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ABSTRACT The spread of mcr-1-encoding plasmids into carbapenem-resistant En-
terobacteriaceae raises concerns about the emergence of untreatable bacteria. We re-
port the acquisition of mcr-1 in a carbapenem-resistant Escherichia coli strain after a
3-week course of colistin in a patient repatriated to France from Portugal. Whole-
genome sequencing revealed that the Klebsiella pneumoniae carbapenemase-producing
E. coli strain acquired two plasmids, an IncL OXA-48-encoding plasmid and an IncX4
mcr-1-encoding plasmid. This is the first report of mcr-1 in carbapenemase-encoding
bacteria in France.
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Colistin is a last-resort antibiotic reserved for treating multidrug-resistant Gram-
negative bacilli. However, the increased use of colistin in clinical treatment and

agricultural and animal production has led to the emergence of bacterial resistance to
the drug. In November 2015, the first transferable plasmid-mediated colistin resistance
gene, mcr-1, was detected in China in retail meat and human samples (1). The gene was
observed worldwide a few months later. The spread of mcr-1-encoding plasmids into
carbapenem-resistant Enterobacteriaceae (2–5) is causing concern about the rise of
untreatable bacteria (6).

In this work, we report an in vivo acquisition of mcr-1 in carbapenemase-producing
Escherichia coli after a 3-week course of colistin in a patient repatriated to France from
Portugal in 2016. The 44-year-old man was hospitalized in Portugal for 2 months after
a traffic accident. He had multiple traumas, including a thoracic injury associated with
a respiratory Enterobacter cloacae infection that was treated with a combination of
piperacillin and tazobactam. Carbapenemase-producing Enterobacteriaceae (CPE) be-
longing to the species Klebsiella pneumoniae and E. coli were isolated from a stool
sample after treatment. A second episode of lower respiratory tract infection involving
Acinetobacter baumannii, Pseudomonas aeruginosa, and the carbapenemase-producing
K. pneumoniae was successfully treated by a 20-day course of colistin. The patient was
then repatriated to an intensive care unit in France, where two E. coli isolates desig-
nated WI1 and WI2 were recovered from a feces CPE screening sample taken on the
patient’s admission with CarbaSmart medium (bioMérieux, La Balme, France).

The E. coli WI1 and WI2 isolates were resistant to penicillins, oxy-imino-
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cephalosporins, and carbapenems. The colistin MIC (broth microdilution method) was
in the sensitive range (0.25 �g/ml) for the WI1 isolate. In contrast, the MIC was in the
resistance range for the E. coli WI2 isolate, with a value of 4 �g/ml, as usually observed
for mcr-1-harboring E. coli. The whole-genome sequence (WGS) of strain WI2 was
determined by hybrid de novo assembly of 2� 150-bp paired-end reads generated with
Illumina sequencing technology (San Diego, CA, USA) and long reads generated with
Pacific Biosciences RS II SMRT technology (Menlo Park, CA, USA). WGS of strain WI1 was
determined by de novo assembly of 2� 150-bp paired-end reads (Illumina) and
mapping to the genome of strain WI2. De novo assemblies were performed with SPAdes
(7), the mappings with Burrows-Wheeler aligner (8), and the final polishing of the
assembly with Pilon (9). The average depth sequencing (ADS) was 125� and 145� for
WI1 and WI2 chromosomes (4.8 Mb), respectively. Three plasmids were detected in
strain WI1 (ADS, 282� to 320�; sizes, 54,502 to 83,831 bp) and five in strain WI2 (ADS,
81� to 213�; sizes, 33,304 to 83,832 bp). The plasmid content of the strains and the
size of the plasmids were confirmed with plasmid DNA extracted by alkaline lysis, as
previously described (10).

The antibiotic resistance genes were detected with the Comprehensive Antibiotic
Resistance Database (CARD) (11). E. coli WI1 did not harbor mcr-1 but did harbor the
carbapenemase-encoding gene blaKPC-3. In contrast, E. coli WI2 harbored the mcr-1
gene and two carbapenemase-encoding genes, blaOXA-48 and a blaKPC-3 variant gene
designated blaKPC-28 (accession number KY282958). The sequence of blaKPC-28 was
confirmed by PCR and Sanger sequencing. The deduced amino acid sequence of
KPC-28 was derived from KPC-3 by two amino acid deletions in the catalytic pocket at
positions 241 and 242. The KPC-28- and KPC-3-encoding open reading frames were
cloned in E. coli DH5� with pBK-CMV vector (Stratagene, San Diego, CA, USA). MIC
values suggested that the deletions at positions 241 and 242 decrease the activity
against amoxicillin and carbapenems but improve the activity against ceftazidime
(Table 1). Isolates WI1 and WI2 shared the other antimicrobial resistance gene contents
(strA, strB, folP, and tetBDR), and no mutation was detected in chromosomal genes
involved in quinolone (gyrA, gyrB, parC, and parE) and colistin (mgrB, pmrAB, and phoPQ)
resistance.

The isolates were typed from WGSs by assigning sequence types according to the
MLST Warwick University website. WI1 and WI2 belonged to sequence type ST1288 and
E. coli phylogroup C (12). Single nucleotide polymorphism calling was performed from
alignments generated by parsnp in deeply sequenced regions (�60�) (13), which were
filtered for repeat elements, phages, and putative recombination events. Among
4,219,421 bp, WI1 and WI2 diverged by only four single nucleotide variants (SNVs) and
were therefore determined to be two isolates of the same strain.

The assembled genomes were analyzed by PlasmidFinder (http://www
.genomicepidemiology.org/) using the Enterobacteriaceae database with the detection
thresholds set at 95% sequence identity. Three replicons (IncN, IncFII, and IncI1) were
shared by both isolates. However, WI2 contained two additional replicons (IncX4 and
IncL). The 33,304-bp-long IncX4 plasmid, designated pWI2-mcr, harbored mcr-1 and
encoded no other antimicrobial resistance gene. The most closely related plasmid is
the unpublished mcr-1-harboring plasmid pICBEC72Hmcr characterized in Brazil

TABLE 1 Susceptibilities of the studied strains to �-lactams, by microdilution method

Strain
Carbapenemase-
encoding genes

MIC (�g/ml) ofa:

AMX FOX CAZ CTX FEP IPM ETP MEM

WI1 blaKPC-3 �256 16 �256 �32 12 4 6 2
WI2 blaKPC-28, blaOXA-48 �256 8 �256 8 6 1 3 0.38
E. coli DH5�-KPC-3 blaKPC-3 �256 8 4 1 1 1 0.125 0.25
E. coli DH5� KPC-28 blaKPC-28 64 8 64 0,5 1 0.125 0.032 0.032
E. coli DH5� 1 4 0.06 0.06 0.032 0.05 0.006 0.006
aAMX, amoxicillin; FOX, cefoxitin; CAZ, ceftazidime; CTX, cefotaxime; FEP, cefepime; IPM, imipenem; ETP,
ertapenem; MEM, meropenem.
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(CP015977). The pWI2-mcr sequence covered 99.98% of the pICBEC72Hmcr plasmid
sequence and differed from the latter by only four SNVs.

A 62,645-bp-long IncL plasmid, designated pWI2-OXA48, carried blaOXA-48. pWI2-
OXA48 differed from the pOXA-48a reference plasmid by a 2,762-bp deletion (14). The
deletion occurred within orf25 at base 22,738, leading to the suppression of ccgA1 and
orf26 genes. The deleted region was replaced by insertion sequence IS1R, which is
probably involved in this novel arrangement within the backbone of a pOXA-48-like
plasmid (15).

In the WI1 and WI2 isolates, blaKPC-3 and blaKPC-28 were carried by ST15-IncN
54,518-bp and 54,533-bp plasmids, designated pWI1-KPC3 and pWI2-KPC28, respec-
tively. The plasmid pWI2-KPC28 differed from pWI1-KPC3 by the deletion of 6 bp, which
generated the new blaKPC variant. A 21-bp deletion occurred within hypothetical
protein (49.871 to 50,728 bp) in pWI1-KPC3. No additional resistant gene was detected
in these plasmids. The two strains also contained two identical plasmids devoid of
antibiotic resistance genes and belonging to incompatibility groups IncI1 (83,831 bp)
and IncFII (60,622 bp).

In conclusion, our data support the in vivo acquisition of mcr-1- and blaOXA-48-
bearing plasmids by a KPC-producing E. coli probably following treatment with colistin.
The emergence of multidrug-resistant isolates, such as E. coli WI2, that need to be
carefully monitored is becoming a major burden on health care systems worldwide.

Accession number(s). The complete genome sequences of WI1 and WI2 strains
were deposited in EMBL/GenBank under assembly accession numbers LT838196,
LT838197, LT838198, and LT838199 (WI1) and LT838200, LT838201, LT838202,
LT838203, and LT838204 (WI2).
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