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Effects of particle mixtures and nozzle geometry
on entrainment into volcanic jets

D.E.Jessop' and A. M. Jellinek'

"Department of Earth, Ocean and Atmospheric Sciences, University of British Columbia, Vancouver,
British Columbia, Canada

Abstract Efficient turbulent entrainment causes otherwise dense volcanic jets to rise high into the
atmosphere as buoyant plumes. Classical models suggest that the inflow of air is 10-15% of the axial
velocity, giving predictions for the height of the plume and, in turn, the composition and structure of the
resulting umbrella clouds. Crucially, entrainment is assumed independent of source geometry and
mechanically unaffected by the pyroclastic mixture properties. We show that particle inertia and vent
geometry act to modify the shape of the largest eddies defining the jet's edge and thus entrainment

of the ambient. Whereas particle-free flows are essentially unaffected by vent shape, entrainment into
particle-laden flows is enhanced for flared vents and reduced for cylindrical vents. Our results predict that
vent erosion during an explosive eruption reduces the height of volcanic jets, alters the structure and
sedimentation regime of the umbrella cloud, and the resulting deposit.

1. Introduction

The rise and spread of initially dense volcanic jets into the atmosphere is governed by the entrainment and
heating of ambient air as well as the source conditions and environmental stratification [Morton et al., 1956;
Woods, 1995]. Indeed, the rise height, H,, scales as

Ho ~ Qa2 N3/, M

where q, is the entrainment coefficient (see below), f, is the buoyancy flux at the source, and N is the buoy-
ancy frequency defined by the density stratification of the atmosphere [Morton et al., 1956; Carazzo et al.,
2008]. Whether jets ultimately ascend as buoyant plumes to form an umbrella cloud or collapse as a fountain
to produce devastating pyroclastic flows depends on whether sufficient atmosphere is incorporated to drive
a buoyancy reversal [Woods, 2010]. Studies of the jet’s motion relate the entrainment velocity to some frac-
tion of the axial velocity [Morton et al., 1956]. Experiments using particle-free jets show that the entrainment
coefficient given by the ratio of these two velocities, a, ~ 10-15% depending on whether the jet is momen-
tum or buoyancy dominated [Fischer et al., 1979; Linden, 2002]. Recent studies highlight that «, depends

on the buoyancy of the jet and can vary by as much as a factor of 2 along the height of a jet as the buoy-
ancy and velocity profiles evolve with distance [Papanicolaou and List, 1988; Wang and Law, 2002; Kaminski
et al., 2005; Carazzo et al., 2006]. However, in the current state-of-the-art, the entrainment coefficient has no
dependence on the vent size, geometry, or mass loading in particles. Mechanical erosion during an eruption
can, for example, cause vent geometry to change from a cylindrical to an outwardly flared geometry. Such
a geometric change affects the trajectories of entrained inertial particles and can guide the initial momen-
tum flux of the mixture. Although the effect of vent size has been discussed in the context of the supersonic
to subsonic transition in overpressured systems [Wilson et al., 1980; Woods and Bower, 1995], the explicit
mechanical effect of vent geometry on entrainment rates is an effect that has previously been ignored.

Although explosive volcanic eruptions are rich in particles of a wide range of sizes (e.g., pumice and ash),
few studies address the influence of particles on the mechanics of entrainment and mixing. In particu-

lar, whereas entrained particles impart additional inertial and buoyancy effects, most previous studies

of particle-laden jets [e.g., Carey et al., 1988; Veitch and Woods, 2002] assume that particles contribute
only to the state of the jet. Whether and how these particles influence the entraining properties of the
largest eddies depends on the extent to which they are coupled to the flow [Crowe et al., 1997]. The inertial
response time of entrained particles is characterised by 7, = ppdf]/(18fy), where p, and d, are the particle

JESSOP AND JELLINEK

©2014. American Geophysical Union. All Rights Reserved. 1


http://publications.agu.org/journals/
http://onlinelibrary.wiley.com/journal/10.1002/(ISSN)1944-8007
http://dx.doi.org/10.1002/2014GL060059

@AG U Geophysical Research Letters 10.1002/2014GL060059

density and diameter, respectively, u is the fluid viscosity, and f is a drag factor of ©O(1) for the flows studied
here [Burgisser et al., 2005; Carazzo and Jellinek, 2012], and the time scale for the overturn of eddies defin-
ing the edge of a volcanic jet is given by 7, = I,/u, (I, and u, are length and velocity scales for the eddy,
respectively). For example, where 7, is comparable to 7, these particles will be sequestered to the margins
of these motions and influence their angular momentum and the exchange of momentum with the ambi-
ent atmosphere as well as internally [Elghobashi, 1994; Crowe et al., 1997; Raju and Meiburg, 1997; Burgisser
et al., 2005; Dufek and Bergantz, 2007]. The ratio of these time scales is the Stokes number, St = 7, /7, and
these so-called “Stokes number effects” enter, where St ~ 0.1-1 [Raju and Meiburg, 1997; Crowe et al., 1997].
In general, although important in the cloud, particle settling is slow in comparison to eddy overturn in the
jet and so we neglect it here [Carazzo and Jellinek, 2012].

In order to entrain ambient fluid, the eddies that define the edges of a turbulent jet must penetrate, deform,
and overturn stabilising density interfaces that define the environmental stratification. The extraction

of kinetic energy to do the work of this mechanical mixing is conventionally expressed as a Richardson
number, Ri = ¢'b/i?, where b, G, and ¢’ are the local jet radius, mean axial velocity, and reduced grav-

ity, respectively, which expresses the local balance between destabilising inertial and stabilising buoyancy
forces [Linden, 1973, 1979]. Particles with large St contribute to the inertial forces in potentially complicated
ways [Elghobashi, 1994]. Thus, to map a parameter space, it will be more useful to define Ri at the source,
Ri, = ggro/uf) (in general, Ri « |Ri,|), where a subscript 0 refers to the value at the source and jet width
here is equal to the nozzle radius, r,. These parameters are based on the source conditions that we control
externally. We return to this issue below.

Given that the efficiency of entrainment ultimately determines whether a given eruption will form a stable
cloud or a pyroclastic flow [Woods and Caulfield, 1992], the lack of information on how particles coupled

to the flow affect entrainment is an alarming knowledge gap for volcanic hazard assessment. Accordingly,
we use analog experiments conducted under St~0.1-1 and theory to build understanding of the effect of
particle inertia on the motions that ultimately govern entrainment into volcanic jets. We investigate two
issues: the first is simply to characterise how particles influence the entrainment properties in jets from a
quasi-point source, which is the usual setup for these problems [Woods, 2010; Carazzo and Jellinek, 2012];
second, we explore whether the results change if the analog volcanic jet is erupted from flared rather than
cylindrical sources. Significantly, we will show that vent erosion combined with St ~ 0.1-1 particles will
increase entrainment through their profound effect on the structure of the motions governing entrainment.

2. Model

Under steady state conditions, conservation of volume, g, momentum, m and buoyancy, f, in a turbulent,
self-similar, isothermal jet with a “top-hat” radial velocity profile is expressed by the following [cf. Morton et
al., 1956; Woods, 2010]:

dq_ 1/2 dm_ ’ 2 df_
dz_za“’m M 79 g T

where g = b%0, m = b%4?, and f = g'q [Woods, 2010].

-N%q, )

Entrainment causes a rising jet to increase in radius against the stabilising influence of environmental strat-
ification, an effect which is expressed through Ri. Thus, we write b = g/m'/2, Ri = f|Ri,| and differentiate
with respect to height to obtain

db Rig
— =2a,—- f— =tanb. 3
dz %=F 2 3)
With (3) we use experimental measurements of the jet angle 6 (Figure 1) to obtain @, and g as functions of 6
and Ri,. As a final remark here, |Riy| 1/U§ and thus 1/ provides a metric for the effects of particle inertia
and vent geometry on mixing.

3. Experiments

We use the method of Carazzo and Jellinek [2012] to inject a mixture of particles and fresh water at a
fixed rate at the base of a 20 cm deep layer of salt water overlain by a 40 cm deep layer of freshwater in
a 1 mx1mx0.8 m tank. For simplicity, we choose a single density interface to mimic effects related to a
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Figure 1. (top) Definition of parameters used in this study superimposed on an experiment image. Volume (g,), momen-
tum (myg), and buoyancy fluxes (f;) are supplied at the source and enter the tank through a nozzle with exit radius ry. The
jet rises with width, 2b, in a stratified environment characterised by p,(z) to a maximum height, z,,,, before spreading lat-
erally as a cloud at the level of neutral buoyancy (LNB). The distance between z,,, and the LNB is the overshoot height,
hos. The angular spread of the jet, 26, is measured from the outlet to the point at which the cloud forms. (bottom) A
schematic of the geometry of flared and straight nozzles. The nozzles have entry and exit radii, r, and ry, respectively,
and depth /y. See also supporting information for details of the nozzle geometries.

more realistic quasi-linear stratification, an approximation that is appropriate provided that the buoyancy
frequencies of the analog and natural cases are scaled carefully [Fan, 1967; Carazzo and Jellinek, 2012]. To
map the effects of vent geometry and St on entrainment rates over a range of Ri, appropriate for natural
eruptions, we inject the particle-water mixtures with specified properties (cf. Table 1 and Figure 2) through
a nozzle with an aspect ratio ¢ = r,/l, and flare angle, 6,,,,,,. that we control (see supporting information
and Figure 1 (bottom)). We cover a range of source conditions which correspond to those seen in nature,
namely Riy = 10~ — 107" and the total particle volume fraction, ¢ = 10~% — 107" [cf. Carazzo and Jellinek,
2012, Figure 3]. Finally, we measure steady state entrainment for given conditions by determining the angu-
lar spread, 6 as defined in Figure 1, of the jet from the vertical from a stack of images taken with a digital
single-lens reflex camera recording at 1 frame per second, and fitting (3) to this data.

4, Results

Figure 2 shows @ as a function of Ri,. We also make a qualitative comparison (insets) between our exper-
iments and two major volcanic eruptions of recent times, Mt. St. Helens, 22 July 1980 and Grimsvotn
21-28 May 2011. We group the data according to nozzle geometry and particle concentration. We explore
particle-free, dilute, and particle-rich jets erupted from cylindrical and flaring nozzles. Using a weighted
least squares regression, we fit the model given by (3) to the data for each set of experiments (the fitted
parameters can be found in the supporting information). Our results for broad, straight nozzles are limited
by practical considerations and do not constrain the model. We show that a, decreases from 0.158 for flared
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Table 1. Properties of Particles (Finely Ground Silica and Graded Silica Sand)
Used in Our Experiments: Mean Particle Size, ap; Standard Deviation of Par-
ticle Size Distribution, o4 ; Particle Density, Ppi Particle Relaxation Time, Tpi

Stokes Number, St2

dp/(um)  og /(um)  pp/(@/cm®)  7/(5)° SO

Fine silica 67.8 27.2 252 1.83x107%  0.25
Silicasand ~ 251.1 76.2 2.50 1.19% 1073 156

2Densities were determined by volume displacement and size dis-
tributions were determined by passing the materials through a graded
range of sieves. The particles were approximately normally distributed and

well sorted.
bFor a viscosity of u = 103 Pas (plain water at 20°C).
¢Experimentally confirmed estimate for z; ~10ry /.

nozzles to 0.096 for narrow nozzles, and it has a value of 0.149 for particle-free flows, consistent with pub-
lished data [Fischer et al., 1979; Linden, 2002]. The parameter g increases from 14.3 for flared nozzles to 345.4
for narrow nozzles and is 293.3 for the particle-free flows.

5. Discussion and Applications to Volcanic Jets

Our results show that high concentrations of St ~ 0.1-1 particles will reduce entrainment into jets erupted
from cylindrical sources and enhance the inflow of ambient fluid when the source is flared. Physically,
entrainment is governed ultimately by the extent to which the largest eddies defining the edge of the jet
penetrate and overturn the ambient fluid. The penetration distance h ~ b must depend on both the shape

0.35

Jet angle, 6/[rad]

Particle-free and very dilute flows

O
[ ] Small particles only
’ Large particles only
\ A Both particle sizes
NI . . L \ \ .
107° 1072 107!

Source Richardson number, -Rij

Figure 2. Regime diagram for the jet angle as a function of source Richardson number. Distinct behaviors are seen for
narrow (red), broad (grey), and flared (green and magenta) nozzles, and also for particle-laden, particle-free, and very
dilute jets. The flare angles, 6,450, are 11.73° and 13.34° (see Table S1 of supporting information). Insets: (top right)
qualitative comparison between an experiment with a flared nozzle to the 22 July 1980 eruption of Mt. St. Helens (pho-
tograph by J. Nieland), (lower left) comparison between an experiment with a narrow straight nozzle and the 21-28 May
2011 Gimsvétn eruption (photograph by S. Linnet). Both comparisons are based on the scale of fingers and layering

in the neutral cloud. The arrow labeled “Erosion and Slumping” indicates the evolution of the entrainment coefficient
during an eruption as the nozzle evolves from a cylindrical to flared shape. Error bars show measurement uncertainty.
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Figure 3. (left) Schematic illustrating the ability of a particle-free versus particle-laden eddies to overturn a density inter-
face. In the particle-laden case, vertical stretching of the vortex (characterised by /, and Iep) leads to a lower capacity for
interface overturning, as indicated by the reduced penetration distance, h(r). (right) Schematic illustrating the trajecto-
ries of particles issuing from flared and straight nozzles. The range of possible trajectories is greater for a flared nozzle
than a straight nozzle. The lower diameter of both nozzles, r,, is identical.

and angular momentum of these eddies. Whereas St ~ 0.1-1 particles contribute mass and augment the
angular momentum of entraining eddies, the nozzle geometry has a crucial effect on the shape of these
overturning motions (Figure 3 (right)): cylindrical nozzles restrict particle trajectories to a greater extent
than flared nozzles, leading, in turn, to vertically stretched eddies and a smaller average penetration dis-
tance h. Qualitatively, this picture implies that for particle-rich jets erupted from a cylindrical nozzle, less
kinetic energy (K.E.) is extracted from the jet velocity field to do the work of mechanical entrainment and
mixing against the stabilising environmental stratification. Quantitatively, A= 1/8 = Ri,/Ri, is a measure of
the efficiency with which K.E. input at the source is used in mixing. Our results show that A, for flared vents
is a factor of 25 larger than values for cylindrical vents 4. and a factor of 20 larger than that for particle free
flows A. The additional lateral momentum flux imparted (indicated by 1) to the flows as a result of the flared
geometry enhances entrainment efficiency and leads to a, . < a, < a,, which is consistent with the linear
relationship between a, and local Ri proposed by Kaminski et al. [2005]. The shaping effect on the momen-
tum flux of cylindrical versus flared nozzles may also play out in the fluid phase, as suggested by fact that
the data points for a particle-free flows in narrow and flared nozzles are separated.

Volcanic vents can erode from cylindrical to flared geometries during explosive eruptions. Our results show
that this evolution will have a remarkable effect on entrainment (cf. the erosion and slumping arrow in
Figure 2) and thus on the structure and height of the volcanic jet and resulting umbrella cloud. In particular,
the scale height, given by (1) depends strongly on a, and more weakly on f,. For example, if during an erup-
tion the vent goes from being straight to flared (i.e., @, = 0.094 — 0.159 as per our experiments), then the
new scale height (H,,,) increases by a factor of H,,,/Ho = (@e/ @ new)/* (G e, dnew/ (G4 G0))'/*. If the eruption
rate and eruptive products remain the same (i.e., Gy = g, and g; = g/.,) then H,.,, = 0.76H,, i.e, the jet
height drops by 25%. Such a large reduction in the plume height through this process will cause a mono-
tonic vent ward shift in where the largest pumice clasts and lithic blocks fall to the ground, which should be

expressed in the architecture of the deposit. We explore this prediction in detail in a forthcoming paper.

The improved entrainment efficiency that comes with a flared vent means that the jet becomes relatively
more buoyant and will overshoot the LNB less. Eruptions with a large overshoot heights form periodically
layered umbrella clouds, whereas clouds formed from eruptions with lower overshoots are characterised
by lobate fingers or mammata [Carazzo and Jellinek, 2012, 2013, Figure 1, for example]. The two snapshots
of volcanic eruptions shown as insets to Figure 2 are possible examples of these two end-members in jet
dynamics: in the case of Mt. St. Helens, there is very little overshoot and a lot of large-scale fingers whereas
the Grimsvotn eruption has a much larger overshoot region and fine fingering. Sedimentation from these
distinctly textured clouds leads to deposits with a fingerprint of the layering regime of the cloud, and hence
a link to the state of the vent geometry: sedimentation from clouds with lobate fingers produces stratified
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and azimuthally or laterally discontinuous deposits whereas sedimentation from layered clouds produces
a uniformly thick layer of fine ash. Our results predict that, as the transition from one vent geometry to
another is not only possible but likely, this transition would be recorded in both a decreased overshoot
height and the deposit architecture.

6. Concluding Remarks

In conventional models for volcanic jets, neither particle inertia nor vent geometry influence the dynam-
ics of entrainment, which is at the heart of predictions for the plume rise height and jet stability. Here we
show that entrainment is a sensitive function of vent geometry through its effect on the trajectories of iner-
tial particles. Evolving from a narrow, cylindrical vent to a broad, tapering vent is a natural consequence of
mechanical erosion, fracture, and slumping during real eruptions. Such processes will give rise to a decrease
in overshoot height of the jet, leading to a change in the shape and dynamics of ash clouds and hence to
the structure of air fall deposits from these clouds. Therefore, such deposits may be used as an analytical
tool when it comes to classifying historical and prehistoric eruption deposits and determining the source
conditions of an eruption.
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