
α2

])
− β̂F

(24)

with  θ̃1 = θ̃ + β̂R

α = 1− c(s)y
A = −Kp y −Kd α tanθ̃1 + c(s)α tan2θ̃1

(25)

Control law (24) constitutes an adaptive expression since β̂F and β̂R are computed with one of the obser-
vers presented in section 3. Convergence of the tracking error is then ensured whatever the grip conditions,
without adding any new measurement with respect to the standard equipment of a mobile robot. Neverthe-
less, if this reactive strategy permits a high accurate path tracking in steady state conditions (i.e. when the
reference path curvature is constant or this path consists in a straight line on a slope), overshoots can still be
noticed at transitions in the reference path curvature, due to the neglected dynamics of the actuator (settling
time, delays, etc.). To address specifically this point, the adaptive steering law (24) is supplemented below
with predictive functional control techniques.
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4.2. Predictive curvature servoing

In order to prevent overshoots at curvature transition phases, a predictive curvature servoing is introdu-
ced. More precisely, it has been shown in [6] that the reactive control expression (24) may be split into two
terms :

δ = δTraj + δDeviation (26)

where δDeviation is null when sideslip angles βF , βR and deviations y, θ̃ are all null, while δTraj remains
non-null in these conditions as soon as the reference path curvature c(s) is non-zero. This means that the
two terms play different roles : δDeviation mainly permits to compensate for sliding and unexpected errors,
while δTraj aims principally at steering the robot with respect to the reference path curvature.
Since grip conditions and unexpected errors are unpredictable by definition, δDeviation is left unchanged in
the sequel. Only the term δTraj is substituted with a predictive term depending on the future curvature of
the reference path c(sH), where sH is the curvilinear abscissa that should be reached after an horizon of
prediction tH (i.e. sH = s(t) + ṡ(t) tH ). More precisely, from the future curvature c(sH), a set point δObj

Figure 2.: Predictive curvature servoing illustration

to be reached by δTraj after an horizon of prediction tH is computed, as well as a desired shape to join this
objective (as illustrated in Figure 2). Next, a model for the actuator dynamics is used in order to compute the
optimal sequence of control values from t to t+ tH that minimizes the error between the desired shape and
the predicted values for δTraj (so called predicted and shown in blue dotted line in Figure 2). The optimal
sequence thus obtained permits to reach at best the set point imposed by the future curvature c(sH). Finally,
the first term of this optimal sequence is named δPredTraj and is substituted with δTraj in control law (24). More
details can be found in [16]. The final adaptive and predictive steering law is then :

δF = δPredTraj + δDeviation (27)

With control law (27), the front wheel starts to be steered before the robot enters into the curve, so that
transient overshoots at curvature transition phases can be significantly reduced. As a result, the proposed
control law permits to preserve a high accuracy, despite non-ideal grip conditions and fast variations in
reference path curvature.

5. Path tracking results

The proposed adaptive control law permits to account for sliding effects despite the numerous perturba-
tions encountered when moving on natural ground : sliding, noises or vibrations. The observation approach
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allows to estimate and integrate explicitly the effects of bad grip conditions by means of the sideslip angles.
As a result, it permits to face such dynamics and to account for the nonlinear behavior of tire and variations
in tire/soil interaction, without using complex dynamic models. The obtained tracking accuracy and the
robustness with respect to changing conditions are illustrated by means of full scale experiments achieved
in different conditions : soil geometry, grip conditions and velocity.

5.1. Experimental setup

The electric vehicle used for the experimentations is shown in Figure 3. Designed for all-terrain mobility,
it can climb slopes up to 45◦. Its main parameters are listed in Table 1.

Total mass : m = 350 kg
Yaw inertia : Iz = 270 kg m2

Wheelbase : L = 1.2 m
Rear half-wheelbase : b = 0.58 m

Table 1.: Experimental mobile robot parameters

The main exteroceptive sensor on-board is a “Magellan ProFlex 500” RTK-GPS receiver, which sup-
plies absolute position measurements with an accuracy of 2 cm at a 10 Hz sampling frequency, thanks
to a reference station providing corrections to the moving GPS antenna. This moving antenna is located
vertically above the center of the rear axle, so that the absolute position of the point to be controlled is
straightforwardly obtained from the sensor.

Figure 3.: Experimental platform in actual conditions

5.2. Test without discontinuity in the path to be followed

As it can be seen in Figure 3, the reference path (shown with blue points) has been recorded on an uneven
terrain. It consists in a straight line on a sloping area with a 15◦ lateral inclination, followed by a half-turn
that ends on a flat ground and finally another straight line and another curve both on the flat part of the
terrain. The entire reference path is also shown in a top 2D view in Figure 4. The robot moves on a wet
grass ground generating a drift in the sloping part or when the robot turns.

First of all, the case of a reference path with no discontinuity has been considered. This path is depicted in
black line in the left part in Figure 4 and the tracking errors recorded when sliding is not taken into account
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(i.e. (β̂F , β̂R) = (0, 0)) and when the estimated sideslip angles delivered by the new observer (8) are used,
are reported in blue plain line and green dashed-dotted line respectively in the right part in Figure 4. Both
tracking have been achieved at 3 m.s−1.

Except the punctual overshoot occurring when the robot comes from the sloping area to the even ground
(due to transient inconsistencies in robot localization, since the inclination of the GPS antenna located
1.6 m above the robot changes abruptly), the tracking error when estimated sideslip angles are reported
into control law (27) is always close to zero. This very satisfactory accuracy is achieved despite the ground
inclination and bad grip conditions (terrain covered in grass).

In contrast, when sliding is not taken into account, large tracking errors are recorded, depending on the
robot motion and the terrain properties : 0.6 m in the sloping area (from curvilinear abscissa 40 to 60 m),
0.8 m when the robot executes the half-turn (at 80 m) and punctual errors during the second curve (from
0.3 m (at 110 m) to 0.6 m (at 130 m)). These experimental results clearly show the importance of taking
sliding into account and the relevance of the adaptive control strategy proposed in this paper to address
such applications.

Figure 4.: Experimentation without discontinuity

5.3. Test with a reference path presenting a discontinuity

In order to investigate the robustness of the new observer (8), a discontinuity (i.e. a 1 m-step) has been
introduced in the reference path, at the middle of the first straight line achieved on the 15◦ sloping area.
This modified reference path is shown in black plain line in Figure 5.

This reference path has been tracked three times at 3 m.s−1 : without sliding accounted (depicted in blue
plain line in the sequel), next with estimated sideslip angles supplied by the previous observer (5) (depicted
in red dotted line), and finally with estimated sideslip angles delivered by the new observer (8) (depicted in
green dashed line).

The second experimentation (with observer (5)) has been stopped just after crossing the discontinuity,
since path tracking had become instable and the robot was moving apart. Once more, since this observer
relies on state variables defined with respect to the reference path, the discontinuity in the reference path
induces an abrupt change in these state variables that is misinterpreted as large sliding. The estimated
sideslip angles delivered by this observer are then abnormally large and when reported into steering law (27)
lead to path tracking instability.

In order that path tracking could be achieved with this observer, the second experimentation has been
restarted, but the estimated sideslip angles supplied by observer (5) have been low-pass filtered. Path tra-
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Figure 5.: Reference trajectory and tracking results

cking has been successful this time, but the performances are of course depreciated. For readability reasons,
only the robot trajectories recorded in the first and third experimentations are reported in the main plot in
Figure 5. The trajectory recorded in the second experimentation (with the low-pass filter) is only shown in
red dashed line in the zoom on the discontinuity proposed in this figure and an important tracking error can
be noticed.

In contrast, the new observer (8) is not seriously affected by the reference path discontinuity : the tracking
errors reported in Figure 6 show that the overshoot due to the discontinuity is limited to -1 m (at curvilinear
abscissa 45 m), against more than 2.5 m with the previous observer (5) coupled with the low-pass filter. An
overshoot is here present since the robot moves on a sloping area and consequently sliding effects are mainly
generated by the slope rather than by the steering action. This is also the reason why the overshoot recorded
with observer (8) is similar to the one obtained when sliding is not taken into account. Nevertheless, except
at the discontinuity crossing, the conventional control strategy is not satisfactory : since the robot moves on
a grassy sloping ground, the lateral inclination generates an important drift and, since it is not compensated
within the steering law, the tracking errors are larger (0.3 m at curvilinear abscissa 35 m and 0.6 m at 62 m)
than in the third experimentation when the estimated sideslip angles delivered by observer (8) are used.

During the first experimentation, when sliding is not taken into account, the two sideslip angle obser-
vers have been run simultaneously (although they were not used) and their estimations have been recorded.
The estimated front sideslip angles delivered by the two approaches are compared in Figure 7. Except at
discontinuity crossing, it can be noticed that the two observers supply similar sideslip angle estimations.
Consequently the same high tracking accuracy can be expected when any of these two estimations is repor-
ted into control law (27), as corroborated in Figure 6. In contrast, despite the low-pass filter, the estimated
sideslip angle values supplied by the previous observer (5) at the discontinuity crossing are still larger than
the ones delivered by the new observer (8) (5.5◦ at curvilinear abscissa 40 m, against 3◦). Since these are
experimental results, no ground truth is available for sideslip angles. Nevertheless, the large 2.5 m overshoot
recorded on tracking error with observer (5) (against a 1 m overshoot when observer (8) is used) suggests
that the values delivered by observer (8) are more relevant in this situation. As a result, observer (8) appears
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Figure 6.: Comparison of actual tracking errors

definitely more attractive since high accuracy path tracking can be preserved, even when the reference path
is not perfectly continuous.

Figure 7.: Comparison of sideslip angles estimations during the first experiment

5.4. Additional results in different conditions

In order to test the performances and the robustness of the proposed observer, a second trajectory with
harsh curvature transitions has been considered. This trajectory is depicted in Figure 8. It consists of a
straight line followed by two curves and finally another straight line. The first curve has an almost constant
curvature, while the curvature of the second one is increasing during the turn. In addition, the first curve is to
the left, when the second one is to the right and presents at its end an S-shape which generates high sideslip
angles. This reference path is achieved on different surfaces, enabling to test the proposed algorithm with
respect to different grip conditions. As it can be seen in the center image in Figure 8, the trajectory starts
on asphalt and next alternates between grass and asphalt. The ground is flat and the experimental testbed
remains unchanged (same vehicle, same sensors).
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Figure 8.: Reference path

5.4.1. Comparison of observers performances

The results presented below were obtained by performing the tracking in three different ways (without,
with previous and new observer) at two selected speeds (2 m.s−1 and 4 m.s−1). In all following figures,
curves in black, red and blue correspond to the trials without observer, with the previous approach and with
the one proposed in this paper, respectively.

(a) Lateral deviation

(b) Observed sideslip angles

Figure 9.: Path following and observed sideslip angles at 2m.s−1

Figure 9 shows the results obtained at 2 m.s−1. The lateral deviations recorded during the three tests
and the sideslip angles (βF and βR) computed with previous and new observers during the third test (i.e.
path tracking achieved with the new observer, the sideslip angles computed with the previous one are not
used) are presented. These results show that at 2 m.s−1, path following performances during the first part
of the tests are identical in the three cases. However, from curvilinear abscissa 80 m (which corresponds to
the beginning of the second curve), the lateral deviation presents a bias of 0.15 m during the test without
observer. On the contrary, when using adaptive control (sideslip angles are not set to zero), the error stays
very close to zero, whatever the observation method used for the estimation of sideslip angles.

The estimated sideslip angles obtained with the previous observer are compared to the ones obtained
with the proposed strategy in Figure 9(b). They are quite similar in this test, since the velocity is quite
small and the trajectory has no discontinuity. At such a limited speed, the reactivity of the observer is not
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crucial and sliding is quite limited, whatever the grip conditions (it can indeed be seen that sideslip angles
hardly exceed ±2◦). As a result, the performances of the new observer at low speed (2 m.s−1) is similar to
the performances of the previous one.

The comparison at higher speed (4 m.s−1) is presented in Figure 10. The three tests are identical to the
three previous ones, only the velocity during path tracking has been increased. Figure 10(a) compares the
lateral deviations obtained during the tracking in the three configurations : (i) without sliding accounted
(in black line), (ii) with sideslip angles observed with the previous method (in blue line) and (iii) using
sideslip angles estimated with the proposed observer (in red line). It can be noticed that the proposed obser-
vation strategy ensures higher performances. The maximal lateral deviation is indeed about ±0.4 m when
using observer (8). On the contrary, when using the previous observer, overshoots of ±0.8 m are recorded
when the sideslip angles are quickly varying (which is typically the case at curvature transitions, espe-
cially at the beginning/end of curves). Nevertheless, during steady state phases (in straight line or when the
path curvature is constant), both adaptive strategies ensure a similar satisfactory tracking accuracy. On the
contrary, when sliding is neglected, the robot is not able to follow the trajectory during the bends. Impor-
tant deviations are recorded : 0.5 m when the robot describes the left bend on asphalt, next the deviation is
progressively reduced to 0.35 m when it continues on grass, and eventually the maximal deviation is equal
to -0.5 m when it achieves the second curve.

(a) Lateral deviation

(b) Observed sideslip angles

Figure 10.: Path following and observed sideslip angles at 4m.s−1

The improvement in tracking error obtained when using the observer proposed in this paper may
be explained by the higher reactivity in the sideslip angle estimation. The observed sideslip angles are
compared in Figure 10(b). At each curvature transition (at curvilinear abscissae 35 m, 90 m, 130 m
and 140 m), the red lines (representative of the sideslip angles delivered by the new observer) react
faster than the blue ones (representative of the sideslip angles supplied by the previous observer).
Of course, during steady state phases, estimated sideslip angles are quite similar (blue and red lines
are superimposed). This improved reactivity ensures that the steering control law quickly gets relevant
values for βF and βR at transition. As a result, overshoots at curvature transitions are considerably reduced.

Finally, these tests at 2 m.s−1 and 4 m.s−1 show that sideslip angle estimation is not destabilized when
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the nature of the soil changes, since no significant lateral deviation is recorded at ground transitions.
However, the influence of soil conditions can nevertheless be noticed in Figure 9(b) and 10(b) : when the
robot moves on grass, the observed sideslip angles are indeed a little bit more noisy and reach different
values than on asphalt, even if the curvature stays constant. This shows that grip conditions are implicitly
accounted by the observers.

To conclude, these results show that at low speed the performances of both observers are identical (when
considering a continuous reference path). When the speed is increased, the reactivity of the new observer
permits to preserve the accuracy of the path tracking, despite harsh curvature variations and changes in the
grip conditions.

5.4.2. Repeatability

As illustrated in the previous sections, the proposed adaptive approach is able to deliver high accurate
path tracking, whatever the shape of the reference path, the variations in grip conditions and the robot speed.
Nevertheless, this level of accuracy has to be repeatable, in the sense that the robot with the proposed control
law has to exhibit the same behavior when running in similar conditions. In order to check this point, four
successive runs have been performed at a 3 m.s−1 velocity with the reference trajectory depicted in Figure 8.
Only the departure point may change, the robot does not exactly start at the same position and with the same
orientation.

The tracking errors obtained during these four tests are compared in Figure 11. It can be seen that
after a settling distance of 20 m, the four tracking errors reach zero and next have a similar behavior.
Since the horizon of prediction has been tuned with respect to the highest velocity (set at 0.4 s for the tests
achieved at 4 m.s−1), it is not optimal when the velocity is 3 m.s−1 and two slight overshoots are recorded at
curvilinear abscissae 90 m and 130 m. Nevertheless, these overshoots permit to highlight the repeatability
of the proposed control approach, since it can be noticed that they occur exactly at the same curvilinear
abscissae in the four tests.

Figure 11.: Lateral deviation and standard deviation

The green line in Figure 11 depicts the standard deviation of the four tracking errors with respect to the
curvilinear abscissa. It can be noticed that after the settling distance of 20 m, the standard deviation stays
below 0.05 m. This means that almost 70% of the time, the robot repeats the trajectory within a range of
10 cm, despite the different perturbations and sensor noises.

As mentioned above, the test of repeatability has been performed with a non-optimal horizon of pre-
diction. This has permitted to highlight that the robot always follows the same trajectory, with the same
overshoots, when running in the same conditions. This fact also points out the importance of tuning pro-
perly the horizon of prediction with respect to the robot speed. The autonomous adaptation of the horizon
of prediction is under investigation. In order to discuss further the accuracy of the proposed approach, Fi-
gure 11 depicts the tracking error obtained with an horizon of prediction properly set to 0.3 s. It can be
noticed that the overshoots are then reduced and the obtained accuracy is close to the repeatability range
highlighted above (10 cm).
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Figure 12.: Lateral deviation at 3m.s−1 with an optimized horizon of prediction

Finally, Table 2 and Table 3 present some statistical data, namely the mean and standard deviation of the
absolute values of the tracking error recorded either during the first curve (curve to the left with a constant
curvature - Table 2) or the second curve (curve to the right with an increasing curvature - Table 3) for
different robot’s velocities, when neglecting sideslip angles (βF and βR are set to zero), when using the
previous observer and when using the proposed approach.

Without sliding accounted Previous observer Proposed observer
speed mean(| y |) std(| y |) mean(| y |) std(| y |) mean(| y |) std(| y |)
2m.s−1 0.05 0.04 0.06 0.05 0.05 0.05
3m.s−1 0.38 0.13 0.11 0.09 0.10 0.05
4m.s−1 0.38 0.17 0.17 0.16 0.12 0.09

Table 2.: Comparison of the properties of the tracking error signal recorded during the first curve

Without sliding accounted Previous observer Proposed observer
speed mean(| y |) std(| y |) mean(| y |) std(| y |) mean(| y |) std(| y |)
2m.s−1 0.08 0.05 0.06 0.03 0.05 0.03
3m.s−1 0.26 0.08 0.13 0.10 0.14 0.08
4m.s−1 0.32 0.11 0.27 0.20 0.12 0.17

Table 3.: Comparison of the properties of the tracking error signal recorded during the second curve

It can be noticed that at low speed, namely 2 m.s−1, the benefit of estimating the sideslip angles is
questionable, since it does not impact significantly the tracking accuracy : whether the sideslip angles are
estimated or not, the mean as well as the standard deviation of the absolute values of the lateral error remain
close to zero (around 5 cm) in all cases.
The importance of considering adaptive control appears clearly at higher speed (3 m.s−1 or 4 m.s−1). The
mean and standard deviation are indeed very significant when sliding effects are neglected : the mean error
reaches 38 cm during the first curve (Table 2) and is superior to 26 cm during the second one (Table 3).
Practically, when sideslip angles are neglected, the robot drifts up to 60 cm from its reference path, as
illustrated in Figure 10 or in Figure 4.
On the contrary, tracking accuracy can be preserved if sliding effects are taken into account. At moderate
velocity (3 m.s−1), similar satisfactory performances can be achieved with any of the two observers : the
mean error is around 10 cm in the first curve (Table 2) and around 13 cm in the second one (Table 3).
It can however be noticed that the observer proposed in this paper ensures a lower standard deviation.
At higher velocity (4 m.s−1), the performances of the two observers differ : the previous observer still
permits an increase in tracking accuracy with respect to the classical steering law where sliding effects are
disregarded, especially when these effects are slowly varying (when the reference path curvature is almost
constant, see Table 2), but the performances are largely depreciated with respect to the ones obtained at
lower velocities (especially when the reference path curvature is varying, see Table 3). In contrast, the
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tracking accuracy obtained with the observer proposed in the paper is unchanged : the mean error is still
around 12 cm, the reference path curvature varying or not. As mentioned above, in addition to be sensitive
to reference path discontinuities, the previous observer lacks of reactivity, so that the tracking error is
depreciated when robot’s speed is increased, especially when the reference path curvature is fast varying.
The observer proposed in this paper is more reactive, as pointed out above, so that the lateral deviation is
rather unaffected by the robot’s velocity. This demonstrates the robustness of the proposed observer with
respect to speed, terrain conditions and the shape of the trajectory.

6. Conclusion and perspectives

In this paper, an observer-based adaptive control strategy has been proposed in order to achieve high
accurate path tracking when mobile robots are subject to non-ideal grip conditions. First, two extended ki-
nematic models, where sliding effects are incorporated by means of sideslip angles, have been derived, the
first one being expressed in an absolute frame and the second one in a frame attached to the reference path.
A first sideslip angle observer designed from the second model, i.e. relying on state variables defined with
respect to the reference path, has then been recalled. Next, an original observer has been designed from the
first model expressed in an absolute frame. More precisely, sideslip angles have been considered as addi-
tional state variables without dynamics, but a proper adaptation law ensures the stability of the observer
without any restrictive assumption, contrarily to the previous approach. In particular, since it relies only on
the robot absolute motion, it ensures a smoother and more robust estimation with respect to possible refe-
rence path discontinuities. Moreover, the proposed estimation strategy reacts faster and permits to increase
the robustness with respect to speed variations.
As a result, the estimated sideslip angles and consequently the path tracking accuracy are less sensitive
to the noise and to fast modifications of the reference path (that can be misinterpreted as sliding motion).
These attractive features have been checked through simulations and experimentations. They are particu-
larly interesting when the reference path is built online from the data received from a moving target ahead,
or when multiple trajectories are defined (for obstacle avoidance purpose) without continuous transition
from one to the others. Moreover, the proposed approach is independent from the robot velocity, so that
the tracking of a target that can possibly stop can be considered (this also opens the way to a practical
stabilization of off-road robots from a path tracking approach).
Finally, this proposed path tracking strategy based on extended kinematic models is suitable as long as
dynamical effects are negligible. For the robot and the terrain considered here, dynamical effects start in-
fluencing the motion beyond 3m.s−1, while it is around 2m.s−1 for small robots and 7m.s−1 for bigger
mobiles (such as described in [12]). To address higher velocities, partial dynamical models such as the ones
proposed in [17] could be considered to supplement the observer model with an expression for the deriva-
tive of the sideslip angles. Additional variables and possible additional sensors may be required in order to
preserve the system observability, but this could permit to track possibly discontinuous paths at high speed
on natural ground.
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