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Abstract

Breast cancers are solid tumors frequently characterized by regions with low oxygen con-

centrations. Cellular adaptations to hypoxia are mainly determined by “hypoxia inducible

factors” that mediate transcriptional modifications involved in drug resistance and tumor pro-

gression leading to metastasis and relapse occurrence. In this study, we investigated the

prognostic value of hypoxia-related gene expression in breast cancer. A systematic review

was conducted to select a set of 45 genes involved in hypoxia signaling pathways and

breast tumor progression. Gene expression was quantified by RT-qPCR in a retrospective

series of 32 patients with invasive ductal carcinoma. Data were analyzed in relation to classi-

cal clinicopathological criteria and relapse occurrence. Coordinated overexpression of

selected genes was observed in high-grade and HER2+ tumors. Hierarchical cluster analy-

sis of gene expression significantly segregated relapsed patients (p = 0.008, Chi2 test). All

genes (except one) were up-regulated and six markers were significantly expressed in

tumors from recurrent patients. The expression of this 6-gene set was used to develop a

basic algorithm for identifying recurrent patients according to a risk score of relapse. Analy-

sis of Kaplan-Meier relapse-free survival curves allowed the definition of a threshold score

of 2 (p = 0.021, Mantel-Haenszel test). The risk of recurrence was increased by 40% in

patients with a high score. In addition to classical prognostic factors, we showed that hyp-

oxic markers have potential prognostic value for outcome and late recurrence prediction,

leading to improved treatment decision-making for patients with early-stage invasive breast

cancer. It will be necessary to validate the clinical relevance of this prognostic approach

through independent studies including larger prospective patient cohorts.

Introduction

Breast cancer is a heterogeneous disease with diverse clinical outcomes. Current therapeutic

options, including initial surgery and both adjuvant chemotherapy and endocrine therapy, are
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effective in the earlier stages of disease and improve clinical outcome. However, despite the

proven benefits of these treatments, breast cancer patients still have a risk of relapse after the

first 5 years. The clinical outcome of breast cancer is based primarily on clinicopathological

criteria such as tumor size, histological grade and the status of estrogen, progesterone and

HER2 receptors. These parameters are prognostic markers for early recurrence, but their role

in late recurrence is less clear [1, 2]. Prediction of late recurrence at diagnosis could help indi-

vidualize therapeutic options, thereby preventing unnecessary treatments. Identification of

factors predicting long-term relapse-free survival in breast cancer patients has become an

important promising field of biomarker research [3].

Accumulating evidence from clinical studies suggests that tumor hypoxia might have an

important role for clinical outcome and late recurrence in human cancer, including inva-

sive breast cancer. The hypoxic tumor microenvironment is associated with a poorer prog-

nosis for outcome and survival [4]. Several authors have shown that molecular mechanisms

of adaptation to hypoxia make tumor cells more aggressive and more resistant to chemo-

therapy and radiotherapy, thereby promoting tumor progression [5, 6]. Hypoxic areas

arise when the metabolic requirements of cancer cells are higher than the availability of

intravascular oxygen content in tumors. Cellular adaptations to hypoxia are mainly medi-

ated by a family of transcription factors called hypoxia inducible factors (HIFs). HIF-1 was

the first member of this family and is ubiquitously expressed [7]. These transcription fac-

tors are heterodimers composed of an alpha subunit and a beta subunit [8]. Under nor-

moxic conditions, HIF-1 alpha is hydroxylated by a family of dioxygenases known as

prolyl-hydroxylases (PHD). Hydroxylated proline residues are recognized by the Von Hip-

pel-Lindau tumor suppressor, leading to polyubiquitination and subsequent proteasomal

degradation. Under hypoxic conditions, oxygen levels are not sufficient for the enzymatic

activation of PHD. Consequently, HIF-1 alpha is not degraded and is translocated to the

nucleus, where it binds to the subunit HIF-1 beta and the transcriptional coactivator p300

[9]. The active transcription complex regulates the expression of multiple genes by binding

specific DNA sequences called hypoxia response elements (HRE). Regulation of HIF-1

alpha protein is not limited to hypoxic conditions. Several studies have also revealed oxy-

gen-independent mechanisms that result from genetic alterations such as activation of

oncogenes (HER2) and/or loss of tumor suppressor genes (VHL or PTEN). Dysfunctions of

the PI3K/AKT and RAS/MAPK signaling pathways are also involved in HIF-1 alpha regu-

lation [10, 11]. Activation of hypoxia-related genes plays an important role in tumor pro-

gression because of the involvement of these genes in several cellular processes, including

cell differentiation, survival, angiogenesis, migration and metastasis [12].

Thus, assessment of tumor hypoxia appears to be a potential strategy for clinical outcome

prediction of solid tumors. However, it remains difficult to perform quantitative measures of

tumor hypoxia as well as to determine the relationship between hypoxia and clinical parame-

ters in human cancers. Several measurement methods of tumor oxygenation, including both

direct and indirect approaches, have been described. The main direct approach for measuring

the partial pressure of oxygen in tumors is based on the polarographic method using oxygen

microelectrodes. This method revealed a mean partial oxygen pressure of 28 mmHg in breast

tumors and 65 mmHg in normal breast tissue [13]. Indirect methods consist essentially of

immunohistochemical measurement in tumor biopsies of the expression of HIF-1 alpha as

well as proteins regulated by HIF complexes, such as carbonic anhydrase 9 (CA9) and vascular

endothelial growth factor (VEGF). Several previous reports have already associated breast can-

cer outcomes with levels of HIF-1 alpha or CA9 proteins [14–16]. Other non-invasive tech-

niques, such as molecular imaging, allow the identification of intratumoral hypoxia by

analyzing its effect on the metabolism of tumor cells. The low oxygen pressures observed in
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solid tumors force cells to shift from aerobic to anaerobic glucose metabolism [17]. Positron

emission tomography (PET) imaging with 18F-fluorodeoxyglucose (18F-FDG) permits the

detection of increased glucose consumption by cancer cells. 18F-FDG uptake correlates with

reduced partial pressure of oxygen and increased HIF-1 alpha protein levels in diverse types of

tumors [18, 19]. More recently, the analysis of changes induced by hypoxia in the transcrip-

tome has also provided an indirect method with prognostic and predictive values [12]. Several

molecular signatures have been constructed from non-specific genetic markers of hypoxic

responses and breast cancer. Most of these signatures were generated by differential strategies

based on whole-transcriptome analysis or were implemented initially from other solid tumors

[20, 21]. Winter et al. defined a molecular signature of 99 genes whose expression in a series of

head and neck squamous cell carcinomas clustered with the expression of 10 well-known hyp-

oxia-regulated genes. This signature was shown to be a prognostic factor for relapse-free sur-

vival in an independent breast cancer series [20].

These studies highlight the importance of hypoxia-related gene expression for outcome pre-

diction in breast cancer. The quantification of biomarkers involved in both hypoxia signaling

pathways and breast cancer development may facilitate the prediction of prognosis according

to the molecular profile of tumors. The aim of this study was to generate a molecular signature

of tumor hypoxia with potential prognostic significance in breast cancer. We analyzed the

expression of 45 well-known hypoxia-regulated genes in a retrospective series of 32 tumor

samples from patients with early-stage invasive breast cancer. This set of genes was selected

from a systematic review according to objective criteria based on their implication in breast

cancer aggressiveness and hypoxia signaling pathways. Gene expression was investigated in

relation to clinicopathological data (stage, grade mSBR, HER2 status, and relapse occurrence).

Materials and methods

Patients and clinicopathological data

A retrospective study of a total of 32 patients with previously untreated primary breast cancer

was conducted. Patients were diagnosed between 1994 and 1998 and had undergone surgery

at the Jean Perrin Comprehensive Cancer Center. Fine-needle aspiration biopsies were per-

formed in patients, and an aliquot of each aspirate was immediately smeared on a slide to

serve as a control for the presence of malignant cells and the absence of important stromal and

fat contamination. The remaining aspirated material was processed for embedding in a paraf-

fin block for later use in immunophenotyping or stored in liquid nitrogen until total RNA

extraction. Tumors samples were conserved in the Biological Resource Center of Jean Perrin

Comprehensive Cancer Center, identified under No. BB-0033-00075 (Clermont-Ferrand,

France). The clinical history of patients was collected with the help of an oncologist. Tumors

were classified histologically according to the World Health Organization criteria as ductal

invasive breast carcinoma. Initial staging comprised complete and detailed clinical examina-

tion including the International Union Against Cancer TNM (tumor size, nodes, metastases)

classification. Histopathological evaluation of tumors was performed using the Scarff-Bloom-

Richardson histologic grading system as modified by Le Doussal [22, 23]. Under French law

on biomedical research, this is an epidemiological study that does not have to be submitted to

an Institutional Review Board. All clinical data and tissue samples were fully anonymized and

de-identified before they were accessed by the researchers for this study.

Immunohistochemical studies

Patients were screened for estrogen, progesterone and HER2 receptor status by immunohis-

tochemistry (IHC) on paraffin-embedded tissue sections. Immunostaining was performed
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with a Nexes automated immunostainer following the manufacturer’s guidelines (Ventana, Ill-

kirch, France). Sections were scored semiquantitatively by two pathologists using standard

light-microscopic evaluation. A threshold of 10% total stained tumor cells was considered pos-

itive for estrogen and progesterone status. Immunohistochemical staining for HER2 was per-

formed using the HercepTest kit (Dako, Carpinteria, CA, USA) and was scored according to

the standard scoring system recommended by the manufacturer. Intensity scores of 0 or 1

+ were designated as negative for HER2 expression. Scores of 3+ were considered positive and

were defined as HER2 overexpression in the presence of complete membrane staining with

high intensity. Scores of 2+ were considered equivocal cases, and HER2 fluorescence in situ
hybridization (FISH) assay was performed for detection of HER2 amplification using the

HER2 FISH pharmDx kit (Dako) according to the manufacturer’s instructions. Tumors with

amplification of HER2were considered HER2 positive (3+). Patient and tumor characteristics

are summarized in Table 1.

RNA extraction and reverse transcription

Total RNA was extracted from frozen tumor samples using Trizol reagent according to the

manufacturer’s protocol (Invitrogen Life Technologies, Carlsbad, CA, USA). The quality and

concentration of the total RNA were assessed using an Agilent 2100 Bioanalyzer (Agilent

Technologies, Foster City, CA, USA). Two micrograms of total RNA were reverse transcribed

in a total volume of 20 μl using the High Capacity cDNA kit with RNase inhibitor according to

the manufacturer’s instructions (Applied Biosystems, Foster City, CA, USA). The reaction

conditions were 25˚C for 10 min, 37˚C for 120 min and 85˚C for 5 min.

Assay design and real-time quantitative PCR

A qualitative review of literature on breast cancer was performed in PubMed/MEDLINE to

select 45 genes known to be regulated by hypoxia and involved in breast carcinogenesis. Selec-

tion of these genes was performed according to several criteria, including the presence of HRE

elements in promoters, ability to be activated by hypoxia and/or hypoxia-mimetic agents such

as desferrioxamine or cobalt chloride, and involvement in breast cancer aggressiveness

(Table 2). Real-time quantitative PCR analysis was performed using custom-made Taqman

Table 1. Clinical and histopathological characteristics of patients.

Characteristics Classification All patients (n = 32)

Age < 50

� 50

n = 8

n = 24

Estrogen receptors Negative

Positive

n = 1

n = 31

Progesterone receptors Negative

Positive

n = 8

n = 24

Lymph nodes Negative

Positive

n = 20

n = 12

Tumor stage 1

2–3

n = 7

n = 25

Grade mSBR 1-2-3

4–5

n = 25

n = 7

HER2 status Negative

Positive

n = 27

n = 5

Recurrence No

Yes

n = 18

n = 14

https://doi.org/10.1371/journal.pone.0175960.t001
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Table 2. List of selected gene expression assays.

Gene symbol Assay reference Gene name

Endogenous genes

18S Hs99999901_s1 -

RPL32 Hs00851655_g1 Ribosomal protein L32

Cell survival, proliferation, differentiation

BNIP3 Hs00969291_m1 BCL2/adenovirus E1B 19 kd-interacting protein 3

BRCA1 Hs00173233_m1 Breast cancer 1

CCND1 Hs00277039_m1 Cyclin D1

EPO Hs01071096_g1 Erythropoietin

HER2 Hs01001595_m1 Erythroblastic leukemia viral oncogene homolog 2

IGF2 Hs01005964_g1 Insulin-like growth factor 2

NDRG1 Hs00608387_m1 N-myc downstream regulated gene 1

BNIP3L Hs00188949_m1 BCL2/adenovirus E1B 19kDa interacting protein 3-like

TGFB3 Hs00234245_m1 Transforming growth factor beta

TGM2 Hs00190278_m1 Transglutaminase 2

Transcription factors and feed back

CEBPA Hs00269972_s1 CCAAT/Enhancer binding protein alpha

CITED2 Hs00366696_m1 Cbp/p300-interacting transactivator, 2

ETS1 Hs00901425_m1 v-ets erythroblastosis virus E26 oncogene homolog 1

FOXO3A Hs00921424_m1 Forkhead box O3

NR4A1 Hs00374230_m1 Nuclear receptor subfamily 4, group A, member 1

PHD2 Hs00254392_m1 HIF-prolyl hydroxylase 2

SNAI1 Hs00195591_m1 Snail homolog 1

TWIST1 Hs00361186_m1 Twist homolog 1

VHL Hs00184451_m1 Von Hippel-Lindau

PTEN Hs00829813_s1 Phosphatidylinositol-3,4,5-trisphosphate 3-phosphatase

Extracellular matrix, motility

CTSD Hs00157201_m1 Cathepsin D

CDH1 Hs01023895_m1 E-cadherin

KRT19 Hs00761767_s1 Keratin 19

CTGF Hs01026926_g1 Connective tissue growth factor

CXCR4 Hs00607978_s1 Chemokine (C-X-C motif) receptor 4

MET Hs01565582_g1 The proto-oncogene MET

MMP2 Hs00234422_m1 Matrix metallopeptidase 2

PLAUR Hs00182181_m1 Plasminogen activator, urokinase receptor

VIM Hs00185584_m1 Vimentin

Glucose metabolism, pH

GPI Hs00976711_m1 Glucose phosphate isomerase

CA9 Hs00154208_m1 Carbonic anhydrase 9

ENO1 Hs00361415_m1 Enolase 1

GLUT1 Hs00892681_m1 Glucose transporter 1

LDHA Hs00855332_g1 Lactate dehydrogenase A

NHERF1 Hs00188594_m1 Na/H exchanger regulatory factor 1

PGK1 Hs00943178_g1 Phosphoglycerate kinase 1

TPI Hs01593134_gH Triose-phosphate isomerase

Angiogenesis

COX2 Hs01573471_m1 Cyclo-oxygenase 2

EDN1 Hs00174961_m1 Endothelin

(Continued )
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low-density arrays (TLDAs), which are 384-well microfluidic cards preloaded with sets of

primers and specific probes designed to amplify selected genes (Applied Biosystems, Foster

City, CA, USA). Samples of cDNA (50 μl) were mixed with 50 μl of 2X Taqman Universal PCR

Master Mix (Applied Biosystems), and a total of 100 μl of reaction mixture was loaded on

TLDA cards, followed by centrifugation twice 1 min at 1200 rpm to distribute the samples

from the loading port into each well. The cards were sealed, and real-time quantitative PCR

amplification was performed using an ABI Prism 7900 HT Sequence Detection System accord-

ing to the manufacturer’s instructions (Applied Biosystems). Relative quantification (RQ)

analysis was performed with RQ Manager 1.2 software (Applied Biosystems). A threshold

cycle (Ct) value equal to 35 was used as the cutoff for non-expressed genes. The set of genes

included two housekeeping genes used as internal controls (RPL32 and 18S). In addition, gene

expression stability was determined by the NormFinder program, and optimal reference genes

for normalization were identified among the selected genes [24]. The average expression level

of all markers was also used to perform data normalization. The RQ of gene expression was

determined using the comparative ΔΔCt method based on the equation RQ = 2-ΔΔCt [25]. This

method allows the determination of the relative fold change ratio of a target gene between two

different groups.

Statistical analysis

Different groups of patients were defined according to clinicopathological criteria such as

tumor stage, histological grade, HER2 status and occurrence of relapse. For each gene, the aver-

age RQ was calculated in each group. The ratio of the average RQ between 2 groups was used to

determine the fold induction for the expression of each gene in a group of patients relative to

the corresponding control group. A positive fold change of 1 indicated 2-fold up-regulation,

and a negative fold change of -1 indicated 2-fold down-regulation. A comparative analysis of

gene expression profiles was performed between different groups. A parametric (Student’s t-

test) or a non-parametric test (Kruskal-Wallis test) was used to identify genes that were signifi-

cantly differently expressed between groups.

Unsupervised hierarchical clustering analysis based on ΔCt values was performed using the

Euclidean distance and Ward’s method based on barycenter calculation. Gene expression pro-

files were analyzed using all selected genes and differentially expressed genes with statistical

significance between the recurrent group and non-recurrent group. Secondary to cluster calcu-

lation, the Chi2 test was used to compare the proportion of relapses in the main selected clus-

ters of patients. This approach permits the validation of the relevance of the cluster analysis

and the influence of the expression of the genes on relapse risk.

Kaplan-Meier survival curves were constructed for distant or local relapse-free survival,

and statistical significance was examined using the Mantel-Haenszel test. Relapse-free survival

Table 2. (Continued)

Gene symbol Assay reference Gene name

ENG Hs00164438_m1 Endoglin

LEP Hs00174877_m1 Leptin

VEGF Hs00900054_m1 Vascular endothelial growth factor

Drug resistance

AK3 Hs00750261_s1 Adenylate Kinase 3

ABCB1 Hs01067802_m1 ATP-binding cassette, sub-family B member 1

ABCG2 Hs01053790_m1 ATP-binding cassette, sub-family G member 2

https://doi.org/10.1371/journal.pone.0175960.t002
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was defined as the time of diagnosis to the development of distant or local recurrence. The

internal consistency of predictive markers of relapse was assessed using Cronbach’s alpha coef-

ficient as a measure of scale reliability. All analyses were performed using the SEM statistical

software [26], and a probability value p< 0.05 was considered significant.

Results

Comparative analysis of hypoxia-related gene expression according to

clinicopathological data

The expression of selected genes was quantified by real-time quantitative PCR using Taqman

low-density arrays (Applied Biosystems). The relative quantification (RQ) of each gene was

determined in 32 tumor samples from 32 patients with breast carcinoma (S1 Table). Several

groups of patients were defined according to tumor stage (tumor stage 2–3 vs tumor stage 1),

histological grade (high mSBR grades vs low mSBR grades), HER2 status (HER2+ vsHER2-),

and relapse occurrence (recurrent vs non-recurrent patients). The distribution of patients

according to these clinicopathological criteria is presented in Table 1. A comparative analysis

of gene expression based on the fold induction values was performed between different groups

(Fig 1). Breast tumors were staged at diagnosis. The major tumor characteristic used to deter-

mine the stage was the tumor size. All patients have been diagnosed with early-stage invasive

breast cancer. However, two groups were defined: a group of 7 patients with stage 1 and a

group of 25 patients with stage 2 or 3. Only one patient was diagnosed with stage 3. The gene

expression profile was randomly distributed, and no genes were significantly differently

expressed between stages 2–3 and stage 1 (Fig 1A) (S2 Table). Patients were then divided into

two groups based on the mSBR grading system modified by Le Doussal. This modified grading

system was built from the nuclear pleomorphism and the mitotic index and retains five prog-

nostic classes instead of three. Le Doussal et al. have demonstrated that mSRB grades 1, 2 and

3 have a lower risk for developing metastasis than mSRB grades 4 and 5. Seven patients were

mSBR grade 4 or 5, and 25 patients were mSBR grade 1, 2 or 3. Overall, almost all genes were

overexpressed in patients with high mSBR grades compared with low grades. The genes in the

high-grade group were overexpressed by approximately 45% compared with the low-grade

group. Interestingly, the PTEN gene was 6-fold down-expressed in high grades compared with

low-grade tumors (p = 0.022). Insignificant differences (p< 0.10) were observed for BRCA1,

CDH1 and NHERF1, which are overexpressed in high-grade tumors, with increases of up to

2.2-, 1.6- and 1.5-fold, respectively (Fig 1B). Only 5 tumors were HER2+ (ICH+ and FISH+),

and 27 tumors were HER2-. Overexpression of the majority of genes was observed in the

group of patients with HER2+ breast cancer compared with the HER2- group. The genes in

the HER+ group were overexpressed by an average of approximately 50% compared with

HER- group. TheHER2 gene was overexpressed by more than 12-fold in the HER2+ group

(p = 0.0007). The NHERF1, PGK1 and PHD2 genes were also significantly overexpressed

(p = 0.028, p = 0.032 and p = 0.048, respectively). In addition, the TGM2,CDH1, CTSD,

FOXO3A and EDN1 genes were positively correlated with the HER2+ group (P < 0.10) (Fig

1C). A comparative analysis of gene expression profiles between recurrent and non-recurrent

patients was also performed. With the exception of the LEP gene, all genes were overexpressed

in the relapse group compared with the non-relapse group. The average gene overexpression

in the relapse group was approximately 75%. Six genes was significantly overexpressed in the

group of patients who relapsed: EPO (p = 0.013), ETS1 (p = 0.022), ENO1 (p = 0.003), PGK1
(p = 0.021), LDHA (p = 0.011) and TPI (p = 0.048). In addition, MET, VIM, CDH1,MMP2,

VHL, FOXO3, VEGF,ABCG2 and NDRG1 were associated with recurrent group (p< 0.10)

(Fig 1D).
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Fig 1. Hypoxia-related gene expression profiles according to clinicopathological data. Gene expression was determined using quantitative

real-time PCR as described in the Materials and Methods. The results are presented as the fold induction of relative quantification by classification in

ascending order. A positive fold change of 1 indicated 2-fold up-regulation, and a negative fold change of -1 indicated 2-fold down-regulation. A

comparative analysis was performed between (A) high tumor stage vs low tumor stage, (B) high mSBR grades vs low mSBR grades, (C) HER2

+ status vs HER2- status, and (D) recurrent patients vs non-recurrent patients. Statistical analysis was performed between groups using Student’s t

or Kruskal Wallis tests (red bar: p < 0.05; black bars: p < 0.10).

https://doi.org/10.1371/journal.pone.0175960.g001
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Hierarchical clustering analysis of hypoxia-related gene expression

Data are presented in heat map format combined with hierarchical clustering, thus revealing

the distribution of genes according to their expression in each tumor sample (Fig 2).

Fig 2. Profile of hypoxia-related gene expression in 32 tumors from patients with early-stage breast cancer. Data are

presented in heat map format combined with hierarchical clustering using ΔCt values of gene expression. Each row represents a

gene, and each column represents a patient. Gene expression is relative to the median of ΔCt values. Genes in red and green indicate

expression above and below the median, respectively. (A) Hierarchical cluster analysis using all selected genes. (B) Hierarchical

cluster analysis using the 6 differentially expressed genes with statistical significance between the recurrent group and non-recurrent

group.

https://doi.org/10.1371/journal.pone.0175960.g002
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Hierarchical clustering analysis of tumors based on the expression of all selected genes identi-

fied two main clusters of patients that were significantly associated with relapse occurrence

(p = 0.008, Chi2 test). In cluster a and cluster b, 13% and 70% of patients relapsed, respectively

(Fig 2A). The clustering based on the 6 significantly differentially expressed genes between the

recurrent group and non-recurrent group (EPO, ETS1, ENO1, PGK1, LDHA and TPI) also sig-

nificantly segregated patients who had relapsed: 0% of relapse in group a, 50% in b and 70% in

c (p = 0.0095). For the comparison of groups b and c together with a, p = 0.03 (Fig 2B).

Risk score of relapse

The comparison of gene expression between the relapse group and non-relapse group allowed

the identification of six significantly differentially expressed genes: EPO, ETS1, ENO1, PGK1,

LDHA and TPI. A basic algorithm was developed to classify patients according to a risk score

of relapse. To define this score, the optimum level of each gene significantly expressed in the

relapse group was determined by an iterative approach using the difference in relapse-free sur-

vival as the main criterion (Table 3). For each one of the six genes, a value of 1 was given if its

expression was higher than the optimum thresholds presented in Table 3. The risk score was

then calculated by summing the values attributed to each gene. Analysis of the Kaplan-Meier

relapse-free survival curves using the Mantel-Haenszel test statistic permitted the definition of

a threshold score of 2 (Fig 3). As shown in Fig 3, a threshold score equal to 2 yielded a signifi-

cant difference between recurrent and non-recurrent patients (p = 0.021). The risk of relapse

was multiplied by 1.384 if the score was� 3, which indicated that the risk of relapse was

increased by 40%. In the group with a score� 3, the relapse rate was 19% after 5 years and

42% after 10 years; by contrast, the rate was 0% in the other group because no patient belong-

ing to this group had relapsed. In addition, the statistical index of Cronbach’s alpha [27] indi-

cated that there was good consistency between all markers (alpha = 0.9) (Fig 4). In summary,

the analysis of the expression values of EPO, ETS1, ENO1, PGK1, LDHA and TPI permitted the

generation of a risk score of relapse in which a risk score of� 3 indicates a short relapse time

and a risk score� 2 indicates a long relapse time.

Discussion

A number of experimental and clinical studies have shown that adaptations of tumor cells to

hypoxia are associated with malignant progression and development of resistance to both che-

motherapy and radiotherapy [5, 28]. The expression of various hypoxic markers in breast can-

cer has been linked to a worse prognosis. In a clinical series of breast cancer patients, resistance

to endocrine therapy combined with chemotherapy has been associated with overexpression of

the HIF-1 alpha and CA9 proteins [29]. Cellular adaptations to hypoxia involve transcriptional

modifications responsible for tumor aggressiveness and resistance to treatment [30]. Many

approaches have sought to target the cellular response to hypoxia in human cancers [31, 32].

Table 3. Optimum level of gene expression thresholds discriminating relapse-free survival.

Gene Optima

EPO 7.10

ETS1 1.81

ENO1 1.00

PGK1 1.37

LDHA 1.20

TPI 1.14

https://doi.org/10.1371/journal.pone.0175960.t003
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Fig 3. Kaplan-Meier relapse-free survival curves according to the risk score of relapse. Curve 1: 15

patients with score� 2. Curve 2: 17 patients with score� 3. The 14 recurrent patients were in curve 2

(p = 0.021, Mantel-Haenszel test).

https://doi.org/10.1371/journal.pone.0175960.g003

Fig 4. Analysis of the internal consistency of the 6 genes differentially expressed between recurrent

and non-recurrent patients. Cronbach’s alpha coefficient was calculated to measure internal consistency

(alpha = 0.90).

https://doi.org/10.1371/journal.pone.0175960.g004

Hypoxia-related gene expression and clinical outcome of breast cancer

PLOS ONE | https://doi.org/10.1371/journal.pone.0175960 April 21, 2017 11 / 18

https://doi.org/10.1371/journal.pone.0175960.g003
https://doi.org/10.1371/journal.pone.0175960.g004
https://doi.org/10.1371/journal.pone.0175960


Inhibition of HIF-1 alpha activation appears to be the main approach and may improve the

response to chemotherapy. Analysis of hypoxia-related gene expression may be useful in the

development of novel therapeutic strategies for breast cancer. Several authors have identified

different molecular signatures predicting the clinical outcome of cancer diseases; but these sig-

natures differ greatly and share quite a few genes [21, 33, 34]. The aim of this study was to quan-

tify the expression of well-known hypoxia-related genes in primary tumors from patients with

early-stage breast cancer to assess their potential value as prognostic and predictive markers for

cancer development and relapse occurrence. All patients included in this study received chemo-

therapy and endocrine therapy after initial surgery.

Multiple genes have been reported to be regulated by HIF complexes. These hypoxia regu-

lated genes are involved in biological processes allowing tumor progression, such as cell prolif-

eration and differentiation, survival, glucose metabolism, angiogenesis, migration, motility

and drug resistance [12, 35]. A qualitative review of relevant literature related to tumor hyp-

oxia and breast cancer enabled the selection of a set of candidate genes. Among these genes,

we established a molecular signature composed of 45 genes involved in hypoxia signaling path-

ways and breast cancer progression. The expression of selected genes was quantified in a retro-

spective series including 32 tumor samples derived from patients with early-stage invasive

ductal carcinoma without treatment at diagnosis. A comparison analysis of gene expression

was performed according to clinicopathological features (stage, mSBR grade, HER2 status)

and relapse occurrence.

Analysis of gene expression did not appear to be influenced by the clinical stage of tumors

previously defined from the tumor node metastasis (TNM) classification. All patients were

diagnosed with stage 1 or 2 breast cancer, with the exception of one patient with stage 3. The

distribution of gene expression according to clinical stage showed no significant difference

between stage 1 and stages 2 and 3. All tumors were less than 5 cm (T1 or T2) and were node-

negative or 1 to 3 lymph-node positive (N0 or N1). These clinical criteria defined a relatively

homogeneous group with no distant metastasis (M0). A hypoxic microenvironment has been

consistently identified as a feature that promotes metastatic processes in breast cancer [36].

HIF factors regulate the transcription of several genes involved in different steps of the meta-

static process, including angiogenesis, extracellular matrix modulation, cell migration and

adhesion [37]. High proportions of hypoxic cells and increased levels of HIF-1 alpha protein

in primary tumors of breast cancer patients indicate increased risk of metastasis and decreased

overall survival rates [38]. Bos et al. revealed that high levels of HIF-1 alpha were significantly

associated with overall survival in patients with negative lymph node status. However, no cor-

relation was observed between levels of HIF-1 alpha expression and tumor size or lymph node

status in a retrospective series of early-stage breast tumors [39]. In agreement with this finding,

the expression of the hypoxia-regulated genes selected in this study was not associated with

stage in this series of breast cancer patients.

In contrast to clinical stage, overexpression of almost all markers was observed in the group

of patients with high-grade tumors. This group was also characterized by a significant decrease

in PTEN gene expression. PTEN is a tumor suppressor that encodes a phosphatase involved in

downregulation of the PI3K/AKT signaling pathway. The PTEN gene is frequently mutated or

inactivated in multiple human cancers, including a large proportion of breast cancers. A num-

ber of clinical studies have demonstrated that loss or reduced expression of PTEN is involved

in breast cancer progression, poor prognosis and resistance to treatment [40]. PTEN is also a

negative regulator of HIF-1 alpha expression [10]. Some mutations or deletions of PTEN
induce hyperactivation of the PI3K/AKT signaling pathway and activation of HIF complexes.

In vitro studies of PTEN knockout in cancer cell lines have provided evidence for the role of

PTEN in the stability and activity of the HIF-1 complex [10]. Tumor hypoxia and loss of PTEN
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function result in activation of HIF factors, followed by increased transcription of hypoxia-

related genes and the development of a more aggressive breast cancer.

A similar analysis was performed in the group of patients with HER2+ breast cancer vs the

group of HER2- patients. As expected, patients with HER2+ status harbored strong amplifica-

tion of theHER2 gene. In addition, significant differences in gene expression were observed

for NHERF1 (Na/H exchange regulatory factor), PHD2 (prolyl-hydroxylase 2) and PGK1
(phosphoglycerate kinase 1). The NHERF1 gene encodes a protein capable of interacting with

the HER2 receptor [41]. The mechanism of action of NHERF1 in tumor cells has not been elu-

cidated, but it has been reported that NHERF1 plays an important role in cancer development.

NHERF1 overexpression is associated with high-grade tumors and increased expression of

HIF-1 alpha protein in breast cancer [42]. Transcriptional activation of NHERF1 by hypoxia

has also been established in in vitro models, including several breast cancer cell lines [43]. The

protein encoded by the PHD2 gene is a dioxygenase that catalyzes the post-translational

hydroxylation of HIF-1 alpha protein under normoxia. This enzyme plays a central role in the

regulation and stability of HIF complexes. In vitro studies have demonstrated that levels of

PHD2 expression are increased in hypoxic conditions. The promoter of PHD2 contains HRE

elements, allowing the establishment of a positive feedback loop under hypoxia [44, 45]. In

addition, increased levels of PHD2 protein have been correlated with relapse and tumor metas-

tasis [46].

The PGK1 gene was also significantly overexpressed in the group of patients with high

mSBR grade as well as in the group of recurrent patients. Indeed, the comparative analysis of

gene expression between recurrent patients and non-recurrent patients revealed overexpres-

sion of almost all genes. The PGK1, LDHA, TPI, ENO1, EPO and ETS1markers were signifi-

cantly overexpressed in the relapse group compared with the non-relapse group. Among these

6 significantly differentially expressed genes, PGK1, ENO1 (enolase), LDHA (lactate dehydro-

genase) and TPI (triose phosphate isomerase) are directly involved in glucose metabolism and

encode glycolytic enzymes. HIF factors have long been implicated in the regulation of genes

involved in glucose metabolism in tumor cells [47]. These genes have HRE elements in their

respective promoters and therefore bind HIF complexes [48]. In hypoxia, cancer cells redirect

their aerobic metabolism to anaerobic metabolism by activating glycolysis, which becomes the

main source of energy. Several other genes targeted by HIF factors are involved in multiple

steps of glucose metabolism and are up-regulated under hypoxia. Overexpression of the TPI,

PGK1 and ENO1 enzymes has been demonstrated in a series of breast tumors [49]. Expression

of LDHA is increased in hypoxic tumor cells, leading to increased ATP production and cell

proliferation. This enzyme catalyzes the conversion of pyruvate into lactate under hypoxia.

The lactate is absorbed by non-hypoxic tumor cells for use as a respiratory substrate for pro-

moting angiogenesis and metastasis [50]. In several breast cancer cell lines, inactivation of

LDHA inhibits cell proliferation and induces apoptosis [51]. The EPO gene encodes erythro-

poietin, which is a specific stimulator of erythropoiesis [52]. The HIF-1 factor was discovered

by the identification of HRE elements in the promoter of EPO [53]. Regulation of EPO by HIF

complexes under hypoxic conditions is well documented [54]. EPO is a potent inhibitor of

apoptosis caused by ischemia and hypoxia [55]. In erythrocytes, binding of EPO to its receptor

(EPOR) results in the activation of multiple signaling pathways responsible for cell prolifera-

tion and differentiation [56, 57]. EPO and its receptor are also expressed in other cell types,

including endothelial cells and mammary epithelial cells [58]. High mRNA and protein levels

of EPO and EPOR have been reported in several cancer cell lines. In vitro studies in breast can-

cer cell lines have demonstrated that autocrine/paracrine production of EPO and EPOR under

hypoxia contributes to cell survival and proliferation. Other authors have shown that the EPO/

EPOR axis plays an important role in the regulation of the migration and invasion of breast
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cancer cells [59]. The ETS1 gene is a proto-oncogene encoding a transcription factor involved

in the proliferation of normal breast epithelial cells. This gene is also involved in tumor progres-

sion in breast cancers and contributes to aggressive tumor phenotypes by activating the tran-

scription of genes involved in angiogenesis, extracellular matrix remodeling, cell adhesion and

invasion [60]. In addition, HRE elements have been identified in the promoter of ETS1, suggest-

ing transcriptional activation under hypoxic conditions [60]. Span et al. demonstrated that

increased expression of ETS1was associated with increased risk of recurrence in a series of inva-

sive breast cancers. In agreement with these previous studies, overexpression of this 6-gene set

appears to be involved in tumor progression contributing to the occurrence of relapse.

Overall, the expression of the 45-gene set was associated with aggressive tumors characterized

by high grade, HER2+ status and increased recurrence risk. This gene signature reflects the

impact of the hypoxic microenvironment on cancer cells. Our findings provide further evidence

that hypoxia-related genes are involved in the clinical outcome of breast cancer by activating

hypoxia signaling pathways. Although this study is based on a limited number of patients, assess-

ment of hypoxia-related gene expression in breast cancer could have potential prognostic value.

In particular, quantification of the expression of EPO, ETS1, PGK1, TPI, LDHA and ENO1 in a

primary tumor sample provides information on the risk of recurrence for patients with early-

stage invasive breast cancer. The calculation of a score from the expression of this 6-gene set per-

mitted the classification of patients with a low or high risk of relapse. A primary breast tumor

with a risk score� 3 has a high risk of recurrence, and a tumor with a risk score� 2 has a low

risk of recurrence. Furthermore, hierarchical clustering analysis of gene expression identified

two main groups of patients significantly associated with relapse occurrence.

In summary, we have defined a molecular signature specific to hypoxia responses in breast

cancer. This gene signature was associated with tumor aggressiveness and the risk of recurrence.

The expression of the 6-gene set allowed the calculation of a relapse risk score. In addition to

existing clinicopathological parameters, we showed that the assessment of hypoxia-related gene

expression using simple real-time PCR assays in frozen breast tumor samples could improve

the prediction of recurrence risk in breast cancer. Although this study has some limitations,

such as its retrospective nature and the limited number of patients, our results provide addi-

tional clinical evidence that hypoxia-related gene expression has prognostic potential. Of course,

it will be necessary to validate the clinical relevance of the risk score based on these 6 genes in

independent studies including larger prospective patient cohorts. In addition, this risk score

provides a prediction of relapse likelihood regardless of treatment type. Thus, it will be interest-

ing to assess the potential value of the risk score of relapse following specific therapies.
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