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Abstract—Multibody Visual SLAM has become increasingly
popular in the field of Computer Vision during the past decades.
Its implementation in robotic systems can benefit numerous appli-
cations, ranging from personal assistants to military surveillance
to autonomous vehicles. While several practical methods use
multibody enhanced SfM techniques and monocular vision to
achieve scene flow reconstruction, most rely on short baseline
stereo systems. In this article, we explore the alternative case of
wide baseline and multi-focal stereo vision to perform incremen-
tal multibody reconstruction, taking inspiration from the increas-
ingly popular implementation of heterogeneous camera systems
in current vehicles, such as frontal and surround cameras. A new
dataset acquired from such heterogeneous camera setup mounted
on an experimental vehicle is introduced in this article, along with
a purely geometrical method performing incremental multibody
reconstruction.

I. INTRODUCTION

This article is related to the automotive industry and focuses
on driving aid systems and autonomous navigation. Multibody
SLAM techniques often rely on expensive and difficult-to-
integrate sensors, such as lidar systems [23]. By contrast, dig-
ital video cameras have been extensively developed during the
last decades, rapidly becoming small, efficient and inexpensive
products. Most of the vehicles currently available dedicate
these sensors to provide the driver a convenient visualization
of the vehicle surroundings. Recently, more specific tasks
involving video cameras (road sign and pedestrian detection,
automatic emergency braking, line departure warning, blind
spot monitoring, etc.) have been introduced. Besides, precisely
calibrated cameras allow for the tridimensional reconstruction
of an observed scene, which extends the potential applica-
tions of these systems. Some are straightforward, like visual
odometry or visual simultaneous localization and mapping, but
it is also possible to dynamically evaluate the road context
related to this information to further enable the autonomous
capabilities of a vehicle, which have been explored in appli-
cations such as scene understanding, obstacle avoidance or
path planning [2], [4]. Moreover, behavior modeling of mobile
objects could further improve the detection of dangerous
situations (pedestrian crossing, brutal stop of another vehicle,
excessive speed, bad road positioning, right of way violation,

etc.). While several practical methods use multibody enhanced
SfM techniques and monocular vision to achieve scene flow
reconstruction, most rely on short baseline stereo systems. In
this article, we explore the alternative case of wide baseline
and multifocal stereo vision to perform incremental multi-
body reconstruction, taking inspiration from the increasingly
popular implementation of heterogeneous camera systems in
current vehicles, such as frontal and surround cameras.

Figure 1. Example of trajectories reconstruction. In this sequence, the
acquisition vehicle is following another moving vehicle. The blue trajectory
is from the acquisition vehicle, while the red trajectories correspond to the
red points on the moving vehicle visible in the two views on the right.

II. RELATED WORK

Intelligent vehicles today can be considered as the practice
field of many computer vision algorithms. Indeed, research on
the subject has led to several applications such as visual odom-
etry [16] or visual simultaneous localization and mapping
[3]. However, most methods focus on the reconstruction of
static, rigid environments. Dynamic parts of the scene are often
considered as outliers and filtered out using robust statistical



methods like RANSAC. Such approach could seem inappro-
priate in the context of driving aid systems and autonomous
vehicles, as most hazardous traffic situations involve mobile
objects, but one can then consider that the high complexity and
computational cost of such dynamic reconstruction algorithms
have been the limiting factors of their practical expansion.

Multibody VSLAM refers to the ensemble of techniques
used to reconstruct and track the static and mobile objects of
a dynamic scene in three dimensions with vision. However,
while some techniques rely on global data optimization, this
article focuses on incremental reconstruction, which allows
its online use in actual moving vehicles. These incremental
techniques can further be divided into two categories, mainly
depending on the number of cameras used for reconstruction.

Monocular methods are the most challenging ones, in that
they have to compensate the camera ego-motion parameters
to retrieve the independent motion of each mobile object of
the scene. Many incremental monocular methods [17], [8],
[19] extend classical Structure-from-Motion theory [7] to the
challenging case of dynamic scenes involving multiple rigid-
body motions. The different elements to consider for such
frameworks involve features matching and clustering based
on their estimated motion, also known as subspace clustering
[22], the tracking and independent reconstruction of these
feature clusters with respect to their relative camera pose and
finally the aggregation of all the reconstructed elements to
scale.

The second category of methods used to perform multibody
VSLAM involve multiple camera systems, generally under
the form of identical stereo camera pairs which allow for
dense reconstruction and segmentation of mobile objects using
depth maps from optical flows [13], [18], [1], [24]. While
short baseline stereo has been well studied in the context of
autonomous navigation, it is not the case of multifocal and
wide baseline stereo cameras pairs. The method presented in
this article is intended to address this case on a heterogeneous
multi-camera system.

Figure 2. Overview of the framework used in our method.

III. FRAMEWORK

An overview of the framework presented in this article is
shown in figure 2. After an initial offline step of intrinsic
and extrinsic camera calibration following the method intro-
duced in [9], feature points are then extracted, matched and
undistorted for each frame using the unified camera model
presented in [5] and then fed to the visual SLAM module,
which estimates the ego-motion parameters of the multi-
camera system. These parameters are then used to compute the
multi-view geometric constraints of the segmentation process

which filters and reconstructs the static and mobile features.
Following the SLAM and segmentation procedures, the recon-
structed points and camera poses are further refined by two
dedicated optimization steps minimizing the reprojection error
with bundle adjustment.

A. Sparse feature extraction and matching

Dense feature matching from stereo camera pairs has been
well studied for the case of dynamic scene reconstruction.
These techniques often involve the use of dense flow fields to
detect and segment the rigid-body motions of the scene [13].
By contrast, while obtaining disparity maps from wide baseline
systems has proven achievable [21], the current methods are
not appropriate for time-constrained scenarios. The approach
used in this article, while conventional, produces accurate
extraction and matching of sparse features in the case of wide
baseline and multifocal stereo.

To account for the heterogeneous focal lengths of our
system, the frames obtained from cameras with longer focal
lenses are downsampled and slightly blurred to adjust for
the different size (pixelwise) of the elements in the scene
that are simultaneously seen by cameras with shorter focal
lenses. These downsampled frames are then used for feature
extraction.

The SIFT feature detector and descriptor [11] has been
chosen for feature detection and description as it produces
a large number of relatively stable points.

The feature extraction process is divided into three parts
for each frame. SIFT feature detection is first performed on
the entire frame to get an initial feature set. The frame is
then divided into blocks of an n by n grid, while the features
belonging to each block are grouped into clusters. The best
features are finally retained for each cluster. This first part
allows for a good feature repartition on the frame. The second
part is designed to enhance the temporal detection of previ-
ously triangulated features. We used the Lucas Kanade method
as introduced in [12] to track these features on consecutive
frames and thus increase the chances to detect the same 3D
point for a longer period of time. The last part finally merges
the two sets of features, eliminating duplicates based on their
respective euclidean distance. The result of this extraction
process is a feature set fi,t for each frame, where i ∈ 0 . . .m
and t ∈ 0 . . . n correspond respectively to the camera and time
of observation.

The feature matching process between two sets fi,t and fi′,t′
then rely on two geometric constraints. A locality constraint
Lc and the epipoplar constraint Ec.

The locality constraint Lc is used for the temporal matching
of features seen in frames acquired with the same camera at
different times. This constraint allow for a feature x ∈ fi,t
to be matched with a feature x′ ∈ fi,t′ if the euclidean
distance dE between x and x′ is inferior to a threshold dLc.
Each potential match p(x, x′) must then satisfy the following
equation

p(x, x′) ⇐⇒ dE(x, x
′) < dLc



The epipolar constraint Ec is used for the stereo matching of
features seen in frames acquired simultaneously by different
cameras with overlapping fields of view and whose extrinsic
parameters are known beforehand. This constraint allow for
a feature x ∈ fi,t to be matched with a feature x′ ∈ fi′,t if
the euclidean distance to their respective epipolar lines l′ and
l is inferior to a threshold dEc. Each potential match p(x, x′)
must then satisfy the following equation

p(x, x′) ⇐⇒

{
dE(x, l

′) < dEc

dE(x
′, l) < dEc

where l = FT
i,i′x

′, l′ = Fi,i′x and Fi,i′ is the fundamental
matrix between cameras i and i′.

Following these two constraints, when more than one poten-
tial match p(x, x′) exists for either feature in their respective
sets, the best match m(x, x′) retained is the one for which the
euclidean distance dE , or L2, between each feature descriptor
(not the distance in pixels) is minimal min(dE(x, x′)).

Finally, the multi-camera matching scheme allows each
camera to be stereo matched with the other ones for which
there is an overlapping field of view and temporally matched
at consecutive times of observation. That last point is of crucial
importance for the tracking of features, meaning that a feature
must at least be matched once temporally at the current time
of observation to be tracked in subsequent frames.

Figure 3. Reconstruction of the rigid environment generated by the visual
SLAM module and its corresponding trajectory.

B. Visual SLAM

The visual SLAM module is independent of the following
segmentation process proposed in this article. Its main pur-
pose is to estimate the ego-motion parameters of the multi-
camera system in order to efficiently compute the geometric
constraints used in the segmentation process. The approach
chosen is a bundle adjustment visual SLAM, as presented in
[14], in opposition to filter based approaches such as [3] for
its higher accuracy [20]. Briefly, the initial epipolar geometry
is computed by the 5-point algorithm [15] with RANSAC for
the first three frames and the subsequent poses are determined
by camera resection [6], [10]. During this incremental process,
the 3D points are reconstructed with the mid-point algorithm

and some sets of frames, referred as key frames, are selected
for local optimization by bundle adjustment to further refine
their respective camera poses and associated 3D points. A full
sequence reconstruction and its associated trajectory, generated
by the visual SLAM module, are shown in figure 3.

C. Mobile 3D points segmentation and tracking

A 3D point X must at least be associated with a couple of
observations (oXi,t, o

X
i′,t′), each from a specific camera i, i′ ∈

0 . . .m at a specific time t, t′ ∈ 0 . . . n, for its reconstruction.
These observations can either be temporal (i = i′ ∧ t 6= t′)
or stereo (i 6= i′ ∧ t = t′) and correspond to feature matches
m(x, x′) obtained from the feature matching module. A 3D
point can also be associated with more than two observations,
all of which form the set oX of the observations associated
with the 3D point X . One should note that at this point, all
observations are retained from the feature matching module
to allow for mobile object detection, contrary to most SLAM
methods which eliminate the outliers that do not satisfy the
main epipolar geometry of the scene. The objective of the
mobile segmentation module is then to determine from these
observations the class of their associated 3D point, which can
either be static (X ∈ S), mobile (X ∈M ) or into the outlier
class (X ∈ O).

1) 3D point consistency: A 3D point is considered as
consistent when it satisfies the consistency constraint Cc. This
constraint specifies that the reprojection error of this point for
all its observations is inferior to a certain threshold tCc, which
translates as

Cc(oX) ⇐⇒ ∀oXi,t ∈ oX , (oXi,t − Pi,tX) < tCc

where Pi,t is the projection matrix of the ith camera at time
t. Incidentally, a static 3D point (X ∈ S) must be consistent
for all of its associated observations.

2) 3D point mobility: On the opposite, a mobile 3D point
might not be consistent for all its temporal observations.
However, each 3D point can be split temporally and must
remain consistent for each of its temporalities, which allow
for different positions of the point at different times. Then,
the first mobility constraint Mc1 specifies that

Mc1(oX) ⇐⇒ ∀t, ∀oXi,t ∈ oXt , (oXi,t − Pi,tX) < tMc1

where oXt is the set of observations associated to the point
X at time t. Considering that the point X is moving, only
stereo observations allow for its reconstruction at time t. There
must then be at least two stereo observations (oXi,t, o

X
i′,t) for

each temporality t. This leads to the second mobility constraint
Mc2, which states that

Mc2(oX) ⇐⇒ ∀t, |oXt | ≥ 2

Finally, the detection of a mobile point being only possible
from several temporal observations, there must at least be two



temporal observations (oXi,t, o
X
i,t′) in the set oX . Hence the third

mobility constraint which states that

Mc3(oX) ⇐⇒ ∃(oXi,t, oXi,t′) ∈ (oX)2, t 6= t′

In practice, while the minimum of temporal observations
is two, a minimum of three has been used to mitigate false
positives by ensuring that the trajectory of these observations
is consistent (see III-C5), meaning that a mobile 3D point has
to be tracked in at least three consecutive frames.

3) Segmentation algorithm: Using the consistency and mo-
bility constraints, the segmentation process then proceeds with
the following algorithm for each 3D point X to determine its
class C (static, mobile or outlier).

Algorithm 1 Segmentation algorithm
Input: oX
Output: class C of X: (C = S) ∨ (C =M) ∨ (C = O)

1: if (Cc(oX)) then
2: C = S
3: else
4: if (Mc1(oX) ∧Mc2(oX) ∧Mc3(oX)) then
5: C =M
6: else
7: C = O
8: end if
9: end if

10: return C

Each 3D point is first checked for consistency and consid-
ered as static if consistent. If not, the point is further tested
for mobility, in which case it is considered as mobile if all
mobility constraints are satisfied and as an outlier if not. The
outliers are then discarded at this point.

4) 3D point splitting for optimization: Following the seg-
mentation algorithm, each mobile point is then split temporally
as a set of individual points Xt which correspond to the
different positions of the point X at each temporality t.
This step allows for a generic optimization of all 3D points
regardless of their class (C = S or C = M ), which is
performed on all mobile 3D points Xt by minimizing their
reprojection error for all their observations oXt with bundle
adjustment.

5) Trajectory consistency: As a final step and to further
refine the segmentation, the trajectory of each mobile point
X composed of the individual points Xt is checked for
its consistency. Several constraints of smoothness for speed
and changes in direction are used. The constraint for speed
specifies that the euclidean distance allowed between each
pair of consecutive points (Xt, Xt′) is comprised between
dmin < dE(Xt, Xt′) < dmax. Similarly, as each mobile object
is assumed to rest on the ground plane, the change in elevation
allowed between each pair of consecutive points (Xt, Xt′)
must not exceed a threshold dElevation. As for the changes
of direction, the angle formed by each triplet of consecutive

points (Xt, Xt′ , Xt′′) projected on the ground plane must not
exceed a threshold α. All these constraints on the trajectory
of each mobile point X allow for the detection and dismissal
of erratic movements generated by false matches occurring in
the feature matching module.

D. Parameter tuning

Each step of the described framework rely on various
parameters affecting the overall performance of the proposed
method. While some of the values used for these parameters
directly come from the literature, an empirical tuning aproach
has been adopted to retain the best value for the other
parameters in regard to the results obtained on our associated
dataset. More precisely, parameters in section III-C, which is
the main contribution of our method, use the following values
for the consistency and first mobility constraints tCc = 3.0,
tMc1 = 3.0, while the values used to ensure the trajectory
consistency in section III-C5 are dmin = 0.1, dmax = 10.0,
dElevation = 1.0 and α = 60.0. One should although consider
that these values are specifically intended to work well on our
associated dataset and are thus given on an indicative basis
only.

v

Figure 4. Top-down view of the vehicle with the four cameras and overlapping
fields of view. According to our feature matching scheme, temporal matching
is performed for each camera, while stereo matching is performed between
the windscreen camera (in blue) and the three others (in orange and red) and
between the front grille camera (in orange) and the side cameras (in red).



Figure 5. Views acquired with the four cameras. Top left is the front grille
camera, top right the windscreen camera and bottom left and right are the
side-left and side-right cameras.

IV. DATASET

While several datasets allowing for the evaluation of scene
flow have recently been introduced, notably the KITTI dataset
for scene flow estimation [13], no publicly available dataset to
our knowledge uses an array of wide baseline and multifocal
stereo cameras, which is the reason behind the creation of our
own. The dataset presented in this article has been acquired
in a realistic but controlled environment, which is composed
of static and mobile elements such as cars and pedestrians.
A total of eight different sequences corresponding to different
road traffic scenarios at low speed have been acquired in order
to assess the robustness of the proposed algorithm and the
quality of the reconstructions.

The experimental vehicle has been equipped with four
rigidly mounted digital cameras and a D-GPS. Spec-wise,
the cameras use identical 2.3 MP, global shutter and syn-
chronized sensors which record at 25 frames per second.
The synchronization part of the acquisition process, being of
utmost importance to ensure the geometrical correctness of
our method, has been performed by hardware triggering. Three
cameras are equipped with fisheye lenses equivalent to a 185
degrees horizontal FOV, while the fourth is equipped with a
longer focal lens equivalent to an 80 degrees horizontal FOV.
The fisheye cameras have been respectively placed on the front
grille, pointing front in the longitudinal axle of the vehicle
and on each side of the roof above the driver and passenger
doors, pointing to the left and right perpendicular to the front
camera. Finally, the last camera has been placed on the roof,
above the windscreen, pointing front in the longitudinal axle
of the vehicle. A top-down view of the vehicle with the four
cameras and overlapping fields of view is shown in figure 4,
while actual views acquired with the four cameras are shown
in figure 5.

The choices of position, specs and optical characteristics of
the cameras have been motivated by the increasingly popular
implementation of heterogeneous camera systems in current
vehicles, such as frontal (e.g., Mobileye cameras) and sur-
round cameras (e.g., Around View Monitoring systems). These

experimental conditions should then help demonstrate the
potential uses of such multi-camera systems in the challenging
task of autonomous navigation.

Figure 6. Example of false positive. The red trajectory in the top left corner
is due to false matches misinterpretation on the traffic light.

V. EXPERIMENTAL RESULTS

Qualitative results have been obtained from the algorithm on
various sequences from our dataset. One example of trajectory
reconstruction is shown in figure 1. In this particular case,
the acquisition vehicle whose trajectory is shown in blue is
following another moving vehicle in front. Three mobile points
are tracked and reconstructed simultaneously on the moving
vehicle, which corresponds to the three red trajectories on the
top left of the figure. These red points are also visible on
the moving vehicle in the two provided views. One can note
that some of the green points, which are static 3D points,
also lie on the moving vehicle. These green points are not
considered as mobile as they have not been tracked and
stereo matched for three consecutive frames. While this also
explains the relatively few number of mobile points detected,
this is a limitation of the current state of the method, as
the segmentation constraints used do not allow for a false
observation to be associated with a moving 3D point, in which
case the point becomes an outlier and is then dismissed. Views
of the windscreen and front grille cameras corresponding to
this particular trajectory can be seen in figure 7.

While several similar valid occurrences of tracking and
reconstruction appear in the different sequences, some false
positives are also to be noted. In figure 6, one can see the
false red trajectory in the top left corner. This false positive is
caused by false matches of features on the traffic light visible
on the left in the views. These matches are correct according to
the epipolar matching constraint Ec, as they lie on the epipolar
lines, but are not pointing at the same static 3D point (one is
at the top, the other at the bottom of the light) on the object
and are thus misinterpreted as a moving point. These false



positives occur more frequently in repeating patterns areas
such as the ground, grass, or the grilling visible on the left of
the views in figure 6. Finally, although being semantic errors
rather than geometric ones, shadows of moving objects can
also be misinterpreted as moving areas and thus be considered
as false positives.

Figure 7. Views of the windscreen and front grille cameras corresponding to
the trajectories shown in figure 1.

VI. CONCLUSION AND FUTURE WORKS

The observed qualitative results show that the purely ge-
ometrical method presented in this article works as intended
on our dataset. However, several improvements can be made
regarding the results. The reconstructed moving trajectories
can indeed be considered as the starting point of a denser
matching surrounding the area near the moving features. This
could, in turn, allow to work with more points per moving
object, which would enable their tracking and reconstruction
to scale in the non-overlapped field of views of the multi-
camera system. Also, some flexibility during the segmentation
process, allowing to work on a larger number of points, could
be achieved by pondering each observation and scoring the
motion potential of each point instead of considering it as
an outlier. These perspectives will eventually be explored in
future works.
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