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Abstract—This paper presents a new calibration method for
lenslet-based plenoptic cameras. While most existing approaches
require the computation of sub-aperture images or depth maps
which quality depends on some calibration parameters, the
proposed process uses the raw image directly. We detect micro-
images containing checkerboard corners and use a pattern
registration method to estimate their positions with subpixelic
accuracy.

We present a more complete geometrical model than previous
work composed of 16 intrinsic parameters. This model relates
3D points to their corresponding image projections.

We introduce a new cost function based on reprojection errors
of both checkerboard corners and micro-lenses centers in the raw
image space. After the initialization process, all intrinsic and
extrinsic parameters are refined with a non-linear optimization.
The proposed method is validated in simulation as well as on
real images.

I. INTRODUCTION

A plenoptic camera (or light-field camera) is a passive
sensor that captures five dimensions of a light field: intensity,
position and orientation of incoming light rays onto the sensor.
Unlike regular cameras, each pixel of the sensor receives rays
corresponding to a particular incidence. This property allows
to acquire richer information about the scene with various
applications such as depth estimation or refocusing.
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Figure 1. Galilean plenoptic camera model.

Light-field cameras are based on the integral photography
concept introduced in 1908 by Lippmann [10]. He created a
system composed of closely spaced lenses arrays to record
multiple images of a scene. Since then, various versions were
designed like camera arrays or hand-held models [7], [1].

This paper focuses on hand-held plenoptic cameras com-
posed of a micro-lenses array (MLA) placed between the
principal lens and the sensor (Fig. 1). Light rays going through
the main lens are then projected through micro-lenses.

The first consumer hand-held plenoptic camera was con-
ceived in 2005 by Ng [13], [12] and released by Lytro 1. In
this model called unfocused plenoptic camera, the MLA is
placed in the focal plane of the main lens. The focal length of
micro-lenses is equal to the distance between the MLA and
the sensor.

In 2009, Georgiev and Lumsdaine [11] presented a modified
version named focused plenoptic camera where the MLA is
focused on the image formed by the main lens. The model
is called Keplerian when the main lens focal plane is located
in front of the MLA, and Galilean when it is placed behind
(Fig. 1).

Figure 2. Zoom on a plenoptic raw image.

A plenoptic raw image is composed of micro-images grid
(Fig. 2). Each micro-image represents rays captured by its
corresponding micro-lens. Thanks to the information contained
in a single raw image, plenoptic cameras can be used in many
computer vision applications.

One of those applications is the image synthetization.
A synthesized image (or sub-aperture image) is an image
simulating a picture taken from a virtual standard camera.
A plenoptic raw image gives access to multiple synthesized
images corresponding to different points of view of the same
scene [16].

Another popular application of light-field cameras is the
possibility of refocusing the image on different scene details
after the picture is recorded [13], [11]. Plenoptic cameras have
also been used to compute depth maps, to perform visual
odometry [3], [19] or Simultaneous Localization and Mapping
(SLAM) algorithms [5].

In all of these applications, the accuracy of the results
strongly depends on the knowledge of the camera calibration
parameters. Thus the accurate calibration of light-field cameras
is a key requirement for their use. In this paper we present

1https://lytro.com



a novel calibration method for light-field cameras directly
expressed in the sensor space. We present a 16-intrinsic-
parameter model including the focal length of the main lens
and its lateral distortions, the position of the MLA and the
sensor with respect to the main lens as well as the mean
space between micro-lenses. To optimize this large number of
parameters, we introduce a robust cost function taking into
account checkerboard observations as well as micro-lenses
centers in the raw image space.

II. RELATED WORK

Different plenoptic camera calibration approaches have been
proposed. Processing light field cameras raw data is challeng-
ing, therefore first state of the art methods manipulate 3D
features and minimize distances in 3D space.

In 2013, Dansereau et al. [4] presented a 15-parameter
model (pixel-to-ray) to calibrate an unfocused plenoptic cam-
era. In this work, a light field of the uncalibrated system is first
generated, then synthesized images of the scene are extracted
in order to detect checkerboard corners. Each observation
is associated to a ray. The cost function is the squared 3D
distance between each ray and its corresponding 3D point.

In 2013, Johannsen et al. [8] followed by Zeller, Noury et al.
[18] presented in 2016 similar calibration methods of focused
light-field cameras. In these works, synthesized images as well
as depth maps are used to compute 3D observations. The
cost function is then expressed in 3D space computing the
difference between object points and their observations. A
complete distortion model is presented including lateral and
depth distortions. While in [8], depth distortion is applied on
virtual image points projected by the main lens, in [18] it
is applied directly on light rays crossing the MLA thereby
reflecting the physical reality. Although they presented a
complete distortion model there is no consideration on the
MLA misalignment or the mean distance between micro-
lenses.

These methods based on 3D features are appealing since
they do not need to handle raw data. Indeed, feature extraction
from raw image is not trivial due to the low micro-images
resolution. Yet, the computation of accurate synthesized im-
ages and depth maps already requires a good estimation
of intrinsic camera parameters. Here is the Chicken-and-egg
problem: observations are needed to calibrate the camera while
a calibrated camera is needed to collect observations.

To avoid this problem, one can use proprietary software such
as Lytro Desktop 2 or RxLive 3 which directly provide accurate
synthesized images and depth maps to perform calibration.
This however implies to rely on a software which already has
all camera parameters that we wish to estimate.

In 2016, Zhang et al. [20] proposed a calibration method
using bi-planar checkerboard observations from raw images.
During the optimization process, checkerboard planes are
reconstructed in 3D space and the difference between the
computed plane inter-space and the ground truth is minimized.

2https://illum.lytro.com/desktop
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These quoted methods rely on minimization in 3D space
to calibrate light-field cameras but 3D features reconstruction
operations (sub-aperture images and depth maps) contain
interpolation phases introducing uncertainty in the process.

Closer to our work, some methods recently proposed to use
only information contained in raw images so that the obser-
vations accuracy depends only on the quality of the detection.
In 2014, Bok et al. [17] proposed a calibration method of
an unfocused plenoptic camera based only on raw images
avoiding reconstruction steps. In this work, checkerboard line
features are used as observations. To detect those features they
generate few sample images (with different edge orientations)
depicting checkerboard borders. Then, they compare them
with each selected micro-image performing a Normalized
Cross-Correlation (NCC) and keep the best match. Camera
parameters are optimized minimizing the squared distance
between each line feature and its corresponding projected
checkerboard corners in 2D space.

Despite an interesting approach, this model does not take
into account all MLA parameters like its misalignment with
the sensor and the mean space between micro-lenses. Since
we extract checkerboard corners, the method of [17] is not
suitable: considering that a corner is represented by two
checkerboard edges, we would have to generate numerous
samples corresponding to each line orientation and compare
them with each selected micro-image. Also they worked
on a Lytro camera where every micro-image has the same
resolution. But some cameras (like Raytrix 4 products) present
raw images containing blurred micro-images due to different
micro-lens types composing the MLA. So template matching
techniques would not give accurate results.

In this paper we present a new calibration method of light-
field cameras based only on raw images. To deal with the
micro-image low resolution, we developed a new detector to
find checkerboard observations with subpixelic accuracy in
each micro-image. We propose a more complete model with 16
parameters including MLA misalignment, radial and tangential
distortions of the main lens. We also optimize the mean space
between the micro-lenses. To optimize all those parameters,
we propose a new cost function to constrain the optimization.

In the rest of the paper, we first explain our projection model
(Section III) then detail our calibration process (Section IV)
and present the results on simulated and real scenes (Section
V).

III. CAMERA MODEL

In this section, we describe our camera projection model.
The main lens and the micro-lenses are respectively modeled
as a thin lens (Section III-A) and pinholes (Section III-B).

In the following, we use homogeneous coordinates to
represent 3D and 2D points. For example, homogeneous
coordinates of a 3D point in the camera frame are written
as PC = (XC , YC , ZC , 1)>.

4https://www.raytrix.de
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Figure 3. Zoom in Galilean plenoptic camera model. Dm and Ds
respectively stand for the distance between the main lens and the MLA and
the distance between the main lens and the sensor.

All frames follow the same convention: with the camera
directed towards an object, the Z axis is pointing towards the
object (ZC > 0), the Y axis is pointing downwards and the
X axis is pointing to the right.

The camera coordinate origin is located at the optical
center of the main lens. The positions of camera elements are
expressed in the main lens coordinate system. The origin of
the MLA is placed at the matrix top left corner. The sensor’s
origin is located at the pixel (0, 0).

A transformation matrix from a base A to B is written BTA
as a 4× 4 matrix composed of a 3× 3 rotation matrix R and
a 1× 3 translation matrix t.

A. Thin lens model

As depicted in Fig. 1, the image of an object through a thin
lens follows the equation 1

fL
= 1

aL
+ 1
bL

where fL is the focal
length of the lens, aL is the distance between the object and
the optical center O and bL is the distance between the image
and O.

The projection of a point PC = (XC , YC , ZC , 1)> to
another point PV = (XV , YV , ZV , 1)> through the thin lens
is defined as PV ∝ KL · PC with KL:

XV

YV
ZV
1

 ∝

fL 0 0 0
0 fL 0 0
0 0 fL 0
0 0 −1 fL

 ·

XC

YC
ZC
1

 (1)

B. Pinhole model

The pinhole model describes the projection of a point
PC = (XC , YC , ZC , 1)> to a point p = (u, v, 1)> in image
space where (u, v) are pixel coordinates. It defines the image
creation using perspective projection on a plane considering
that each light ray is passing through the optical center O.

The pinhole projection is expressed as p ∝ Kp · PC with
the projection function Kp defined as:

Kp =

fx 0 u0 0
0 fy v0 0
0 0 1 0

 (2)

(fx, fy) are the pixel focal lengths with fx = fp/dx and fy =
fp/dy composed of the metric focal length fp and the metric
dimensions of sensor pixels (dx, dy) along (x, y). (u0, v0) are
the principal point coordinates in the image space.

C. Distortion models

To accurately model the light projection, we consider optical
aberrations applied to PV generated by the main lens, in
particular radial and tangential distortions. Due to the small
size of each micro-image (20×20 pixels for a Raytrix camera),
we ignore distortions generated by micro-lenses.

1) Radial distortion: the radial distortion is defined by
a polynomial depending on r =

√
x2u + y2u: the distance

between the projected point (xu, yu) and the optical axis.

∆rrad = A0r
3 +A1r

5 +A2r
7 + · · · (3)

This results in the correction terms ∆xrad and ∆yrad
written as:

∆xrad = xu ·
∆rrad
r

, ∆yrad = yu ·
∆rrad
r

(4)

In our implementation we use a radial distortion model
composed of three coefficients (A0, A1, A2).

2) Tangential distortion: the tangential distortion is gen-
erated by the misalignment between the sensor and the lens.
We use the model defined in Brown [2] with the two first
coefficients (B0, B1):

∆xtan = B0 ·
(
r2 + 2x2u

)
+ 2B1xuyu

∆ytan = B1 ·
(
r2 + 2y2u

)
+ 2B0xuyu

(5)

Once the optical aberrations are modeled, we define the
distortion matrix KD:

KD =


1 0 0 ∆xrad + ∆xtan
0 1 0 ∆yrad + ∆ytan
0 0 1 0
0 0 0 1

 (6)

D. Complete model

In the plenoptic camera model, light rays coming from an
object are first projected through the main lens then through
the MLA (Fig. 3). The projection of a scene point PW =
(XW , YW , ZW , 1)> to a 2D point pl = (u, v, 1)> through the
main lens and a micro-lens l follows the equation pl = Kl ·PW
with:

Kl = Kpl · lTV ·KD ·KL · CTW (7)

IV. CALIBRATION METHOD

Our calibration method is based on correspondences be-
tween 3D points of a checkerboard and their observations in
the image space. While this is the standard method to calibrate
central cameras, its transposition to light-field cameras is not
straightforward due to a different camera model with more
parameters and to difficulties in robustly extracting features
from small micro-images. Consequently, current approaches
for plenoptic camera calibration often rely on sub-aperture



images or depth maps computed by some proprietary software
[8], [15], [18] bypassing some potential interpolation steps.

We propose a calibration method entirely based on checker-
board corners detections in micro-images, the optimization
being directly expressed in sensor space.

checkerboard
corners detection

(IV-A, IV-B)

intrinsic parameters
initialization

(IV-C , IV-C1 , IV-C2 )

extrinsic parameters
estimation

(IV-C3)

global optimization
(IV-D)

Figure 4. Calibration process of a plenoptic camera.

The calibration process is detailed in Fig. 4. Initializing
micro-images grid parameters allows to estimate the exact
position of each micro-image in the raw image space (Section
IV-A). Once those positions are determined, each micro-image
can be analyzed in order to detect corners (Section IV-B). We
first initialize all intrinsic and extrinsic parameters (Section
IV-C) and then refine them with a non-linear optimization
approach (Section IV-D).

A. Micro-images grid parameters estimation

To analyze micro-images separately, their positions on the
raw image have to be determined. We apply the method
described in [4].

Figure 5. Zoom on a raw image with detected micro-images centers.

Using a raw image of a white scene (Fig. 5), each micro-
lens center projected on the sensor is detected at the intensity
maximum in the corresponding micro-image. Then all param-
eters of the micro-images grid can be determined. We estimate
the mean space between micro-images, the translation and in-
plane rotation offset of the grid in the raw image coordinate
system.

Note: due to vignetting effects caused by the main lens
aperture, micro-images placed at the raw image borders are not
circular and their detected centers are not correctly estimated.
To accurately estimate parameters of the micro-images grid,
only micro-images inside an interest window are considered.

B. Checkerboard corners detection

Using the position of micro-images in the raw image space,
we are able to analyze them in order to detect checkerboard
corners.

The use of standard corner detectors like Harris [6] shows
poor results on micro-images from light-field cameras. Many
corners are detected along micro-image borders due to vi-
gnetting effect generated by micro-lenses borders. Moreover
some light-field cameras, like Raytrix ones, present MLA
with different types of micro-lenses, characterized by different
focal lengths. Hence some micro-images are blurred avoiding
to accurately extract corners. Those issues led us to design
a specific method to detect corners in micro-images with
subpixelic precision.

(a) (b) (c)

Figure 6. Types of micro-images: (a) full, (b) border et (c) corner.

Our detection process is divided in two steps: we first
classify micro-images with respect to their content type (full,
border, corner, see Fig. 6) and then we find corner locations.

To classify the content of a micro-image we propose to use
histograms of gradients: the gradients in polar coordinates are
computed to obtain magnitudes and orientations. A histogram
is then obtained cumulating magnitude values for each orien-
tation (Fig. 7).

Figure 7. Histogram samples of (a) full (red), (b) border (green) and (c)
corner (blue) micro-images. The abscissa of a peak reveals the orientation of
a checkerboard border contained in the micro-image (from 0 to 360 degrees).

There are three main histogram patterns: A flat histogram
for the full type. border and corner types respective histograms
present one and two peaks. Those peaks give information on
the amount of checkerboard borders and their orientations in
each micro-image.

For each corner micro-image I (Fig. 9(a)), the corner posi-
tion cI has to be found with subpixelic precision. To this end
a model image M , containing a known corner position cM , is
generated using colors intensity of I and line orientations from
the corresponding histogram (Fig. 7). The corner position cM
in M is then refined with subpixelic precision using a dense
optimization. In that aim, we use a Levenberg-Marquardt
algorithm. We optimize a 6 parameters vector H representing
a 2D affine transformation: translation (2 degrees of freedom
(dof)), rotation (1 dof), stretch (1 dof), shear (1 dof) and scale
(1 dof).



(a) (b)

Figure 8. Characterization of micro-images types full (blue), border (green)
et corner (purple) on Raytrix images: (a) raw image, (b) zoom.

We optimize translation parameters in order to move cM
to cI . Rotation, stretch and shear parameters are optimized to
adjust the orientation of the two edges. As explained, in case
of multiple micro-lenses focal lengths, some micro-images can
be blurred resulting in smoothed edges. For good fitting results
and thus good corner localization on such micro-images, we
consider a scale parameter which controls the level of edge
blurring through interpolation.

The cost function ε(H) is the sum of the quadratic errors
between each pixel p of the warped model and the current
micro-image I .

ε(H) =
∑
p∈P
||I(p)−M(ω(H)(p))||2 (8)

where P stands for the pixels of I . ω(H) is the warping
function transforming cM to cI .

At the end of the optimization, cI is computed as
cI = ω(H) · cM (Fig. 9(c)).

Note: due to vignetting effects, micro-images are bordered
with a black halo. To remove those black borders from the
cost function, we apply a mask to the raw image using an
image of a white scene (Fig. 5).

(a) (b) (c)

Figure 9. The corner position cI contained in micro-image I (a) is computed
optimizing the transformation between I and a model image M (b). After
optimization, cI is computed with subpixelic precision (c).

C. Parameters initialization

This section describes the intrinsic and extrinsic parameters
initialization. We first present the method to set the mean
space between micro-lenses (Section IV-C1) and then the other
parameters initialization (Section IV-C2) followed by the poses
estimation (Section IV-C3).

1) Mean space between micro-lenses: While a good ini-
tialization of intrinsic camera parameters can generally be
obtained from the camera manufacturer, some parameters may
not always be available. We explain here how to coarsely

estimate the dµ mean space between the micro-lenses using
a semi automatic method: removing the main lens, dµ is
estimated by projecting a point P far from the sensor.
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di

sensor MLA

Pθ

(b)

Figure 10. A point P is projected through the MLA: (a) global view, (b)
zoom on two micro-lenses.

Fig. 10 depicts a plenoptic camera without the main lens,
which is the configuration used to estimate dµ. dµ and di
respectively stand for the distance between two micro-lenses
centers (in µm) and the projection of a point P on the sensor
(in metric space) (Fig. 10(b)). Dm is the distance between P
and the MLA and Ds is the distance between P and the sensor
plane. Here, only di is known since it can be estimate using
the detection of micro-images centers (Section IV-A).

Let θ be the angle formed by two micro-lens centers at the
point P . It is expressed as:

tan θ =
di − dµ
Ds −Dm

(9)

When P is far, then θ ≈ 0. Using the equation (9) the value
of dµ is set: dµ = di.

2) Other parameters initialization: The main lens focal
length is set according to the objective datasheet, distortion
coefficients are set to zero and the sensor and MLA are
centered around the optical axis.

3) Pose estimation: To optimize camera parameters, we
link checkerboard corners with their observations.

(a) (b)

Figure 11. Raw image containing observations clusters (a) and their
barycenters (b).

We estimate the camera poses using information in raw
image: we compute the barycenter of each observation set
corresponding to a checkerboard corner (Fig. 11(a)). Those
barycenters correspond to the projection of the corners through



the main lens using the pinhole model. We then estimate the
camera poses using a Perspective-n-Point (PnP) ([9]).

D. Global optimization

Once all camera projection parameters are set, we optimize
them in a Levenberg-Marquardt algorithm.

parameters dof
fL (mm) 1

(A0, A1, A2) 3
(B0, B1) 2
dµ (µm) 1

MLA pose:
Rm (rad), tm (µm) (3, 3)

sensor pose:
ts (µm) 3

camera poses:
Rc (rad), tc (mm) (3, 3) × F

Table I
CAMERA PARAMETERS TO OPTIMIZE.

Parameters to optimize are detailed in Table I. F stands for
the number of frames used during the calibration. Hence we
optimize 16 intrinsic parameters and 6 extrinsic parameters
per frame.

Formally, if S is the vector of camera parameters (Table I),
the calibration problem is expressed as the minimization of a
cost function ε(S). This function is composed of two sums of
quadratic errors: the first part is equal to the sum of quadratic
errors between each checkerboard corner projection through
the micro-lens l using the function Kl(S) and its observation
pf,k,l in its corresponding micro-image. The second term is
defined as the sum of quadratic distances between each l
micro-image center ci,l and its corresponding projected micro-
lens center.

ε(S) =

F∑
f=1

K∑
k=1

Lf,k∑
l=1

||pf,k,l −Kl(S) · Pk||2

+

L∑
l=1

||ci,l −Kpl(S) · cm||2
(10)

where f ∈ {1, . . . , F} is the index of the current frame. Pk,
k ∈ {1, . . . ,K} are checkerboard 3D points. Lf,k stands for
the micro-lens indices where the projection of Pk is observed
in the f frame. KL refers to the plenoptic projection function
(7). cm stands for the center of the main lens. And Kpl refers
to the pinhole projection function through the micro-lens l (2).

During the optimization, each corner is projected through its
corresponding micro-lenses (where it was observed). Consid-
ering only the first part of (10), camera parameters would be
optimized without considering that the MLA is still aligned
with the sensor and then the final solution would be a
singularity. Hence the parameters optimization cannot only
rely on checkerboard corners observations but also on micro-
images centers. The second equation term enforces projected
micro-lens centers to get closer to their corresponding micro-
image centers.

V. EVALUATION

In this section, we evaluate the proposed method both
quantitatively in a controlled environment and qualitatively
with real images when ground truth parameter values are not
available.

A. Experimental setup

We first describe the experimental setup for both synthetic
and real images. Tests were performed on a i7 quad-core CPU
(3.60 GHz).

1) Simulation setup: To evaluate our calibration, we have
developed a simulator to generate synthetic images using our
plenoptic camera projection model (Section III). This software
is able to project 3D points from a virtual scene to the camera
image space and to generate plenoptic raw images using ray
tracing. This simulator is used to quantitatively evaluate the
calibration performance in a controlled environment. Results
are presented in Table III.

2) Real scene setup: Experiments were performed with a
Raytrix R5 composed of a Baumer HGX40 sensor and a
Tamron 23FM16SP lens with a 16 mm focal length. We
used a 20 images dataset of a checkerboard plane at a mean
distance of 60 cm. Camera poses where chosen in order to
record different orientations of the checkerboard and to cover
every part of the image.

All parameters were optimized using the Levenberg-
Marquardt algorithm from the open source LMA C++ library
5 [14]. Optimized parameters of Table I are presented in
Table IV.

B. Simulation

Camera poses were generated randomly according to a
normal distribution at a mean distance of 80 cm from the
checkerboard verifying that each corner is projected at least
in one micro-image.

Once all poses and corresponding observations are gener-
ated, we introduce an initial error following a 0 mean normal
distribution on the projection parameters to generate the initial
parameter values. Corresponding standard deviations are given
in Table II.

The calibration is tested on perfect and noised observations.
Latter, we applied noises following normal distributions (set
to 0 mean) on checkerboard corners and micro-image centers
observations with respectively 1 pixel and 0.5 pixel standard
deviations.

Results are given in Table III. On a perfect observation
dataset, the final RMSE is around 1.10−13 ≈ 0 pixel and
errors on camera parameters are negligible (∝ 10−14).

Using noisy observations, the final RMSE is equal to 0.53
pixel and errors on final parameters are low. Here there are
some example values of errors (in %) between optimized
parameters and ground truth: δfL = 0.09%, δdµ = 0.03%,
δDm = 0.01% and δDs = 0.04%. This validates the
convergence of our calibration procedure.

5https://github.com/bezout/lma-include



parameters standard deviation
fL (mm) 1

(A0, A1, A2)× 10−3 (1, 0, 0)
(B0, B1)× 10−3 (1, 0)

dµ (µm) 5
MLA pose:

R (×10−3rad) (1, 1, 1)
t (µm) (100, 100, 100)

sensor pose:
t (µm) (100, 100, 100)

camera poses:
R (×10−1rad) (1, 1, 1)

t (mm) (50, 50, 50)
Table II

STANDARD DEVIATION OF THE INITIAL NOISE ON EACH PARAMETER. R
STANDS FOR 3 ROTATION PARAMETERS AND t FOR 3 TRANSLATION

PARAMETERS.

obs. \ images 10 20

perfect:
initial RMSE (pixel) 47.0 41.3
final RMSE (pixel) 2.4× 10−13 1.7× 10−13

noisy:
initial RMSE (pixel) 55.1 25.2
final RMSE (pixel) 0.53 0.53

Table III
FINAL RMSE WITH PERFECT AND NOISY OBSERVATIONS (OBS.)

ACCORDING TO THE NUMBER OF IMAGES.

Figure 12. RMSE evolution according to the iteration number using datasets
of 10 (red) and 20 (green) images with perfect (plain) and noisy (dotted)
observations.

Fig. 12 depicts the RMSE evolution according to the number
of iterations during the calibration. The final RMSE value is
reached in less than 5 iterations. The optimization process
stops in approximately 250s after 40 iterations.

Note: the plenoptic camera has to be initialized in the correct
configuration (Galilean or Keplerian) because the cost function
prevents from reconfiguration while optimizing.

In this paper we do not present an exhaustive study of the
convergence zone. Nevertheless we present some significant
clues of the robustness of our method. We initialized dµ to
different values (from 0.0µm to 1mm) and completely decen-
tered the MLA with the sensor (from t : (0.0, 0.0, 14.0)mm
to t : (−10.0,−10.0, 14.0)mm). The optimization converges
every time to the solution presented in Table IV in less than
5 iterations. This indicates that our method is robust to wrong
parameters initialization especially concerning those of the
MLA.

C. Real images

1) Intrinsic parameters initialization: Following the initial-
ization method described in Section IV-C1, the main lens was
unmounted and an image of a laser point located 4 m from
the camera was taken. Thus the distance between the MLA
and the sensor is negligible compared to Dm. We obtained
dµ = 125.84µm. fL was initialized to 16 mm and distortion
coefficients to zero. Those parameters were then optimized
minimizing the cost function presented in (10). Concerning
the MLA and sensor poses: Rotation matrices were set to
identity and translations were initialized centered around the
main lens optical axis. We use a Galilean model (Fig. 1) so
we initialized the MLA position behind the main lens focal
plane at an arbitrary distance of 15.2 mm from the main lens.
Finally the sensor is placed at 15.6 mm from the main lens.

2) Global optimization: During the global optimization, we
optimized parameters written in Table I.

Figure 13. RMSE evolution according to the iteration number using a 20
images dataset.

The fig. 13 depicts the evolution of the RMSE during the
optimization. Using our dataset, it starts at 11.5 pixels. At the
first iteration it is equal to 46.99×10−2 pixel. The optimization
process stops after the 54 iterations (364s) with a final RMSE
equals to 45.19× 10−2 pixel.

parameters initial values optimized values
fL (mm) 16.00 17.02

(A0, A1, A2) ×10−3 (0.0, 0.0, 0.0) (−0.4, 0.0, 0.0)
(B0, B1) ×10−3 (0.0, 0.0) (0.0, 0.2)

dµ (µm) 125.84 124.76

MLA pose:
R (×10−3rad) (0.0, 0.0, 0.0) (0.32, 0.31,−0.56)
t (×103µm) (−5.56,−5.54,−15.2) (−5.61,−5.75,−15.97)
sensor pose:
t (×103µm) (−5.63,−5.63,−15.6) (−5.80,−5.93,−16.37)

Table IV
INTRINSIC PARAMETERS OF THE PLENOPTIC CAMERA BEFORE AND AFTER

OPTIMIZATION.

The comparison of Tables II and IV shows that the initial
camera state is closer to the solution than virtual states
produced in simulation. This indicates that the initial state
computed with our initialization method is in the convergence
zone.

3) Validation: Since there is no ground truth on the real
camera parameters we evaluate the validity of our real camera
calibration through reprojection. First, we compute 3D corners
projections and show they are close to their observations
(Fig. 14) with a reprojection error equals to 1.10 pixel using
a 20 images dataset.



(a) (b)

Figure 14. Total (a) and zoomed (b) raw image containing corner observa-
tions (blue) and their projections before (red) et after (green) optimization.

(a) (b)

Figure 15. Zoom on a real image (a) and on a simulated image computed
with the simulator using optimized projection parameters (b).

Then, in order to qualitatively evaluate the validity of our
model and calibration results, we simulate a scene composed
of a checkerboard and a plenoptic camera with the intrinsic and
extrinsic parameters optimized with our method. Using these
parameters, our simulator computes a synthetic raw image
(Fig. 15(b)) similar to the real image (Fig. 15(a)).

In this section we presented quantitative and qualitative
results indicating the effectiveness of our calibration method.
They confirms that our proposed model fits the real camera.

VI. CONCLUSION

This article presented a new calibration method of a focused
plenoptic camera based only on raw images. The problem
of this calibration is formalized as the minimization of the
reprojection error directly in sensor space. We proved that
calibration of plenoptic cameras can be performed without
synthesized images.

Due to the low resolution of micro-images we developed
a new detector to estimate checkerboard observations with
subpixelic accuracy.

We presented a 16-intrinsic-parameter model linking feature
points to their corresponding 3D points. To optimize all
those parameters we have formalized a robust cost function
computing reprojection errors of checkerboard corners as well
as micro-lenses centers in raw image space.

This method was validated on simulated and real images
using a Raytrix camera. Future work aims to analyze the
benefit of this calibration method on depth estimation using a
plenoptic camera.
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