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Asymptotic analysis of an advection-diffusion equation and

application to boundary controllability

YOUCEF AMIRAT* ARNAUD MUNcH'

December 3, 2017

Abstract

We perform the asymptotic analysis of the scalar advection-diffusion equation y; —eys, +My; = 0,
(z,t) € (0,1) x (0,T), with respect to the diffusion coefficient e. We use the matched asymptotic
expansion method which allows to describe the boundary layers of the solution. We then use the
asymptotics to discuss the controllability property of the solution for 7> 1/M.

Key words: Asymptotic analysis, Boundary layers, Singular controllability.

1 Introduction - Problem statement

Let L >0, T > 0 and Qr := (0,L) x (0,T). This work is concerned with the scalar advection-diffusion
equation

Yy —eyo, + My, =0 in Qr,
yE(Ov ) = Uav yE(Lv ) =0 on (O,T), (1)
ye('vo) =5 in (OvL)’

where y§ € H~1(0, L) is the initial data. ¢ > 0 is the diffusion coefficient while M € R* is the transport
coefficient; v® = v°(t) is the control function in L2(0,7) and y* = y*(x,t) is the associated state.

For any y§ € H-*(0,L) and v® € L?(0,T), there exists exactly one solution y¢ to , with the
regularity y* € L?(Qr) N C([0,T); H=1(0, L)). Moreover, as ¢ — 0", the system “degenerates” into a
transport equation: precisely, assuming that v — v in L?(0,7T) and that the initial data y§ is independent
of €, then the solution y° of weakly converges in L?(Qr) towards y solution of the equation

yr+ My, =0 in Qr,

y(0,) = v on (0,7) if M >0, @)
y(L,")=0 on (0,7) if M <O,

y(-0) = yo in (0,L).

We refer to [2], Proposition 1.

We are interested in this work with a precise asymptotic description of the solution y° when ¢ is
small. As a first motivation, we can mention that system can be seen as a simple example of
complex models where the diffusion coefficient is very small compared to the others. We have notably
in mind the Stokes system where ¢ stands for the viscosity coefficient. A second motivation comes from
the asymptotic controllability property of recently studied in [2, 4, [0, [10] and which exhibits some
apparently surprising behaviors. More precisely, for any final time 7' > 0, ¢ > 0 and y§ € H~*(0, L), there
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1 INTRODUCTION - PROBLEM STATEMENT 2

exist control functions v® € L?(0,T) such that the corresponding solution to (1) satisfies y*(-,7) = 0 in
H=1(0,L) (see [3,16]). This raises the question of the asymptotic behavior as e — 0 of the cost of control
defined by

K(e, T, M) := sup { min ||uL2(0,T)} , (3)
u€eC( )

llvollL2(o,n)=1 vo.The, M

where C denotes the (non-empty) set of null controls

C(yo, T,e, M) := {v € L*(0,T);y = y(v) solves (1) and satisfies y°(-,T) = OinH_l(O,L)}.

The minimal time T}, for which this cost is uniformly bounded with respect to ¢ is unknown. It is proved
in [2] that Ths € [1,4.3]L/M for M > 0 and T € [2,57.2]L/|M| for M < 0. Precisely, if T' < L/M (resp.
T < 2L/|M]|) for M > 0 (resp. M < 0), then the cost K(e,T, M) blows up exponentially as ¢ — 07:
such behavior is achieved with the following initial condition

A _Ms . [TT 2m2e3(1 — e~ H24) \ 712 _3/2
yO(x> = K.e™ 2 sin f ) K. = M(M2L2 + 47T252) = O(E )7 (4)

so that ||y§|lz2(0,z) = 1. This data get concentrated at x = 0 (resp. = L) for M > 0 (resp. M < 0).
The bounds for Ty; have then been improved in [4] and in [I0] successively. These bounds for M < 0 are
apparently not expected since, first the cost of control K (0, T, M) for (2)) is zero as soon as T > L/|M| and
second, because we can check that the L?-norm of 3¢, solution of (1)) with v = 0 satisfies the inequality

=G0l 20,0y < ly°C, 0)llL2o,ye ™", Wt > ﬁ (5)
for some constant ¢ > 0 independent of €. In other words, the null function v* = 0 is an approximate
null control for for T'> L/|M]|. One may then conclude that the controllability property for and
the limit as ¢ — 07 do not commute. However, it should be noted that the initial condition (4)) does
not fall in the framework of the weak convergence result stated above as it depends on £ ! Nevertheless,
the time T); and more generally the behavior of the control of minimal L2-norm (which appears in )
remains unclear for ¢ small: there is a kind of balance between the term —ey?, which favor the diffusion
(and so the null controllability) for ¢ large and the term MyS which enhance the complete transport of
the solution out of the domain (0, L) for & small.

One may tackle this problem and the determination of the minimal uniform controllability time Ty
by numerical methods: this consists in approximating the cost K(e,T, M) for various values of ¢ and
T > 0, the ratio L/M being fixed. This has been done in [I2] for ¢ in the range [1073,107!] and suggests
that for M > 0, Tis is equal to L/M achieved with initial conditions concentrating at = 0 closed to
(4). The case M < 0 for which the transport term acts “against” the control is much more involved, the
underlying approximated problem being highly ill-conditioned. Smaller values of ¢ are difficult to consider
numerically: in view of , the norm ||y°(-, )|/ 12(0,z) decreases very fast under the zero “numeric”, which
is of the order O(1071¢) when the double digit precision is used.

An alternative theoretical approach is to analyze, through an asymptotic analysis with respect to the
parameter €, the structure of the (unique) control of minimal L?-norm, the initial condition y§ being
fixed. In this respect, we may use the fact that such control is characterized by the following optimality

system
Yi = €Ypp + My, =0, —¢f —eys, — Myi =0, (2,t) € Qr,
v (0) =y, vy (,T)=0, z€(0,L), (©)
v (t) = y°(0,t) = e (0, 1), te(0,7),
Yo (L,t) = ¢5(0,t) = ¢°(L,t) = 0, t€(0,7),

©° being the adjoint solution. We are then faced to the asymptotic analysis of a partial differential system
with respect to a small parameter, in a spirit for instance of the book [7] in the closed context of optimal
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control theory. In view of , such asymptotic analysis should be as precise as possible in order to fill
the gap between the approximate null controllability achieved with v® = 0 and the null controllability
leading to exponentially large controls. However, in spite of the apparent simplicity of the system ,
such analysis is not straightforward because, as € goes to zero, the direct and adjoint solutions exhibit
boundary layers in the transition parabolic-hyperbolic. For example, for M > 0, in agreement with the
structure of the weak limit , the solution y° (resp. ¢°) exhibits a first boundary layer of size O(g)
at x = L (resp. = = 0). Moreover, the solution y° (resp. ¢°) exhibits a second boundary layer of size
O(y/¢) along the characteristic {(z,t) € Qr, Lv — Mt = 0} (resp. {(z,t) € Qr,Lx — Mt —T)—1=0}).
A third singular behavior due to the initial condition y§ occurs for y° in the neighborhood of the points
(z0,t0) = (0,0) and (z1,t1) = (L,0).

Remark however that the boundary layer for y° on the characteristic does not occur if and only if
the function v® and the initial condition y§ satisfy some compatibility conditions at the point (xg, o).
Remark also that the optimal control v¢, supported on {0} x (0,7, lives in the first boundary layer for

=

©=.

Similar boundary layers occur for M < 0.

The main purpose of this work, devoted to the case M > 0, is to perform an asymptotic analysis
of the direct problem , assuming v¢ fixed but satisfying appropriate compatibility conditions at the
initial ¢ = 0 with the initial condition yg as x = 0. We therefore focus on the boundary layers appearing
at x = L, employing the matched asymptotic expansion method described in the book of M. VanDyke,
see [15].

This work is organized as follows. In Section [2] for a fixed function v®, we perform the asymptotic
analysis of the direct problem . Precisely, assuming that the initial condition is independent of e
and that the control function v® is given by v® = ka=0 eFvk, we construct an approximation w¢, of the
solution y*. The matched asymptotic expansion method is used in section to define an outer solution
(out of the boundary layer) and an inner solution. Upon regularity assumptions on the functions v*,
k =0,...,m and y5, plus compatibility conditions between the derivatives of the functions v* and the
derivatives of y§ at (zo,to), we prove that ws, is a regular and strong convergent approximation of y¢,
as € — 07. The estimate between w¢, and y° involves the initial boundary layer function, exponentially
small with respect to € (see Lemma . The analysis is done in the case m = 2 in section (see
Theorem and in the general case in section (see Theorem [2.2)). In Theorem we then provide
sufficient conditions on the control functions v* and on y allowing to pass to the limit as m — oo with
¢ small enough but fixed. A similar analysis is conducted for the adjoint solution ¢ in section 2.5] We
then use such asymptotic to deduce in Section [3| some approximate controllability results for 7' > L/M.
In Section [d] we discuss the case of initial conditions which depend on ¢, in particular the one defined
by . The final section [5| discusses the limits of such asymptotic analysis to discuss the system @ and
present some perspectives.

As far as we know, there are few works in the literature dealing both with asymptotic analysis and
controllability. The chapter 3 of [8] entitled “Exact controllability and singular perturbation” studies the
controllability property of the equation 3" + A%y — Ay = 0 as ¢ — 01 and identifies the limit control
problem. We mention the recent work [I1] where the controllability of a Burgers equation y;—y.z+yy. = 0
in small time is discussed, leading after a change of variable to a small parameter in front of the linear
second order term. We also mention [I3] where a vanishing viscosity method is employed to study the
sensitivity of an optimal control problem.

In the sequel, we shall use the following notations:

Ls(y) =Yt — EYpx T Myxa L;(QD) = Pt — EQry — M@m

Without loss of generality, we assume henceforth that L = 1.
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2 Matched asymptotic expansions and approximate solutions

In this section we consider the solution of the problem . We apply the method of matched asymptotic
expansions to construct approximate solutions. We refer to [5], [14] [I5] for a general presentation of the
method. Then we apply the same procedure to construct asymptotic approximate solutions of the adjoint
solution (°, see problem @

Let us consider the problem

yf_gyiz—’—My;:Oa (xvt)eQTv

y©(0,¢) = v°(t), te(0,7), .
y°(1,t) =0, te (0,7), Q
ye(sc,()) = yO(x)’ HAS (Oa 1),

m

where yg and v¢ are given functions. We assume that M > 0 and v° is in the form v® = Zakvk, the
k=0

functions v°, v!,--- ,v™ being known. We construct an asymptotic approximation of the solution y°
of by using the method of matched asymptotic expansions. We assume here that the initial condition
y°(z,0) is independent of € but the procedure is very similar for y(-,0) of the form y°(-,0) = "}~ e*yf.
The case M < 0 can be treated similarly.

In the sequel, ¢, ¢1, c2, -+, will stand for generic constants that do not depend on e. When the
constants ¢, ¢1, ¢a,- -, depend in addition on some other parameter p we will write ¢p, ¢1(p), ca(p), - - -

2.1 Formal asymptotic expansions

Let us consider two formal asymptotic expansions of y°:

— the outer expansion
m

> efyF(at),  (2.t) € Qr,
k=0
— the inner expansion

m
ZekYk(z,t), z = ! ;x € (0,e7h), te(0,7).
k=0

We will construct outer and inner expansions which will be valid in the so-called outer and inner regions,
respectively. Here the boundary layer (inner region) occurs near x = 1, it is of O(e) size, and the outer
region is the subset of (0, 1) consisting of the points far from the boundary layer, it is of O(1) size. There is
an intermediate region between them, with size O(g7), v € (0,1). To construct an approximate solution
we require that inner and outer expansions coincide in the intermediate region, then some conditions
must be satisfied in that region by the inner and outer expansions. These conditions are the so-called
matching asymptotic conditions.

m
Putting Z e*y¥(x,t) into equation (7)), the identification of the powers of ¢ yields
k=0

e’y + Myy =0,

by Myk =kt forany 1 <k <m.

Taking the initial and boundary conditions into account we define ¢ and y* (1 < k < m) as functions
satisfying the transport equations, respectively,

y + My2 =0, (2,t) € Qr,
yO(O,t) = vo(t), te(0,7), (8)
y'(2,0) = yo(z), =€ (0,1),
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and k k k—1
Y + Myr = yr; ) (xvt) € QT7
y*(0,t) = v*(t), te(0,7), (9)
y*(z,0) =0, z € (0,1).

The solution of is given by

yo(x — Mt), x> Mt,

0
T, t) = 10
yi@t) vo(t—%), T < Mt. (10)
Using the method of characteristics we find that, for any 1 < k < m,
t
/ yP (x4 (s — t)M, s)ds, x > Mt,
0
V(o) = e ) (1)
vk (t — M) +/O Yyl (s Mt — T s)ds, x < Mt.
Remark 1 We actually verify that we have explicitly
) ty((,2)(;v—Mt), x> Mt,
y (z,1) = 1 T T, ov(2 x (12)
U(t—M)—‘v-m(’U)()(t—M), x < Mt,
and
£ @
5 Yo (x — Mt), x> Mt,
2
xr,t) = 2 x T 12 x 13
e 1 5+ e (- 5) &
2T, ov(3 T 2 v T
— a0 (- ap) + @O (- ) w < e
Here and in the sequel, f) denotes the derivative of order i of the real function f.
Now we turn back to the construction of the inner expansion. Putting Z e"Y*(2,t) into equation @1,
k=0

the identification of the powers of ¢ yields
el YO () + MY (2,8) = 0,
e YR t) + MYF(2,t) = Y (2, 1),  forany 1 < k < m.

We impose that Y*(0,¢) = 0 for any 0 < k < m. To get the asymptotic matching conditions we write
that, for any fixed ¢ and large z,

YO(z,t) +eVi(z,t) + 2Y2(2,t) 4+ - + ™Y ™(2,t)
=y (2, 1) + ey (z, ) + 2y (x, 1) + - - + My (x, 1) + O(e™T).
Rewriting the right-hand side of the above equality in terms of z, ¢t and using Taylor expansions we have
YO(z,t) + Y (2, t) + 2Y2(2,t) + - - - + ™Y ™ (2, 1)
=01 —ez,t) + eyt (1 —ez,t) + 2 (1 —ez,t) + - +™y™(1 — ez,t) + O(e™H)
S (L0 4+ () (1, 1) (e2)"

2
be (100 + 002+ k106 + o+ 6O e )

SHRERERE +e™y™(1,t) + O(e™ ).

=y°(1, 1) +yp(1,t)(—e2) +
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Therefore the matching conditions read

YOz, t) ~ Q°2,t) :=y°(1,t), asz— 4oo,
Yi(z,t) ~ Q' (2,t) :=y'(1,t) —4°(1,t)z, as z — +oo,

1
Y2(2,t) ~ Q*(2,t) = y*(1,t) —yl(1,t)z + §ygx(1,t)z2, as z — +00,

Yz, 0) ~ Q2 1) =y (1, 8) — N1, )z gl 2027 4+ 0 (1 1) ()™
as z —» +oo.
We thus define Y as a solution of
Y2 (2,t) + MY (2,t) =0, (z,t) € (0,+00) x (0,T),
Y°(0,t) =0, t € (0,T), (14)
ZEI-POO YO(z,t) = il_}ml y0(z, ), te(0,7).

The last condition in is the matching asymptotic condition. The general solution of 1, 2 is
VO(z,t)=C(t) (1 —e ™M),

where C(t) is an arbitrary constant. The matching condition allows to find C(t) = y°(1,¢), therefore the

solution of is

VO(z,t) =9y°(1,t) (1 —e ™M), (2,%) € (0,+00) x (0,T). (15)
Next we determine the general solution of
Yo(2,0) + MY (2,8) = 5 (1,1) (1= e7¥%) (2,t) € (0,+00) x (0,T),
Y1(0,t) =0, t€ (0,7).

We find
Yi(z,t) = (C(t) = 52 (1,0)2) + = (=C(t) = y2(1,1)z) ,

where C(t) is an arbitrary constant. We determine C(t) by using the matching asymptotic condition

lim [Y'(z,t) —Q'(2,t] =0, te€(0,T),

z—r+00
which gives
Yi(zt) = (v (1,1) —yo(1,1)2) + e M* (=g (1,8) =y (1,0)z) . (16)
The function Y? is defined as a solution of

Y2 (2,t) + MY2(2,t) = Y (2,1), (z,t) € (0,+00) x (0,7),

Y2(0,t) =0, te(0,7),
: 2 e _
ZEIEOO[Y (z,t) — Q%(2,t] =0, te(0,7).

‘We obtain

2'2 z

Y%aw(fa¢>zﬂuwz+f<1w >+6A“<fﬂt)zf002f(1ﬂz)- (17)
@T b €Trx b 2 ) x b xrx b) 2

For 1 < k < m, the function Y* is defined iteratively as the solution of

YE (2,8) + MYF(2,t) = Y 1(2,1), (2,t) € (0,400) x (0,T),
Y*(0,t) =0, te(0,7), (18)
lim [Y*(z,t) — Q% (z,1)] =0, te(0,7).

z— 400
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2.2 Second order approximation

2
Here we take m = 2. The outer expansion is Z eyt (x,t), where 40 and y* (k = 1,2) are given by

k=0
2

and , respectively, and the inner expansion is Z ekyk (2,t), where Y°, Y1 and Y? are given by ,

k=0
and , respectively. We introduce a C*° cut-off function X : R — [0, 1] such that
LORE (19)
s) =
0, s<1,
and define, for v € (0,1), the function A% : [0, 1] — [0, 1], plotted on Figure |1} by
Ny =x (1" 20
@) =x (20, (20)
1
|
| X ()
|
|
0 |
|
0 1—2&7 1 T
1—-¢7

Figure 1: The function X.

Then we introduce the function w§ by

2

wi(z,t) = Xe(2) Y eMyf (@) + (1 — Xe(z) D ebyh <1 — “””,t) . (1) € Qr, (21)
k=0

3
k=0

defined to be the second order asymptotic approximation of the solution y° of . To justify all the
computations we will perform we need some regularity assumptions on the data 1o, v°, v' and v2. We
have the following result.

LEMMA 2.1 (i) Assume that yo € C°[0,1], v° € C°[0,T] and the following C®-matching conditions are
satisfied
MP(yo)®)(0) + (1P ()@ (0) =0, 0<p<5. (22)

Then the function y° defined by belongs to C°(Qr).
(ii) Additionally, assume that v* € C3[0,T], v? € C*[0,T] and the following C® and C*-matching condi-
tions are satisfied, respectively,

vH(0) =0, (@)D (0) = M2(°)P(0) =y (0),
(01D (0) = 2M2(u°)®) (0) = —2My Y (0), (23)
(©1)®(0) = 3M ~2(u°)D(0) = 3M2y5"(0),
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v2(0) =0, ()P (0)=0. (24)

Then the function y' defined by (with k = 1) belongs to C3(Qr), and the function y? defined by
(with k = 2) belongs to C*(Qr).

PROOF. (i) According to the explicit form ([L0), it suffices to match the partial derivative of y° on the
characteristic line {(z,t),2 — Mt = 0}. Differentiating p times (p < 5) with respect to x we have

oPy0 y(()p) (x — Mt), x> Mt,
(@ t)=1q (—1)p
OzP %(vo)(m (t - %) , < Mt.
Py°
Matching the expressions of D upper and under the characteristic line {(z,t),z — Mt = 0} gives (22)
x
D,0 _
and ensures the continuity of ayp in Q7. Differentiating p times with respect to t we have
x
opy0 (—=1)PMPy) (x — Mt), x> Mt,
otr () = (v?)®) (t — i) r < Mt
M ) )
Py
then we see that the continuity of a—typ holds under condition . Using equation we easily verify

that the mixed partial derivatives, of order p < 5, of y° are continuous under condition .

(ii) Arguing as previously, using formula and equation @D (with £ = 1) we find the matching
conditions (23). Then, using formula and equation (9) (with k& = 2) we find the matching condi-
tions . O

We have the following result.

LEMMA 2.2 Let w§ be the function defined by . Assume that the assumptions of Lemma hold
true. Then there is a constant ¢ independent of € such that

5y
| Le(w3)llcgo.m:20,1)) S ce?. (25)

PROOF. A straightforward calculation gives

5
Ls(wg)(xvt) = Zlé('r7t)v

with

€
1—x 2 1—z 2
L(z,t) = MX' ( = )57 (ZekY’“ ( . ,t> - Zekyk(x,t)> :
k=0 k=0
1—x 2 1—-=z
Is(.%',t) —x" ( = )El—?‘/ (ngyk ( - 7t> _ Zakyk(m,t)>,
k=0 k=0
1—=z 2 1—=x 2
2 (w,t) = 2X" ( — )sw <slzska ( . ,t) +Zeky’;(z,t))
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Clearly,
12 le o,z 0,1)) < €2 lW2alleqo,rizz0,1)) < e,

and

||Is2||C([O,T];L2(0,1)) <e

1—=2
2 \(1 X))V ( ,t)
C([0,77;L2(0,1))

€
N - 5 1/2
< 2 max / Y; ( t) dzx .
te[0,T] 1—2ev 3
Using a change of variable we have

L ) 9 1/2 267 1/2
/ \ % ( x,t) dx = E/ Y2 (2, t)|* dz .
1-2e7 € 0

Thanks to the explicit form we have, for 0 < € < g¢ small enough,

te[0,T]

_o9 5y
<ee 27,

It results that

NB'

112 lcoriz20.)) < ¢
Using Taylor expansions, for 1 —z = ez — 0, we have

2

k=0 k=0
Since
YE(z,t) = Q¥ (2, t) + e M= Pk (2,1), (2,t) € (0, +00) x (0,1),
with L . }
-3 I 10, QMan = ;—n"%ﬁf (1,02
we have

2
ZekYk(z t) ZE (1—ez,t) =20 ((e2)) + Mzz:skPlC (z,1).
k=0

k=0

Using the previous estimate we have

122l 0. 77:22(0,1))

2 2
1—= 11—z
X’( - ) (E eky*® <5’t) —kg 5kyk(1—sz,t)>
k=0 =0

1-¢” 1/2
< et / (1—x)%dz
1-2¢7

Similarly we have

=Me™"

3—

[N

12l eqo.ryL20.1)) < ce

2e7 1/2 227 1/2
max ( / |Yf<z,t>2dz> < elleulleqonx o) ( / 2 dz)
0 0

Zekyk(x,t) = Z k(1 —ez,t) = Zsk (Z zl' %szk (1,t)(5z)i> +£20 ((e2)).
k=0

C([0,77;L2(0,1))

(27)
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It results from that

2
et ZskY’“ (z,1) + Zs (1 —ez,t) =0 ((e2)) + e te M= ZekPZk(zJ)
k=0
2
— e tMe M= ZakPk(z,t).
k=0
Arguing as for I3 we find that

||I§||C([O,T];L2(O,1)) < ce?t3,

Collecting estimates , , f we obtain . The proof of the lemma is complete.

Let us now consider the initial layer corrector #° defined as the solution of
0; —ebs, + MO =0, (x,t) € Qr,
0°(0,t) =0°(1,t) =0, te(0,7),
0%(x,0) = 0;(x), x € (0,1),
with

05(x) =: yo(z) — w5(x,0) = (1 — Xe(z)) <y0(a:) — ZekYk (7,0)) , xe(0,1).
k=0

The following lemma gives an estimate of ||6°(|¢(jo,7];22(0,1))-

10

(32)

(33)

LEMMA 2.3 Let 6° be the solution of problem , . Then there is a constant ¢ independent of €

such that

M (_9.7
||96||C([O T);L2(0,1)) S ce = (1-2 )

PROOF. Let a > 0. We define p°(x,t) = e~ =5 “0°(2,t) then check that

az M?2
L0 = % (47 et MO )i~ (o0 207 ) @,

Consequently, p® is a solution of

p5 —eps, + M(1—a)ps — —(oz —2a)p°=0 in Qr,
pe(o ) =p ( ) =0 on (O7T)a
p°(,0)=e £ 05 in (0,1).

Multiplying the main equation by p® and integrating over (0,1) then leads to

1o O + 205 D a1y = L (02 = 20) 57 1) 2
pTALES ElPz 5 0)NL2(0,0) = 52 P 8)L2(0,1)

a2 (a?—2a)t

and then to the estimate [[p°(-,%)[|z2¢0,1) < [[p°(-,0)[|22(0,1y6 7% , equivalently, to

Moz Maz a?—2a
lle™ 2= 0°(-, )| 20,1y < lle” 2= 0°(-,0)l| 20,10 e (=200t

Consequently,

Moz Moz Max

Moz _ Moz
10°C )llz20,1) = €™ €™ 2= 0°(, Bl L2g0,1) < lle™2 Nlzoeo,nylle™ 2 0°( D)l z20,1)

< (€52 | o o1y lle™ 52207 (-, 0) [ 2 0.1y ¥ (@720t

< ||e 1»12‘2”95( )||L2(1_25V71)61(a —2a)t

< efMa(;;Qa ) ||08||L2(1 pr 1 )61\2152 (a?—2a)t

< 11651122 (1267 1)e” Me(1- 257+(172)Mt)

(34)
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using that (recall that o > 0) ||e%||Loo(071) = e and |le” 2" |Loe(1—2:7,1) = e 57 The value
o = 2 then leads to
Mg
16°lloqro.m:2 0.1)) < 1061122 (1—2ev 1y = 7270, (35)

Let us now give an estimate of ||05||12(1—2¢+,1). Using (I5)—(17) it holds that 6§ = a° + b°, with

a®(x) = (1 - X (x)) (yo(fﬂ) = 90(1) + 35V (1)(e2) - y(()2)(1)(5;)2) 7

M £z)? 1—x
wwzuwmweM@wH%Wmm+ﬁmf)>’G: )
Using Taylor’s expansion, for 1 — z = ez — 0, we have

@) = (1 - 20) 00, ce@),

hence ||a®[|2(0,1) < ¢ =% Since

2
B o < [ 2 (o) + 5 @)Y
12(0,1) = e yo(1) +yo " (1)(e2) +yg (1) x,

1-2e7
we have |[b%||2¢0,1) < cez. It results that

Ty

wmm@USc&7+eﬂ, (36)
then estimate results from ) and (| . O

Let us now establish the following result.

LEMMA 2.4 Let y¢ be the solution of problem , let w5 be the function defined by and thet 6° be
the solution of problem , . Assume that the assumptions of Lemma hold true. Then there is
a constant ¢, independent of €, such that

5y

ly® — w5 — 0%l 1);22(0,0)) < ce 2. (37)

PROOF. Let us consider the function 2¢ = y* — w§ — 6°. It satisfies

Ls( ) =-L. ( S) (.’E,t) € QT;
25(0,t) = z°(1,t) = t€(0,T), (38)
25(x,0) =0, x € (0,1).

Multiplying equation by 2°, integrating by parts and using the Young inequality yields

1 1
fwwwﬁmﬂ+ﬁéﬁmMmm=—//Lm®fmw

<5 [N Mds + 5 [ 1

Gronwall’s lemma then gives

12512201y < I1Le(W5)l[72(pe’s  VE€ (0,7, (39)
then using Lemma [2.2) we get the estimate (37). O

Using Lemmas [2.3] and [2.4] we immediately obtain the following result.

THEOREM 2.1 Let y© be the solution of problem and let w5 be the function defined by . As-
sume that the assumptions of Lemma hold true. Then there exist two positive constants ¢ and €g, c
independent of €, such that, for any 0 < € < €q,

.
ly® — wslleo,rL20,1)) < ce 2. (40)
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2.3 High order asymptotic approximation
Here we construct an asymptotic approximation of the solution y° of @ at any order m. The outer

m
expansion is Zekyk(x,t), where the functions y° and y* (1 < k < m) are given by and (1)),
k=0

m

respectively. The inner expansion is given by Z 5’“Yk(z, t), where the function Y is given by , and
k=0

the function Y* (1 <k <m) is a solution of problem .

LEMMA 2.5 For any 1 < k < m, the solution of problem reads

YH(z,1) = Q¥ (2, 1) + e M* P (2,1),  (2,1) € (0,+00) x (0, 1), (41)
where i i
k _ laiyk_i i k _ (=1)! o'yr? i
Pf(z,t) = ZZ:; T o (1,)z", Q%(z,t) = zZ:; T o (1,t)2".

PROOF. We argue by induction on k. We have seen that is valid for ¥ = 1. Then we assume the
validity of the induction hypothesis for the integer k, and consider the function Y**1(z,t) defined as

YA (2, 1) = Q¥ (2, 1) + e MA PR (2,1),  (2,1) € (0,+00) x (0,1).

We have
sz+1 _ QlZchl T 67”12P5+1 — Me—Mzph+1,
and
szerl _ Qljjl + e—Mszsz B 2Me*MZPZk+1 4+ M2 Mzphl,
then

VIR + MY = QEF + MQET + 7V (PEF - M P (42)

One can write Q%! + M Q%! in the form

k41 i ikt 1—i i—1, k+2—i
k+1 k1 _ (-1) 'y 0"y i—2
sz +MQZ _Z(Z—Z)' |: ot (Lt)_MW(lvt) z
i=2
(_1)k+1 ak+1y0
+ MT EReEs (1,t)zk+1.
We deduce from equations and @D that
QFF1y0 FF1y0 Piykt1-i Pilyk+2=i gizlykt2—i
Ouk+T T T orkot’  oxi oxl w20t

It results that
k+1 (_1)1‘ 8i71yk+27i
— (t—2)! 020t

_1\k 9k+1,,0

]_t 1—2
(L1) 2"+ 0 Gorar

Similar calculations allow to prove that

PFHL_ M PF = PF (44)
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From 7 we deduce that Y21 + MYF+! = Y}¥. We conclude that the function Y* defined by
satisfies equation 1 for any 1 < k < m. Moreover, Y* satisfies the conditions 2 and 3. That
completes the proof of the lemma. O

We then introduce the function

m m
1—x
i) = Xe(o) 3 by o) + (1 ) o () (45)
k=0 k=0
defined to be an asymptotic approximation at order m of the solution y© of . Function X is defined
on . To justify all the computations we will perform we need some regularity assumptions on the
data 1o, v°, v1, ---, v™. We have the following result.

LEMMA 2.6 (i) Assume that yo € C?*™t10,1], v € C?™*HL[0,T] and the following C*™ 1 -matching
conditions are satisfied

MP (o) P (0) + (=1)PT ()P (0) =0, 0<p<2m+1. (46)

Then the function y° defined by belongs to C*™+1(Qr).
(i) Additionally, assume that v* € C*Mm=F+1[0 T, and the following C*™~®)*  matching conditions
are satisfied, respectively,

Ky (p) P A
WP )= Y (-1)'M Sorzgy (0:0), 0<p<2m—k)+1. (47)
t+j=p—1

Then the function yk belongs to 02(m_k)+1(@).

PRrROOF. (i) For the proof of we refer to that of (22).
(#1) Using a change of variable we rewrite in the form

t
/y,’j;l(x—FM(s—t),s)ds, x > Mt,
Fan=" (19)
¥ (t——)+/ Yyl (x+ M(s—t),s)ds, =< Mt.

M t—ax /M

For notational convenience we omit in the sequel the index k& and denote y*-! = f so that reads

/tf(x—i-(s—t)M,s)ds, x > Mt,
y(at) =4 " . : (49)
v(tM)Jr/tm/Mf(erM(st),s)ds, x < Mt.

Differentiating (49) with respect to = we have

taf

—— (z+ (s —t)M, s)ds, x > Mt,
oy o Oz
%(x,t): L ’(tx)+/t ﬁ( + M(s—1t),s)d +if<0t—3) < Mt

7 i s O x s ;8)ds + o+ , ) ° .

Differentiating once again we have

taZf
/Oﬁ(:ch(sft)M,s)ds, x > Mt,
0%y t
—(x,t) = 1, x / 0% f 1 x
2 - _ vl _ il -t
oz V(= =)+ e 5 (2 -+ M(s —1),5)ds + 12 fa (O,t M)
—#ft (O,t—£>7 x < Mt.

M
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Successive partial derivatives with respect to = lead to the formulae:

oPy torf

8p(x t) = 8xp(x+M(s_t) s)ds for x > Mt, (50)

and

%’(az,t)zﬂv@) (t—x)+/t O (w4 M(s — 1), ) ds

5 P Mpr M z/M axp
J opP— 1f T
+1ﬂz};_ Ma+1 o (01— 7)  fora <. (51)

These formulaﬂzan be easily justified by induction. Then it results from and that 2 Z,f is
continuous in Qr if

1P )

o oy
MPp ()= i+]§1;—1 Mi+1 9pidti (0,0,

which is equivalent to (47)). Similar calculations allow to establish the formulae

ap P
atf(x £) =(—1)P MP Mf (z+ M(s—t),s)ds
+ > ;Bii (z,t) for z > Mt, (52)

i+j=p—1

and

0Py x t orf
i = (x,t) =@ (t ( M) + (—1)PMP/t Do (x+M(s—t),s)ds

. ) p 1 8p 1
+ Z (-1)'M (83: atjz (x,t) — axiatfj (t— X})) for x < Mt. (53)

i+j=p—1

Tt results from and (53) that gtff is continuous in Qr if

ol
W)= Y (’1)ZMzaxi8tJ; (0,0),

i+j=p—1

that is the condition . Using equation (@ we easily verify that the mixed partial derivatives, of order
0<p<2(m—k)+1, of y* are continuous under condition ([47). O

Remark 2 For m =2 and k = 1 the conditions read

v'(0) =0, (1) (0) = y2,(0,0) =y (0) = M~2(°)P(0),
(1) D(0) = y2,,(0,0) — My2,, = —2My” (0) = 2M ~2(+*)(0),
()3 (0) = M My ,01(0,0) +32,4,(0,0) = 3M2y™@(0) = 3M v (0).

2
yzwww

For k =2 we have
v*(0) =0, (v*)M(0) = y3,(0,0) = 0.
Thus we retrieve the matching conditions and .

Let us now establish the following result.

LEMMA 2.7 Let w, be the function defined by , Assume that the assumptions of Lemma hold
true. Then there is a constant c,, independent of € such that

(2m+41)y

| Le (wy,) le(o, 7122 (0,1)) < Eme (54)
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PrROOF. A straightforward calculation gives

5
Le(w;,)(w, 1) =Y Ji(w,t), (55)
=1
with
JH(x,t) = =™y (z, 1) Xe (),
2 m m l—=z
JZ(z,t) =™ (1 — X ()Y, . ],
JS(%t):MX’( ”)s ”(Z < x,t) s’“y’“xt)>,
k k=0
J?(xvt)=?f"< x>5 <Z < xvt) Zﬁkyk )
k k=0
Jg(:c,t):m’( x) (-125’%/’“( >+Zs )
Clearly,
[T 2o 0, 7:2200,1)) < €™ MY oo, 11:22(0,1)) < eme™ (56)
and

m m(1l—2x
12 lcqo 2001 < € 'H(l — X (2))Y;" ( ,t)
C([0,T];L2(0,1))

€
L 9 1/2
1—
< &™ max (/ Yy (x,t) dac)
te0,T] \ J1—2ev €

267 1/2
<™ max] (5/ ’ |th(z)2dz> .
0

telo,T

Thanks to the explicit form we have, for 0 < € < g9 small enough,

27 1/2 27 1/2
£ am+1y0 = )
max 5/ |th(z,t)|2 dz < cm H E/ z2Mdz
eio, 1)\ Jo 9x™ Ot || co.11x[0,77) \ Jo
2m—+1

<cpe Me 2 7,

It results that

2m+41
172llcom3:220,1)) < Cme 2 . (57)
Using Taylor expansions, for 1 — x = €z — 0, we have
m m m—k az k )
> ety Z€ (1—ez,t) Z€k<zz, S (Lt)(=e )l>+€m0((sz)).
k=0 k=0 i=0
According to it results that
m m m
Z kYR (2, t) — Z efyk(1 —ez,t) = emO ((e2)) + e M? Z e PR(2,1). (58)

k=0 k=0
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Using the previous estimate we have

_ 1—=x i m
”JSHC([O?T];H(OJ)) =M™ | X ( e ) (Z e"YF (2,t) — Zﬁkyk(l — Ez,t)>
k=0 k=0 C([0,T):L2(0,1))
- 1/2
<eme™ / (1—2)dr
1—2e7
S s (59
Similarly we have
||J§||C([0,T];L2(o,1)) < e, (60)

It results from that

e? ZskYZk(z,t) + Zsky’;(l —ez,t) =m0 ((e2)) + e te M7 ZskPZk(Z,t)
k=0 k=0 k=0

— e Me M= Z eF PR (2,1).

k=0
Arguing as for J3 we deduce that
172 le o, rL2(0,1)) < cme™ 3. (61)
Collecting estimates , , f we obtain . The proof of the lemma is complete. O

We define the initial layer corrector ¢, as the solution of

05, — €05,y + MO5,, =0, (2,t) € (0,1) x (0,T),
05,(0,t) = 05,(1,t) = 0, te (0,7), (62)
O (,0) = br0(2), z € (0,1),

with
() = 3o(e) — w5 (2,0) = (1~ X.(2) <yo<x> Syt (Ho)> e @)
k=0

We have the analog of Lemma [2.3

LEMMA 2.8 Let 6:, be the solution of problem , . Then there exist a constant c,,, independent
of €, such that

165 oo,z 0,1)) < eme™ = 172, (64)
Proof. The proof follows that of Lemma [2.3] We have (see (35))
Mg,
165 lloqom1:220,)) < 1650l 2 (1—200, 1y = 1720 (65)

Let us now give an estimate of [|65,0| 12(1—2+,1)- Using Lemma [2.5]it holds that 65, = a5, + b5, , with

(@) = (1 - (@) <y0<x> -y (._”Zyé“uxez)i) ,
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Using Taylor’s expansion, for 1 — z = ¢z — 0, we have

(1—z)" ' (i)

(o) = (1= () ol @), e )

hence a5, | £2(0,1) < eme 2 We also have 16°] 20,1y < ¢me?. It results that
1061220, < em (2% +2 557, (66)
then estimate results from and . (]

Arguing as in Section [2.2] one can establish the analog of Lemma [2.4]

LEMMA 2.9 Let y© be the solution of problem , let w, be the function defined by and thet 05, be
the solution of problem , . Assume that the assumptions of Lemma hold true. Then there is
a constant c¢,,, independent of €, such that

2m41
ly® = wi, = OnalleqoiL2(0,1) < Cme 2

’Y.

Using Lemmas [2.8] and 2.9 we readily obtain the following result.

THEOREM 2.2 Let y° be the solution of problem @ and let w, be the function defined by . As-
sume that the assumptions of Lemma hold true. Then there exist two positive constants ¢ and eg, ¢
independent of €, such that, for any 0 < € < &g,

2m+1
ly* — wi, lleqo,m20,1)) < eme ™ 2

v, (67)

€
m

We have thus constructed a regular and strongly convergent approximation (as ¢ — 0) wg, of y¢,

unique solution of .

2.4 Passing to the limit as m — oo. Particular case

Our objective here is to show that, under some strong conditions on the initial condition yo and the

k

functions v", we can pass to the limit with respect to the parameter m and establish a convergence result

of the sequence (wt,),,. We make the following assumptions:

(i) The initial condition yo belongs to C*°[0, 1] and there are ¢y, b € R such that

||y(()m)||C[o,1] <cpb™, VmeN. (68)

(ii) (v*)g>0 is a sequence of polynomials of degree < p — 1, p > 1, uniformly bounded in C?~[0,T.
(iii) For any k € N, for any m € N, the functions v* and yy satisfy the matching conditions of Lemma
We establish the following result.

THEOREM 2.3 Let, for any m € N, y5, denote the solution of problem @, and ws, the function defined
by [5). We assume that the assumptions (i)-(iii) hold true. Then, there ewist £ > 0 and a function
05 € C>(Q7) satisfying an exponential decay, such that, for any fived 0 < € < ¢, we have

Yo, —wS, —6° =0 inC([0,T),L*0,1)), asm — +oo.

Consequently

lim  wi (z,t) = X.(x) Zskyk(m,t) + (1 — X () ngYk (lgx,t> + 6°(x)
k=0 k=0

m— o0

=9 (2, t) + 0°(x) a.e. in Qr,
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where y© is the solution of problem with 2 replaced by y*(0,t) = Y200 ekok(1), t € (0,T). The
function 6° satisfies )
||96HC([0,T],L2(0,1)) < ceiMT,

where ¢ is a constant independent of .

Before proving this convergence with respect to the order m, we introduce the following lemma.

LEMMA 2.10 For x < Mt, the function y™ given by (@), may be written in the form

et = (- 2) iz o) (1= £ (69)

where, for any 1 <i < j < m, X;(x) s a polynomial of degree < i.

Proof. Formula is valid for m = 2 (see ) Assume the validity of the induction hypothesis for
the integer m. Differentiating twice with respect to x and using the equality

z/M
Yy (2, t) = o™ (t - %) +/ ym (sM,t — % + s)ds,
0

we get
= (1= )+ - )+ S - )
j=11i=1
F 30 B (1 ) 4 3OS e e (o L),
=1 i=1 =1 i=1
with J J

i i i i M_2 % 1
azw = [P0 Baw= [T EEOes = (7 e
0 0

Clearly, A]H(x) is a polynomial of degree < i — 1, B§+1(m) is a polynomial of degree < i, and C;ﬁ( )
is a polynomial of degree < i + 1. Changing index of summation we can write

U] m+1j—2
2R AT (- g) = 3 S A T (1 5p),
mJ ( N - m+1j—1 1 . N

j ) Narhs = i mA1—jy (i+j
;;Bj+l(l')(v ONar (t_ﬁ) = ;;Bj(x)(v 7y (it (t_M>’
m 7 1
22 e (t-31) = BPBE i (= 37)

Let us set
Ag(w):() forj=1,--- ,m+1, A§+1(x):o forj=1,---,m,
B?(x):() forj=1,---,m+1,

C%(m):%, Cj(x)=0 forj=2,--- ,m+1.
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Then we can write

m+1

m—+1 m—+1 z
,t) = (t — 7)
Y (z,t) =v + j

+

J
i mA+1—j (i+j x
DIEHC i (t-17)-

where
Xi(z) = Al(z) + Bi(z) + Ci(z).
That completes the proof of formula by induction.
PRrROOF (of Theorem ) Recall that (see (55)) L.(wS,)(z,t) = Z§=1 Ji(z,t). We define

Jm = foat fmot+ s inQr,
with
m

1— . 1—
foalz,t) = -MX' ( 7x> e e M ZekPk ( x,t) ,
€ €

k=0

1—=x —x
an,Q(x,t =-X" (g’Y) 1= 276 E €kpk < )
o (L7 o= (NS ek (L
fma(z,t) = —2X — e e c E e" P}
€
k=0

We also define

éfno(x) =(1—&( <y0 ZEkYk <

Let éfn be the solution of problem

)), xz € (0,1).

Lé(efn) = 517 (.’E,t) € QT)
an(()?t) = an(Lt) =0, (O T)
07 (2,0) = 07,0 (), (0,1)

Then the function z&, =: 3¢, — ws, — 0, satisfies

Le(z) = =Le(wiy) = oy 0 Qr,
20, (0,t) = 25 (1,t) = 0, te(0,7T),
25, (z,0) =0, z € (0,1).

Multiplying the previous equation by 27, and integrating by parts we get that

1
/ |25 (2, 1) da < dy €, // |Le(ws,)(x, s) + fo,(x, s| dxds.
0

Let us verify that (d5,)m>o tends to 0, as m — co. We note that

Le(ws) + fo, =2+ T2+ (I3 + fnn) + (JE+ o) + (J2 + fmz)-

e Estimate of ||.J}||c((0,1],02(0,1)) - It is easily seen that

t"™ (om
yoo(z,t) = —'y(()Q +2)(a; — Mt) for x > Mt.
m!

m 1_
m,t) BV Sy Tty
k=0

t>>.

19

(70)

(72)
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Using we have
nax |y (2, )] < cob™——
We deduce that there is a constant ¢, independent of m, such that

max |J (2, t)| < cre™ T (73)

x>M
For x < Mt, it results from that y™ is a polynomial of degree < p — 1 and, for large m (m > p),
p—1 J T
y" () = (t——)JrZZXZ o™ (+9) (th)
j=11i=1

Since all the terms in the right-hand side of the previous inequality are uniformly bounded in the space
CP~! ({(z,t) € Qr : & < Mt}), we deduce that there is a constant cz(p) independent of m such that

max |yg; (2, 1)] < c2(p),

<M
then
max 71 (@,0)] < cx(p)e™ . (74)
It results from and that
max_|J!(z,t)] < ez(p)e™t, c3(p) = max (cq, ca(p)). (75)

(z,)QT
e Estimate of ||J2||c((0,7],02(0,1)) - We have (see the proof of Lemma

287 1/2
|72 leqo,1y:02(0,1)) < €™ tgﬁ);] (5/0 |th(2at)|2dz> -

Thanks to Lemma 2.5 we have

Y7 (2,8) = QM (2,t) + e NP (2,t),  (2,1) € (0,+00) x (0,1),

where ‘ ‘ .
- m 1 azymfz ; - 7, o' mfz ;
P (z,t):fzﬁ S (L) QM(z 1) :Z (1,)z
i=0 i=0
We have, for x > Mt,
gitlym—i " (gm—it) L
—(r,t) = —-M-—— — Mt — Mt).

We deduce by using that

8i+1ymfi

(Tb)mfifl
Oxiot

( YT for x > Mt. (76)
m—i—1)!

max
z>Mt

(z,t)’ < co(MTh+ 1)p™H!

For z < Mt, writing ™ %(x,t) in the form , we deduce that there is a constant c4(p) independent of

m such that , ,
8z+1ym—z
;25}\/}1% Oxiot

<x,t>\ < cal). (77)
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We easily verify that there is €1 > 0 such that, for 0 < ¢ < g1, we have

2eY 2e7

€ . - 92m+1 (2m+1)y
z%lzg/ zzmdz:igi.
0 0 2m + 1 527n+1
Using (76)—(78]) we deduce the estimate

2e7 2e”

/0 TP dz < 2 / QPGP + [P0 de

Tb m—i—1 2 %
<es(p mb3mt?2 Z < =) ) +1 / 22™ dz
-1 0

< colp) (mp2t2 1 1) (20
- 2m +1 g2mtl

ce(p) 2m-41 (257)2m+1
< b(2be7)“™ -
—€2m+1(( €”) + 2m+1 )’

21

where c¢5(p) and cg(p) are constants independent of m. Here we have used the fact that the series

co [ (bT)" 2.
Yo | o is convergent. We then have
(257)2m+1 )

2)12 2m+1
e o,1522(0,1)) < ¢6(P) (b(zbﬁ) "+ om + 1

e Estimate of ||.J3 + fralleqo,r),2(0,1)) - Using Taylor expansions, for 1 —x = ez — 0, we have

m m

m m—k i
Zekyk( Ze (1—ez,t)= Zsk <Z 11'88 Zk(l,t)(—az)l) + R;, (&, 1),
k=0 k=0 ’

with &, € (1 —€2,1) and

. " )m k+1 am k-‘rlyk
R, (E,t) =¢ +1Z CETFSy R (€2,1).

Then we have

- kyk (

We deduce that

72 + f%l”?)( 0,T];L2(0,1))

< > (Z ek Q¥ (2,1) Em:z-:kyk(l —€z7t)>
k=0

< M%7 max ’ |RE, (&, 0)|° dz.
te[0,T] J e

2
_ M2 —2y

) ZE =—R: (&,t) + _MZZEkPk(z,t).

C([0,T);L2(0,1))

(79)
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We have
R(6ert |<€m+1,§g e T 3| e )
mHka:_o (mmkkrl R m(x,t)‘

where ¢ (p) is a constant independent of m. There is €2 > 0 such that for 0 < € < €5 we have

2e7 2e7

/5 L2(m—k+1) dzg/ T 20m) g,
0 0

92m+3 E(2m+3)’y
_ (83)
2m 43 gZm+3

Using the Cauchy-Schwarz inequality, inequalities , , and the convergence of the series

2
225 (U95)" we find that

2e7

. " ( b)2m+2 1
|Rm(527t)|2 dz < Cg(p)(257)2 v ( 652m+3 (2m + 3)5) ’

where cg(p) is a constant independent of m. Then

3 € 2 2 ¥ ¥\2m+1 (QE’Y)Qerl
192 + o illEo,r), L2 0,1)) < 4M7cs(p) | be? (207) t o3 ) (84)
e Estimate of ||.J2 + f£, 5llc(0,71,02(0,1)) - Using we have
4 € 2 2(1—7) Y ¥\2m+1 (267)2m+1
192 + fr2lleo,ric20,0)) < co(p)e be” (2be7) t omEs ) (85)
where cg(p) is a constant independent of m.
e Estimate of ||.J2 + f£, 3llc(0,77,L2(0,1)) - It results from that
et ZekYk z,t) + Zs (1 —ez,t) =— RS (2,t) + e e M ZskPZk(z,t)
k=0
m
e 3 R P ),
k=0
with
- OR? 0 — 1762 (1 — gz — s)m—F gm—ktlyk
R (z,t) = ' (2, t) = ’“/ t)d
mml)=e G == ;5 ! (m =R g (1) ds
maym m . l—cz (1 —er— S)m—k:—l 8m—k+1yk
=—¢ %(1—62,15)—26 /1 m—h— D1 oI (s,t)ds.
k=0
We deduce that -
i 2
172 + f;,B”%‘([O,T];LQ(O,l)) < 4’77 max ‘an(z,t)‘ dz. (86)

te[0,T]
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For 1> Mt and & < 2 < 25 we have by usmg

1 m—k—1
DE 2m+1 m+k+1 (S -1+ 82)
‘Rm(z,t)‘ < cpe™ b + ¢ E ek b /1 iy ds

(eb?*T)™

S Cob
m!

+ cobe?T (2b7)™

F‘orlthand6 <z<25 we have

< cro(p)e™ + cro(p)e(2¢7)™.

where cjo(p) is a constant independent of m. Using we then deduce the estimate

172 + f76n,3||%'([0,T];L2(0,1))

< 16*77 ((cob(szT)m)2 + (c()IJeZ’T(Ql)a€7)’”)2 + (clo(p)sm)2

m!

23

ﬂm@mwﬂﬁ.@n

It results from the estimates , , , , that we can choose ¢ > 0 such that, for any
fixed 0 < € < g9, (d5,)m>0 tends to 0, as m — oo. Thanks to , (28,)m>0 tends to 0, as m — oo.

It remains to study the limite of (62,),,. We have
05,0(x) = as, + b5,
with
(@) = (1~ 22) 30 - 3 EL YO ) eay'
m - € yO Z! yO €z I

1=0

o) = (- ) > TPy, (=122,

=0

Using Taylor’s expansion, for 1 — z = ez — 0, we have

_Im+1
@mzuwmw%mﬁm%”Wm7ae@m

m—+1
hence |ag,(x)] < Co(fnﬂ)

uniformly convergent since in [1 — €7, 1]

(1)
1!

(i)
., then (a$,) converges uniformly in [0, 1] to 0. The series )= % ..(1)(

m

1—96

M

Il
=]

o .

bt . 5

< ¢ E —5 <o g 55” = cpeb®
! — il

Then (65,4)m converges uniformly in [0, 1] to 65 given by

7

o0

O5(z) = (1 - X 1—3: z € (0,1).

—x)tis
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Moreover, 58 satisfies an exponential decay property:
~ Y _oprel
105 ()| < coe® e =, VYxe(0,1).

Consider now the function f7, ;. We have

m m k
()
-0 i=

k=0
then, for 1 — 267 <z <1 —¢€7,

oyF—t 2t 1—=x
_(1,4)] = =
axz ( ’t)’ 'L'> ’ (m7t) € QT7 z ’

m m k —iy, (2k—1) i m ko
1—x Tr=iy (1—Mt)| = z
k k k 0 k
S fpt (1) <o yet (S TR 3 (2
k=0 k=0 =0 k=0 =0
< - p2hk LT b -~ =
<X (Y S rem YA (Y]
k=0 =0 k=0 =0
m k P S m k .
T b= 2™ 12%ev
2kmk _k k
sarre (3 gy e ) v e (5%
k=0 =0 k=0 =0
<c¢ i bRTR MY zk: b 2 | +e11(p) i ek Xk: £l
= (k—i) il P !
k=0 1=0 k=0 =0
coe% e?
= 1= b2T€’Y +Cll(p)1 — EAW

for 0 < €7 < min (327, 1), where ¢11(p) is a constant independent on m. Then, for 0 < &7 < min (327, 1),

the series > po ¥ Pk (1;w,t) is uniformly convergent in Qr, therefore ( i,1)m converges uniformly in

Qr to a function f§ given by

11—z Pp— 1—-=z
_ / —y M= k pk
ff(x,t)—MX( = )a Ye E e"P < . ,t>, (z,t) € Q.

k=0

Moreover, f; has an exponential decay property:

2

2
_areY coedT (&
e M5 <O +cu(p) ) , (2,1) € Qr.

e

1—2
€ < !
o< mlr (127) e

Clearly, (f5, 2)m converges uniformly in Qr to a function f5 satisfying a property of exponential decay.
Similarly we show that (f, 3)m converges uniformly in Q7 to a function f§ satisfying a property of
exponential decay. Thus (f£,)., converges uniformly in Q7 to a function f& = ff + f5 + f5 satisfying a
property of exponential decay.

Let 6 be the solution of the problem

La(és) = fsa (xvt) € QT)a
0°(0,t) =0°(1,t) =0, te(0,T), (88)
6° (,0) = 05 (x), z e (0,1).

We easily deduce from that 6° belongs to C°>°(Q7) and has an exponential decay property:
|é8(xat)| < ClQ(p)e_M%a (l’,t) € QT;
where c15(p) is a constant independent on m. Then from and we deduce that
195,0+8) = 00120y < (155 — P Bacmy + 1850 — Bill 2oy ) € W€ (0,T),

which implies that (62, ), converges in C([0, T]; L(0,1)) to 6°. This completes the proof of the theorem. [J
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Remark 3 We can actually weaken the condition by the following one : the initial condition yg
belongs to C*°([0,1]) and there are co,b € R such that

Iy 200y < co (m+ 1)1 0™, Vm € N. (89)

Let us consider the term J! on Q7 = {(z,t) € Qr,z > Mt}. From , we have

2(m+1)
JE 2 < t2m/ y%”+2) — Mt)|2dzdt
2 op) =

2(m+1 T2m+1

<
— (m)? 2m+1
252(m+1) T2m+1

ly ‘2’”+2)H
L2(0,1)

IN

(co) Wm((m + )%™

S (60)2€2T (m + 1)2

ﬁ(st)Qm —0 as m — oo if Teb< 1.
m

The other terms J!, i =2,--- ,5 can be treated in a similar way.

2.5 Asymptotic approximation of the adjoint solution ¢*°

Let us consider the adjoint problem

_gpi_E@iw_M@;:Oa ('rat)EQTv
@E(Oat) = 906(17t) =0, te (OaT)> (91)

Soa(va) = QD%(I’), MAS (Oa 1)7

where ¢7. is a function of the form ¢7. = Ze ok, the functions O, Pk oo M being given. We

assume M > 0, the case M < 0 can be treated similarly. We construct an asymptotic approximation of
the solution ¢° of by using the matched asymptotic expansion method.
m

To get the outer expansion Z ek ok (z,t) of p° we repeat again the procedure performed for the direct
k=0
solution y°. From equation we have
e’ @l + Mg =0,

ek gpf—&—MapI;——go];zl, 1<k<m.

Taking the initial and boundary conditions into account we define ¢° and ©* (1 < k < m) as functions
satisfying the transport equations, respectively,

SDtO+Mgog:Oa ({E,t)GQT,
¢’(1,t) =0, t € (0,7), (92)
on(xaT) = 410’9“(3:)7 HAS (07 1)7

and . . -
(2 + Msow = _gozx_ ) (l’,t) S QT7
©*(1,t) =0, te(0,T), (93)
" (x,T) = ph(x), z € (0,1).

The solution of is given by

0 _Jo r>1+MEt-T),
@ (z,t) =
P (z+M(T—1)), z<1+M(Et-T).
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Using the method of characteristics we find that, for any 1 < k < m,

t+(1—z)/M
/ <p’;;1(x+M(s—t),s)ds, x>14+MEt-T),
ot (a,t) = 7 T (95)
o (z+ M(T —1)) +/ oM+ M(s—t),s)ds, x<1+M(t—T).
t

The inner expansion is given by

m
S ekok(z 1), 2=Te(0,e7Y), te(0,T),
k=0 €

with functions ®° and ®* (1 < k < m) satisfying the equations, respectively,

B (2,t) + M®Y(z,t) =0,
DL (2,) + MOL(2, 1) = D (2, 1).

We define ®° as a solution of

®) (2,8) + M®(z,t) =0,  (2,t) € (0,400) x (0,T),

8°(0,1) =0, te(0,T), (96)
: 0 1 0

ZBI-POO(I) (2,) = 3112%30 (z,1), te(0,7).

The solution of reads
%(z,t) = ©°(0,¢) (L —e M%), (2,t) € (0,+00) x (0,T). (97)
For 1 < k < m, the function ®* is defined iteratively as a solution of

<I>’;Z(z,t) + M@f(z,t) = —<I>,’f*1(z,t)7 (z,t) € (0,400) x (0,T),

®*(0,1) =0, te(0,7), (98)
: k k _
Zgrfoo[q) (z,t) — S¥(2,t)] = 0, te(0,7),
where i
1 aivk—i .
k _ - i
S¥(z,t) = iE:O pi (0,¢)z".

Arguing as in Lemma, one can verify that the solution of problem reads

@k(z,t) = Sk(z,t) + eszRk(z,t), (z,t) € (0,+00) x (0,1), (99)
where .
X - (_1)i+1 8i90k—z‘ ;
RE(z,t) = ; g (002"

Let X : R — [0, 1] denote a C*° cut-off function satisfying . We define, for v € (0,1), the function

x
Xla) = ().

then introduce the function

m m T

Uil t) = Xew) D0 Rt (1) + (1 - () YD b0k (L1 (100)

k=0 k=0
defined to be an asymptotic approximation at order m of the solution ¢° of . To justify all the
computations we will perform we need some regularity assumptions on the data ¢° and ¢*, 1 < k < m.
We have the following result.
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LEMMA 2.11 Assume that, for any 0 < k < m, ¢k € C2m=R*L0,T|, and the following C*(m—F)+1.
matching conditions are satisfied, respectively,

(P3P (1)=0, 0<p<2(m—k)+1. (101)
Then the function @ belongs to C*M=R+1(Qr).

A straightforward calculation gives

Li(Wh)(@.t) = 3 Eila.t)

with
El(z,t) = —smngﬁ(x, t) X (),

€

EX(a,t) = —e"(1 - X.(2)@}" (£.1)

3 _ P(EN oy [N kg (© kK
E(x,t)=MX <€—7>s "Y(ZECI) (E,t)—Z&tgo (m,t)),
k=0 k=0
E(x,t) = X" (ﬁ) g~ (Zekfbk (g,t) — 5k<pk(x,t)> )
© eV 5
k=0 k=0
5 oy [T\ 1— —1mkk§_mkk
E2(x,t) =2X (EW)E (a kz_os @Z(g,t) kz_oa gow(x,t)>.

We have the analogue of Lemma [2.7]

LEMMA 2.12 Assume that the assumptions of Lemma hold true. Let 5, be the function defined
by (100). Then there is a constant c,, independent of € such that

(2m+1)y

ILE(Wr) leqo,rn200)) < eme™ 2. (102)
Using Lemma [2.12] we can argue as in the proof of Theorem [2.1] to establish the following result.

THEOREM 2.4 Assume that the assumptions of Lemma hold true. Let ¢ be the solution of prob-
lem and let Vg, be the function defined by (100). Then there is a constant c,, independent of € such
that

2m41

l¢® =y lleqor)iL200)) < eme™ 2 7. (103)

3 Approximate controllability results

We may use the previous asymptotic analysis to state e-approximate controllability results. Preliminary,
let us prove the following decay property of the solution y° in the uncontrolled case.

PRrROPOSITION 3.1 Let y* be the solution of with v© =0 and L = 1. Let any « € (0,1). Then, the
solution y° satisfies the following estimate

_ Ma2
1y (5l 220,01y < Y5 (5 0)[[2(0,ye” ©O-,  VE >

PrOOF- We define 2%(x,t) = e~ y°(z,t) and then check that

2

L.(yf) = e 2" (zf —ezi, + M(1—a)z; — Jf—g(oz2 — 2a)z5>, V(z,t) € Qr. (104)
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Consequently, z¢ is a solution of

28 —ezl, + M(1— )zt — Af—;(a2 —20)zf=0 in Qr,
ZE(O?') :ZE(L') =0 on (07T)7

—Maz

2°(,0) = e 2= y§ in (0,1).

Multiplying the main equation by z° and integrating over (0,1) then leads to

d M?
i1 O + 260125 (5D 2200 < S (07 = 20)1127(, D220,

2
e%(a2—2a)t

and then to the estimate ||2°(-,t)||z2¢0,1) < [12°(+,0)||£2(0,1) , equivalently, to

Max

_ Moz M2
2 ye(‘,t)”L?(O,l) <|le” 2 ys('70)||L2(O,1)e as

||€7 27204):‘,.

Consequently,

Maox Max Mox Moz

)l z20,0) = lle 2 e 2=y (D)l z2(0,1) < Mle” 2 (Lo qo,nylle™ 2 o (5 )l 20,1

Max _ Moz M2 2
< e || o,y le™ 2 5 (-, 0) | p2go,1ye 4= (@7 2"

< Hya('»0)||L2(o,1)e%(1*Mt+%)

using that (recall that o > 0) HeMTQWHLoo(O’l) = e and ||e_%\|Loc(o,1) =1. Let now t > M(ll_a) > ﬁ
so that (1 — Mt + Mot) < —5ay and Mo (1 — Mt + Maty < —4?142‘;. The result follows. O

Consequently, as soon as the controllability time 7' is strictly larger than 1/M, the L?-norm of the
free solution at time 7T is exponentially small with respect to €. This is in agreement with the weak limit
given by but show how the related controllability problem is singular.

Remark that the solution y° belongs to C°°([0, 1] x [n,T]) for all n > 0. The solution y* belongs to
C>([0,1] x [0,T7)) if in addition the initial data satisfies regularity and compatibility assumptions (for
the heat equation, y§ € H*,Vk and y§ = (y5)*) = 0 at © = 0, 1, see Theorem 10.2 in [I]). On the other
hand, thank to the compatibility conditions of Lemma the approximation w;, is continuous from
t=0.

The asymptotic analysis performed in the previous section leads for T' > 1/M to the following ap-

proximate controllability result.
PROPOSITION 3.2 Let m € N, T > ﬁ and a €]0,T — ﬁ[ Assume that the assumptions on the initial

condition yo and functions v*, 0 < k < m of Lemma hold true. Assume moreover that
vP(t) =0, 0<k<m,VtelaT) (105)

Then, the solution y* of problem satisfies the following property

(2m+1)y

Iy T L201) S eme™ 2, Yy e(0,1)
for some constant ¢, > 0 independent of €.

In other words, the function v¢ € C([0,T]) defined by v¢ := >"}" ;0¥ is an approximate null control
for : for any 1 > 0, there exists e¢, such that for any € € (0,¢0), [|¥°(-,T) | £2(0,1) < -

PRrROOF. We first check by induction that the function y*, 0 < k < m given by and vanishes at
time T. From and the assumption (105)), y°(x,t) = 0 on the set

Se = {(z,t) € (0,1) x (0,T),tM —x > aM}
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which contains the set S7_ /5, and the set {0,1} x {T'}. Assume now that y*~1(x,t) = 0 on S,, for some
k> 1. implies that, for all (x,t) € S,

t
k k x k-1

= - — )+ +M(s— .
yr(x,t) =v (t M) /tz/ Yoy (z (s—1t),s)ds

From , the first term vanishes because t — 5 > a for all (z,t) € S,. Moreover, for (z,t) € S,,
the segment [z + M (s —t), s] for s € [t — z/M,t] C [a,T] belongs to S,. Consequently, the second term
vanishes as well and y*(z,t) =0, 0 < k < m for all (z,t) € S,. In particular y*(z,T) =0, 0 < k < m for
all 2 € [0,1]. Then, the relation implies that the function Y* satisfies for all0 < k < m, Y*(2,T) =0
for all z € [0,00). Consequently, the function ws, defined by satisfies we, (-,T) = 0 on [0,1]. The
result follows from the inequality [|y*(-,T)|z2¢0,1) < [[¥°(-,T) — wy, (-, T)|[2(0,1) and Proposition

Figure [2Heft illustrates this result. ([
T>E
M . Le?
T=1
t==
M
_ L
=T -5 t="T¢e
0 0
0 z L 0 x L

Figure 2: Influence zone of the control v¢ (as ¢ — 0) in Q7 delimited by the characteristic line Mt—x =0
forTZﬁandT:%.

Remark 4 For e small enough but fixed, we can not pass to the limit as m — oo in order to get a null
controllability result. This is due to the fact that the constant ¢ depends on the parameter m, and more
precisely on the (2(m — k) + 1) first derivatives of the function v, 0 < k < m. Let us consider simply
the initial condition yo(x) = 1 for which yo(0) = 1 and (y0)® (0) = 0 for all p > 0. We then check that
the functions v*, k > 0 defined as follows

WO(t) = X(t), vF(t)=0, k>0

with X = {f € C=[0,T),f(0) = 1, f(a) = 0, fP(0) = fP)(a) = 0,p € N*}, a € [0,T] satisfy the
matching conditions of Lemma . As before, if a €]0,T — 1/M[, then ||w5,(-,T)||z2(0,1) = 0 for all
m € N. If for such fonctions v*, 0 < k < m, the term cmE(Z)m+)7 goes to zero as m — oo, this implies
that the function v¢ =Y 72 ekvF is a null control for y° as time T. However, v° is here simply v° = v,
which is not a null control for y¢, € > 0 fized !

On the other hand, according to Theorem if there exists pg € N such that (v°)P(t) =0, t € [0,T]
Vp > po (take for instance v°(t) = 1 satisfying the matching conditions), then the term cmsw goes

to zero as m — oo (as well as the term ||y* — wi, [|c(jo,17,22(0,1))) but ||wi, (-, T) | £2(0,1)) # O for all m.
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Remark 5 The limit case T = 1/M can be considered as well but requires explicit formula. The function

)

¢.(-,T) is no longer equal to zero in this case. Let us consider for simplicity the case m = 0 for which

w.

1—=x

%mm=&uﬁmw+0—&wn”( ,Q,<awah

3

so that

wi(z, T) = Xe(2)y° (2, T) + (1 — X(z)) YO (1 — x,T) , x€(0,1).

3

M(1l—z)
€

First, leads to YO (32, T) = yo(0)(1 — e~

-y ()

Writing that (1£e~M2) <2 and that || (1 — X-(2)) (1 —2)P||2(0,1) = O(e@PtD/2) 1y > 0, we obtain that

). Therefore,

2

~ (50(0))? /O (1= Xo()? (1 — e~ M*)2ds,

£2(0,1)

1
H(l—XE(:c))YO( x,T) = |yo(0)] €772
€ £2(0,1)
Moreover, from (@), we obtain, for all x € (0,1), that
1
y(@.1) =@, = =T(-x)

and we may easily define a function v° such that the norm ||X.(x)y° (2, T)| 12(0,1) be equal to zero. Actu-
ally, since the function X. is supported in [0,1 — 7], it suffices to take a function v° such that v°(T) = 0
forx €10,1—¢7], i.e. supported in [0,e7T] (see Figure @-right). Consequently, such control v° leads to

w5, Tl 220,1) < lyo(0)] /2.

It remains to evaluate the term ||y*(-,T) — wg(,T)||r2(0,1), equivalently evaluate the term
| Lfwg ¢ (jo,11,22(0,1))- In order to satisfy the matching conditions of Lemma we define v° as fol-

lows
1

p (EM)P
(6 = S0 L o) P ), (106)
—0 p!
P
for any C*([0,al, [0, 1])-function X such that X(0) =1, (X)*(0) = 0, X(a) = 0, (X)*(a) = 0,k = 0,1 with
€]0,e7T]. The function v° (and in particular the derivatives) depends on e here and so the constant
Cm N .
Let us evaluate the first term J! of L.w§ (see ), restricted to QF = {(x,t) € Qr,r — Mt < 0},
in function of the support (0,a) of v°: from J! = —eyl, = —55 (v°) P (t — x/M), we have

172117, @b = M4// < tx/M))thdx
:AZZL/O/T o ((U ()) dt dz = M4//ma” T (( 0)(2)(t)>2dtda: (107)
<o [ (@920) ai = (=169 00 )

Let us consider the polynomial of order 3 given by X(t) = 1 — 3(t/a)? + 2(t/a)? so that X(0) =
and X'(0) = X(a) = X'(a) = 0 for all a # 0. Moreover, to simplify even more the computation, let

assume that y(()l)(()) = 0 so that the control v° is simply given by v°(t) = yo(0)X (t)10,q(t) leading to

[(O)D | 20,0y = 22O and then (from [107)

12¢
||J HL2(Q+) = 3/2M2|y0( )‘
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We are therefore looking for a < TeY such that €2/a® — 0 as € — 0. We take a = TeY . This requires
12]y0(0)| _1—3+/ 12]yo(0)] _1—
'7/ € [%2/3] and then ||J51||L2(Q;) < |]Z\l/(_[)2( )‘51 37'/2 < Ta!%?gw)z‘l 3v/2,
We can proceed in a similar way with the other terms in and determine a rate T = 7(7) such
that || Le(wf)| 2 (Qqr) < ce™ and then ||y*(-,T) —w§ (-, T)||L2(0,1) < ce™. This allows to conclude that there
exists a control function v° € C*([0,T€7]) such that the solution of (@ with v¢ = v° satisfies

= (D)l 20,1y < Yo (0)[(ce™™ +&772), (108)

with v < 2/3 (instead of v < 1 in Proposition . This stronger condition shows how the convergence
is affected in the limit case T = 1/M. Nevertheless, after tedious computations, we may extend this
construction of v° to any order k and improve the rate in the estimate . This may allow to obtain a
better estimate that in the uncontrolled case discussed in Proposition[3.1 Remark that in the uncontrolled
case, the norm ||y° (-, T')||z2(0,1) is a priori not exponentially small for T = 1/M.

4 The case of initial condition y; dependent on ¢

The asymptotic analysis performed in Section[2]requires a priori more care if the initial condition depends
on the parameter €. Due to the compatibility conditions of Lemma the control functions v* may
then depend on ¢ (at least in the neighborhood of ¢t = 0) and so the constant ¢, in @

In view of the initial condition defined in (highlighted in [2, 10]), we have in particular in mind
the initial data of the form y§(z) = c.f(z)e 2, with @ < 0, ¢. € R. Such initial data get concentrated
as € — 0 at the point = 0 (resp. = 1) for M > 0 (resp. M < 0). Precisely, let us consider the case of

the C*°(]0,1]) initial data (4] (with L = 1):

y§ () := K. sin(rz)e” B K. = O(e=3/%) (109)
such that ||y5llz2(0,1) = 1. Taking m = 0 in Lemma [2.7] n the function L.(w§) involves the term

—ey? (x,t)X-(x) where y° is given by . In particular, for points below the characteristic, that is
in the set Q7 = {(z,t) € Qr,x > Mt}, we obtain y%(z,t) = y5(z — Mt); this leads, after some
computations, to (writing that X, =1 on (0,1 — 2&7))

1-2¢Y px/M Mz BH) 2 1/2
ey ell e g > <K (/ / <51n (2 — Mi))e— 1= )m> dtda:) o)

=eK.0Q1) = _1/ 3.
Consequently, w§ can not be a convergent approximation of y° as € — 0 and a higher approximation
is required ! In view of the linearity of , we can expect for 2° := K_!y° (assuming that v =
(@m+1)y

K. (v +ev! +---40™)) an approximation, say z5,, such that |2 — 25 [|c(0,77,02(0,1)) < ¢me€ 2 and
therefore an approximation y;, := K.2;, of y* = K.2° such that

(2m+1)'v @em+l)y 3

1° = Ymllcqo,m,22(0,1)) < emKee =0(cmee 2 z),

Taking m > 2 large enough, we can therefore determine a convergent approximation of y* provided
compatibility conditions between yg and the control vy, 0 < k < m. The estimation of ¢, . may however
require tedious computations.

A possible alternative to address initial condition like is to preliminary perform a change of
variable taking into account the exponential function. The one used in the proof of Proposition [3.]] is
prohibited as it makes appears a term with coefficient e~ (see . Still in view of , let us assume
that the initial condition is of the form y§(z) = coesE f(x) for any function f independent of £, a < 0
and c. € R. We introduce the following change of variable
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M 2 —oa)Mt
T O O e (] (111)

We then check that

L.(y)(z,t) = cself=“(x’t) (zte —ez, + Mazfr) = cselfva(r’t)L&a(zE)(x, t)

with M, := M (1 — ) > 0. Consequently, the new variable z¢ solves

Leo(2%)i=2; —ezl, + Myz5 =0 in Qr,
26(0,) ;=05 (t) = cote e Oy 25(L, ) =0 on (0,7), (112)
2°(+,0) =: zo(x) = f(x) in (0,L).

The initial data is now independent of €. On the contrary, the control ¥* does a priori on €. We have
thus reported the problem on the control part (which is relevant from a controllability viewpoint).
The asymptotic analysis for z° has been done in Section [2f it suffices to replace M > 0 by M, > 0.
We define the asymptotic approximation of z¢ by
< < 1
Z (@) = X)) Y eFaF () + (1 - Xe(2)) Y b z* (‘x, t) : (113)
k=0 k=0 ‘
where the functions z*, Z¥ are defined as in Section [2l The corresponding control functions are noted by
o* = 2#(0,-), k > 0. Finally, in view of (111)), we define the approximation

we, (z,t) = coelea @V 22 (2.1) (114)

m
so that L.(ws,)(z,t) = ceetee @V L, (25,)(x,t). We are then looking for an approximation of the form

ys(xa t) = Cc€ Ea

(2—a)Mt
(o—E=grr) (zo(:c,t) +e2l(z,t) + %23 (w,t) + >

The main issue is now to find a set for the control functions 7* satisfying the matching condition of (2.6)
such that || Lcys, |l (0,77,02(0,1)) goes to zero with e. Again, the difficulty is that the control function 7,
through the change of variable ((111)), may depend on e. Adapting 7 we write that

5
Le(w,) (@, t) = ceeloe @D L o (25,) (2, 8) = Y ceelon DL (1) (115)

m ) m
=1

=L (ws,) (@,t)

with

3 _ / - k 7k k k
JEo(w,t) = MX ( = )s v(} iz ( . ,t> =) e (x,t)>,
k=0 k=0
1 T m 171: m
4 :)('// 1-2v kzk _ k_k
JZ o (z,t) = I;:Oa . ,t g:os 2%(x,t) |,

1—2 - 1—=a -
5 oy 1y [ -1 k 7k kk
JZ o, t) = 2X ( = )5 (5 Zs VA ( 6 ,t) +Z€ zw(x,t)> .
k=0 k=0
To go on, let us consider again the simplest case for which m = 0. From (10},

zo(x — Mat), x> Mut,

0
O, 1) = . (116)
io (t—%>, 1’<Mat,
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we get
z(z)(a:—Mt) x> Myt
0 av)s avs
Ll £ — le,a(z,t) 0 I le,a(z,t)
(LLf)(.0) = —ecaelon 20, (2,1) = —ecce T N
M2 M,
In view of the identity
M« ax 2-a)M , x
Lea(z,t) = —(— — —1)), 117
al@t) 25( 21-a) T 2 G )) (117)

and that o < 0, the function I, , is negative on the set Q7 , = {(x,t) € Qp,x > Myt} C Q . We write

2
ILE i) 2oy, < eeells” e lie @ 2 gy

and compute that ||eli’ﬂ(m’t)||L2(Qf )= V2o O(ee'%) so that
T,a v/ M3|a3

£ 2
1L @)l 2oy < Ceellzg” i o,

We remark here the benefit of the change of variable 1] with ¢. = K. = (9(5*3/ 2), the norm above
goes to zero with € (in contrast with ) Let now QJTF’O( = {(z,t) € Qr,x < M,t}. We write (using
[ITD) that

ele.a (@) (70) (@) (t _ A;)

The change of variable £ =t — 7 leads to

elera (@) (70)(2) <t _ Aj)

2

1 T, a-am? | o 2
= / 6_24??*2&) / (e - (Ma >(UO)(2) (t - x)) dt dzx.
L2(Q;a) 0 2 Ma

Mo

2 1 5 T— 5= - 2
_ / o2 / " <ele,a<0,t>(v0)<2>(£)) di do
L2(Q%.) 0 0
_ Mao?z e
< flem#=a= H%Z(o,n||els‘°‘(0’t)(’00)(2)H%%o,T)

< 52(1 —a)
T M2al

OO @) 2
leading to HLi(wS)HLQ(Q; ) < C.e3/2||elea(0:0) (50)(2)||L2(07T) for some C > 0 and finally to

2 -
1L2 ) loegomy < Cece®”? (el/ané Moo + ||elsva<°»t><v2><2>|Lzam). (118)

Let us now consider the second term JZ2,, in the expansion Adapting , we have Z°(z,t) =
29(1,t)(1 — e~Ma#). Therefore

1 T
Helg.a 62,01”%2(62'1") :/0 A tes.a(ﬂ?,t)(Z?(l’t))QCl _ XE)(l _ e—Maz)dtdx

1 T
< / / M@ (2001 1)) 2dtda
1—-2e7 JO

1 ﬁ 2
= M2 / / e2e.a(@t) ((zg”(l - M@)) dtdz
1-2¢7 JO

1 T e o) " 1 2
+ eteal® Ty (t — —) | dtdx.
Jo [y e (@e-5p0)

M
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We check that I o (z,t) < —22 <2(1‘"_a) + 2€’Y> < 0 for all (z,t) € (1 —2¢7,1) x (0,1/M,) so that the
first term is negligible. For the second term, we make the change of variable t = ¢t — 1/M,; we then check

that

Ma [ (a—2) . ~ i
[ o t) = c,a(0,) = l,a(0,t)
calent) = 52 (AT ) e g.(2) + e

and then write

—(1) 1’ o T peecen )
/ / fesole) < (t— )> dtdw:/ e 95<w>dx/ e "y (1)) dtda
|9 M, 1—2¢7 0

N

< e ™32 1220,

(1-2

< 207t (Crmtm—2) lele= @O 2, o

since g.(z) < (- ay — 2¢7) for all # € (1 — 2¢7,1). Moreover, the bound < ( — ey — 2e7) is
strictly negative (for € small enough), so that this term is once again negligible. With similar arguments,
we conclude that the terms ||elfvaJ§’a||Lz(QT), 1 = 3,4 and ¢ = 5 are exponentially small with respect to
€.

Therefore, we have the following result :

THEOREM 4.1 Let a <0, ¢ € R, let lc o(z,t) := ]‘gf(m— (2_‘;)%), f € CL([0,1]) and v¢ € C1([0,T)).

Let us consider the problem

Yi — EYze + My; =0, (z,t) € Qr,
y=(0,t) = v°(1), t e (0,7), (119)
y°(1,t) =0, te(0,7T),
¥e(x,0) =y (z) := ccele @O f(z),  z € (0,1),
and assume that yg and v° satisfies the compatibility conditions
550 =00), 05 (0) + (1) D(0) = ~M(1 - a)(u5) D (0). (120)

Let then w( be defined as follows :
wi(x,t) = coele @D <X8(x)z0(x,t) + (1 — X (2) 2%, 1) )

where 29 is given by (-) associated to the initial condition zo(x) = f(z) and control v° =
cle w00y (1) and where Z°(x,t) = 20(1,1)(1 — e~ Ma?),
Then w§ € CY(Qr) and there exists two constants C,c > 0 independent of € such that

ly* = willeo., 201y < Ceee®? (SI/QIIf(Q)IIme,l) + Ielf*“(o’“(vo)(”||L2<o,T>) +eO0(e™5).  (121)

PROOF- Conditions (120 imply the property f(0) =7(0) and (v)’(0) = —M, f'(0). Therefore, in view of
Lemma for m =0, 2° and Z° and then w§ belongs to C1(Qr). Moreover, the function 2° := y* — w§
satisfies the boundary value problem :

Le(2°) = —Le(wp), (z,t) € Qr,
25(0,t) = 2°(1,t) = 0, te (0,T),

2(2,0) = ceelon (0 (f(x) — Z%(x, 0>> (1-X), =z€(0,1)
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and therefore ||y* —w§|lc(0,77,22(0,1)) < C’(HLE(wS)|L2(QT)+||zs(x, 0)L2(0)1)>. The L?-norm of 2¢(+,0) is

Ma(1—2e7)

exponentially small, since |[2°(-,0)[|z2(0,1) = [|2°(-, 0)[[z2(1-2c71) S €™ = If - ZO(‘»0)||L2(0,1)~ (121)
then follows from ([118)). O

For the initial condition (109) for which c. = K. = O(¢73/2), f(z) = sin(nz), a = —1, (121)) writes

3M2t

||y€ — wg"c([O,T]7L2(O’1)) S 0(61/2||7T2 Sin(ﬂ'(E)HLoc(QD + ||€ e (UO)(2)|L2(O,T)> + CEO(S_g)

where ©° is C'([0,T]) function such that 7°(0) = 0, (@) (0) = —27. Tt suffices then that
||e314w52t @)@ |2 (0,7) goes to zero with e to ensure the approximation.

Actually, estimate is mainly interesting from a controllability viewpoint as we may choose T
such that non only ||ele=©D (1)@ 2o 7y but also |[w§(-,T)| r2(0,r) goes to zero with . For instance,
if [|wg(-, T)|| 20,7y vanishes then [[y*(-,T)| r2(0,1) < Clly® — willc(o,77,.2(0,1)) and v° is an approximate
control at time T for y° solution of with initial data c.e 2° f(z). In view of , w§(-,T) =0 if
and only if 25(-,T) = 0. 2§ = 2° given by is solution of a transport equation and vanishes at time
T if and only the support of the control function @° is in [0, T — Mia]

Let n > 0 and § €]0,T — ﬁa] We choose the control function o° as the unique solution of the

0

following ordinary differential equation

—~

7)) (1) = (Cf + Cst)eTte a0 ¢ <0, 4],
z5(0), 2°(8) =0, (122)
@)1(0)) = =Ma(25)'(0), @) (B) =0,

for some constants C§ and C5. Problem ([122)) admits a unique solution given by

_ —n+al2—a)M?

kC§ —2C5 + kC5t
70(t) = —2 32+ M L CSt 4 C5, k= (123)
k 4e
with
0% = _1(0) K (= +eMkp+1) D (0)) k (—2e*kB + 2eM — 2+ B2k2ekP)
(eFB)® — 2ekB 4 1 — B2k2ek (ehB)2 — 2ekB 41 — B2k2ekB
B k3 (ekB —1 B k2 (—e*B 4 eFPEp 4+ 1
= 5 Y(0)) 2( ) ’
= UO( ) kB Ec ) 2120k +(UO)( k k 2120k
(ekB)” —2ekB + 1 — B2k2ekA (ekB)” —2ekB + 1 — B2k2ekB (124)
kB2 KB (okB _ 13 — 1
O3 =0 o s )00 —— 52)162 -
(S —2eP +1— e e —2efP + 1 — e
eRB (kB — 14 kP — g2k eFB 32
Cs :=7%(0) 2( ) + (@) M(0)) 2 :
(ekB)” — 2ekB + 1 — B2k2ekP (eFB)” — 2ekB + 1 — B2k2ekA

With this choice, we have [ele=@D (@)@ 1207y = [(CF + C5t)e™ % 12(0,5. Now, from (124), we
obtain, assuming that the constant 3 is independent of ¢, that

C5 ~ —1°(0)k? + 2k(T°)V(0) = =1°(0)e ™2 + 271 (@°)M(0), (125)
C5 ~ —1°(0)k* + K@) (0) =~ 7°(0)e = + e~ 2(@°) M (0),

which implies, after some computations, the estimate [le'=o@D@N)@ |20 ~ 73/200(0)] +

e=1/2|(@)(M(0)|. Finally, for such control function ©°, (121)) leads to

ly* = wllcqo,r.L2(0,1)) < Ceee®? (61/2||f(2)|Loo(o,1) +e73230(0)] + 51/2(v0)(1)(0)|> +c.0(e5).
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Consequently, in the particular case for which [7°(0)| = 0 and c.e — 0 as € — 0, ° is an approximate
control for y°.

As an illustration, figures {4 plots the control v°(t) = k== (©:1)7%(¢) associated to the initial condition
v§ :e*%sin(wx) forT=1,n=1,0:= ﬁn = %
control function gets concentrated at x =0 as € — 0.

and € = 1072 and € = 1073, By construction, the

0 T 1 0 T T T T 1
0.4 0.5 0.1 0.2 0.3 0.4 0.5
14
-0.01 -0.001 -
-0.02 -0.002
-0.03 -0.003 -I
-0.04 -0.004

Figure 3: Control v°(¢) for e = 1072 and € = 10~2 associated to y5(z) = e 2= sin(rx).

Remark 6 We check that the control function v° (and a fortiori ©°) is uniformly bounded in L>°(0,T)
with respect to €; we have

kC§ —2C5 + kC5t _ne 0%t
W0 =24 f§+ G- 4 (cst+ cpe ™, te o)

The first term is bounded in view of, the term —nt/(4e) being negative. The second term behaves
for e small as follows :

~

(C?ft + Ci)ef 1;1521« ~ kﬂ<(vo(0)k — (@O)(l)(()))t + ﬂ( _ 5@0(0) + (vo)(1)(0))>ezfevi\g2 (B—t)

using from that
C5 = kBe™? (k0°(0) — (@°)M(0)), Cf ~ k% (- pv°(0) + (0°)1(0)).

Moreover, by construction (see , we also get that v° and v° are uniformly bounded in C([0,T)).
@ (1)) D (t) = C5 + k=2(kC§ — C5 + kC5t)er.

5 About the control of minimal L?>-norm - Conclusion and Per-
spective

We have derived an asymptotic expansion at any order m of the solution y* of an advection-diffusion
equation with respect to the diffusion parameter . The matching asymptotic method allows to describe
the boundary layer of the solution at the right extremity of the interval. As is usual, the asymptotic
analysis requires the initial and boundary conditions to be regular enough. This is not restrictive as
y© solves a parabolic type equation. In an essential way, we have also assumed compatibility equations
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between these conditions at the point (z,t) = (0,0) where the main characteristic of equation Lz— Mt = 0
start. This allows to get rid off the boundary layer for ¥ on this characteristic. This also allows to obtain
a regular approximation wy,, of y© so that the norm ||y —wy, ||c(0,77,22(0,1)) is of size O(e™). As expected,
the approximation w, is mainly the sum of m + 1 explicit solutions of transport equations. As a matter
of fact, the diffusion property of y® which is so essential in the controllability property, is lost in ws,.
Nevertheless, the approximation w;, is useful to construct explicit and regular approximate null controls
for y© as soon as the controllability time satisfies T > L/M.

The next step is to use such asymptotic analysis in the optimality system @ which characterizes
the unique control of minimal L2(0,T)-norm, T, e and the initial condition yo (assumed independent of
¢) being fixed. Let us focus on the optimality equation v*(t) = e¢%(0,¢) which links the forward and
backward equation. Using the inner expansion for ¢° (see Section , this equality rewrites as follow

O(t) +evt(t) 4 = 220,8) + e L0, ) +---, Ve (0,T).

At the zero order, we get therefore the equality v°(t) = ®9(0,¢) leading, using and simultane-
ously, to

W) = MO (0.1) = {M@%(M(T —t)), teT—1/M,T], (126)
0, te0,T—1/M).
The function ¢ defined in Q7 is given by . It T > 1/M, the last equality contradicts the matching
conditions (46)), notably v°(0) = yo(0), unless that yo(0) = 0! If T = 1/M, we have v°(t) = M. (1—Mt),
t € [0,1/M] and in particular v°(0) = ¢3.(1). But again, this contradicts unless v°(0) = 0 (and so
Yo(0) = 0). Assuming yo(0) = 0, we may determine the optimal function ¢ by developing the conjugate
functional J} given by

1 T
JZ(p7) = 5/0 (e¢5(0,1))2dt — (Yo, ©°(-,0)) 5r—1(0,1), 52 (0,1)

We easily obtain JX (%) = J§(¢%) + ... with

T = 510 o) — (00 e (0,0) + 1= 2)8°,0))

L2(0,1)
which is simply J§(p%) = ||U0||%2(0$T)/2 since ¢%(-,0) = 0 (see ) and ®°(-,0) = 0 (see ) The
minimization of J* at the first order, that is the minimization of Jg leads to ¢% = 0, i.e. v* = 0.
Remark that since ¢ solves a transport equation which separates the space-time domain Q7 into two
parts {(z,t) € Qr,x — Mt > 0} and {(x,t) € Qr,r — Mt < 0} and since ¢° vanishes at = 1, the first
order control term v° does not “see” the initial condition 37. Repeating the arguments and assuming
that (o)™ (0) = 0, we obtain that v = 0 on (0,7 for all m > 1. We conclude that, for T > 1/M, the
norm of the control of minimal L?(0,T)-norm associated to initial conditions yq satisfying y(()m)(O) =0
for all m > 0 and vanishes as € goes to 0.

If we do not assume yp(0) = 0, then leads to incompatibility and our asymptotic analysis is
not effective to address the optimality system @ To avoid this difficulty, we must relax the matching
conditions and and therefore take into account the second boundary layer occurring for y¢ and
©° on the characteristic lines {(z,t) € Qr,Lx — Mt = 0} and {(x,t) € Qr,Lx — M(t—-T) -1 = 0}
respectively. This will be done in a forthcoming work. The negative case M < 0, which is similar, will
be addressed as well.
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