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Post-eruptive flooding of Santorini caldera
and implications for tsunami generation
P. Nomikou1, T.H. Druitt2, C. Hübscher3, T.A. Mather4, M. Paulatto5, L.M. Kalnins6, K. Kelfoun2, D. Papanikolaou1,

K. Bejelou1, D. Lampridou1, D.M. Pyle4, S. Carey7, A.B. Watts4, B. Wei�3 & M.M. Parks8

Caldera-forming eruptions of island volcanoes generate tsunamis by the interaction of

different eruptive phenomena with the sea. Such tsunamis are a major hazard, but forward

models of their impacts are limited by poor understanding of source mechanisms. The

caldera-forming eruption of Santorini in the Late Bronze Age is known to have been

tsunamigenic, and caldera collapse has been proposed as a mechanism. Here, we present

bathymetric and seismic evidence showing that the caldera was not open to the sea during

the main phase of the eruption, but was flooded once the eruption had finished. Inflow of

water and associated landsliding cut a deep, 2.0–2.5 km3, submarine channel, thus filling the

caldera in less than a couple of days. If, as at most such volcanoes, caldera collapse occurred

syn-eruptively, then it cannot have generated tsunamis. Entry of pyroclastic flows into the

sea, combined with slumping of submarine pyroclastic accumulations, were the main

mechanisms of tsunami production.
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T
he Late Bronze Age (LBA) eruption was one of the largest
of the Holocene period worldwide, discharging 30–80 km3

DRE (dense-rock equivalent) of silicic pyroclastic deposits,
and triggering caldera collapse1–5. Repeated effusive eruptions
since the LBA eruption have built up the Kameni Volcano within
the resulting caldera6. The LBA caldera is 10� 7 km wide,
comprises three flat-floored basins around the Kameni edifices,
and is connected to the sea by three straits (one to the NW and
two to the SW; Fig. 1a)7–9. Recent seismic reflection profile
studies have revealed three main stratigraphic units within the
upper B200 m of the intracaldera fill, numbered 1 to 3 from the
top-down10: flat-lying sediments from modern mass wasting of
the caldera cliffs (unit 1), volcaniclastic sediments produced
during the early submarine stages of Kameni Volcano (unit 2),
and downfaulted material interpreted as the top of the LBA
eruption products (unit 3). Other subdivisions of these same
layers have been published11.

Our new constraints on the mechanisms of tsunami generation
associated with the LBA eruption arise from a multi-beam
bathymetric study, supplemented by seismic profiling, of the
three straits connecting the caldera to the sea. Combined
with information from onshore studies of the LBA eruption
products1–5, the data allow us to show that the NW strait was
carved by inrushing of the sea into the newly collapsed caldera
once the eruption was over. This therefore rules out caldera
collapse as a major mechanism of tsunami generation associated
with the LBA eruption. We also show by modelling that the main
phase of caldera flooding cannot have taken more than 2 days to
arrive at completion.

Results
Structure of the NW and SW straits. The new multi-beam
bathymetric data show that the NW strait consists of a 3 km long,
1 km wide, U-shaped, submarine channel with an arcuate head-
wall (Fig. 1a). The erosional morphology of the headwall, 2 km
across and with slopes of 5–10�, is scarred by landslides and
multiple narrow submarine drainages that converge towards the
caldera (Figs 1b–d and 2a,b). In the middle course of the strait,
two distinct drainages merge downstream to form a single
V-shaped drainage (section p2 in Fig. 2c). A seismic reflection
profile along the axis of the strait (Fig. 2a; Supplementary Fig. 1)
reveals that the headwall is carved into NW-dipping, coherent
lithologies representing the lava succession that comprises much
of northern Santorini12. Prominent, more or less continuous,
reflections are probably lavas and acoustically transparent layers
are either tuffs11 or hemipelagic sediments13. Phase-reversed
bright spots may indicate bedding-parallel fluid flow11. The
NW-dipping reflectors underlie much of the strait, covered only
by thin sediment layers of units 1 and 2 (ref. 10. To the SE, a
seismic profile into the caldera shows all three sediment units
(Fig. 3; ref. 11). A seismic reflection profile perpendicular to the
strait axis (Fig. 2a,d) reveals superficial landslides on the margins
and thin layers of units 1 and 2 on the floor (Fig. 2d).
A prominent landslide deposit at the foot of the headwall
can be distinguished (Fig. 1a,d). Deep faulting is not observed,
beneath either the breach headwall or beneath the margins
(Figs 2d and 3).

The southwest straits are morphologically fresh, and have
landslide scars with well-preserved headwalls and intervening
septa (Fig. 1a). The headwalls are steeper than that of the NW
strait, and are less scarred by secondary slumping and drainage
channels. Seismic reflection profiles of the SW straits reveal the
fill of the western basin (Figs 4 and 5, Supplementary Figs 2 and 3).
High-resolution bathymetry of the SW straits (Supplementary
Fig. 4) is presented for comparison with that for the NW strait.

Origin of the straits. We interpret the NW strait as a flood-
modified landslide scar, formed by northward propagating
regressive erosion and landsliding, and the headwall as a huge
fossilized water chute (Figs 1a and 2a,b). It is clearly erosional in
origin, since no deep faulting is observed. The arcuate headwall
scar is concave towards the caldera, thus implying sliding and
water flow into the caldera. The large-scale sea floor morphology,
with its wide, rounded headwall scar and narrow, steep-sided
passage, shows marked similarities to features commonly
observed when a manmade dam fails with a sudden outflow of
water (as shown on Figs 1,5 and 6 from ref. 14, on front cover and
Plates 11.1, 11.5, 11.6 from ref. 15, in figures 3 and 5 from
ref. 16). This strongly suggests a sudden breach of the caldera wall
analogous to a dam failure. The breach must have required
significant force, given the structural integrity of the channel
walls. A strong inward-directed flow of water suggests that the
caldera was either dry, or that the level of water was much lower
than that of the surrounding sea, when the breach took place. The
onset of inflow by the sea was probably accompanied by large-
scale landsliding into the caldera, followed by erosion due to the
rapidly flowing water. The much smaller-scale drainage pattern
superimposed on the strait sea floor morphology (Fig. 1c,d) either
formed at a late stage of the flooding event, or was cut by the
present-day flow (8–19 cm s� 1) of cold Mediterranean bottom
waters into the warmer waters of the caldera17.

In contrast, the morphological freshness of the two SW straits
(Supplementary Fig. 4) suggests that they formed by slumping
once the caldera was already flooded (Fig. 1a). We envisage that,
during formation of the NW strait, there was little water inside
the LBA caldera (high pressure difference with outside the
caldera), whereas during formation of the SW straits the caldera
was already flooded (small pressure difference with outside the
caldera).

Constraints on the onset of caldera flooding. Constraints on the
timing of the caldera flooding event are provided by previous
studies of the LBA eruption products, and of studies of the
changes in morphology of the volcano resulting from the
eruption and associated caldera collapse. The eruption took place
in four main phases. It began with a Plinian phase (phase 1) from
a subaerial vent, then became phreatomagmatic (phases 2 and 3)
(refs 1–5). The main phase of the eruption (phase 4) involved
outpouring of hot, fluidized pyroclastic flows, forming multiple
ignimbrite (deposit from a pyroclastic flow) fans1–3,5.

Before the eruption, Santorini already had a shallow caldera
that had formed during an eruption 18 ky previously5,18,19

(Fig. 6a). This ancient caldera was lagoonal, as inferred from
fragments of travertine, stromatolites and brackish to marine
fauna in the LBA ejecta20,21. The eruptive vent was situated
outside the caldera lagoon during phase 1 of the LBA eruption,
then migrated into it during phases 2 and 3, causing
phreatomagmatic explosions3,5 (Fig. 6b). Phase 3, the most
violent phreatomagmatic phase, used up most of the water in the
lagoon, and built up a huge tuff cone that probably cut off any
connection to the sea4. The subsequent eruption of hot, fluidized
pyroclastic flows during phase 4 shows that, by the end of
phase 3, the caldera was dry and the vents were subaerial3,5.
Caldera collapse triggered by the LBA eruption deepened and
widened the old caldera3–5. The pyroclastic flow deposits of phase
4 are rich in rock debris of diverse lithologies, suggesting that
collapse took place mostly during phase 4 (refs 1,3,5) (Fig. 6c).
Indeed it is known that caldera collapse takes place syn-eruptively
at many calderas worldwide, although final settling may continue
after the eruption22–24.

The newly collapsed LBA caldera must have been essentially
dry by the end of the eruption, and isolated from the sea by thick
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Figure 1 | Topographic features of the Santorini onshore-offshore volcanic field. (a) Combined topographic map of Santorini Volcano based on onshore

and offshore data. Orange box outlines the area of the northwest strait, shown as (b) a slope gradient map, (c) a tangential curvature map and (d) a

flowline density map.

NATURE COMMUNICATIONS | DOI: 10.1038/ncomms13332 ARTICLE

NATURE COMMUNICATIONS | 7:13332 | DOI: 10.1038/ncomms13332 | www.nature.com/naturecommunications 3

http://www.nature.com/naturecommunications


accumulations of LBA tuff, because there was no return to
phreatomagmatic activity following the hot pyroclastic flows of
phase 4 (ref. 3). Moreover, phase 4 ignimbrite bordering each side
of the NW strait is known from lithic thermal remnant
magnetism analysis to have been emplaced hot (150–350�C)

(ref. 25), and it contains none of the phreatomagmatic ashes
typically produced when hot pyroclastic flows enter the sea.
Hence, by the end of phase 3, the region between present-day
Thera and Therasia islands must have been above sea level,
probably due to a thick accumulation of phase-3 tuffs, with this
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barrier remaining intact throughout phase 4 until the end of the
eruption (Fig. 6c). Then, once the caldera had largely collapsed,
this wall of easily eroded tuffs failed, allowing the sea to rush in,
accelerated by retrogressive landsliding into the caldera (Fig. 6d).
That this occurred once the eruption was over would explain the
apparent lack of LBA products on the floor of the NW strait
(Figs 2d and 3). Finally, the two remaining SW straits collapsed
once the caldera was already largely flooded, accounting for their
fresh landslide morphologies (Fig. 6e).

Debris from these breaching events has not been recognized on
seismic profiles inside the caldera (Figs 2d and 3). However, the
high energy of water flow associated with the NW breach may
have fragmented the debris and scattered it across a large area

inside the caldera. We have estimated the total volume of rock
removed to create the NW strait as 2.0–2.5 km3 (Supplementary
Figs 5 and 6). The joint volume of seismic units 1, 2 and 3, in the
northern basin, is only 0.94–1.1 km3 (as shown in figures 9–11
from ref. 10). The volume of material removed during the breach
therefore cannot be accommodated in these units. Although unit
3 has been interpreted previously as the top of the LBA tuff
succession10, we speculate that it might be composed of sediment
deposited during the waning phase of the flood event, such as
mass flows and suspension fallout of sediment from the highly
turbid water column. The main layer of landslide and flood debris
from the NW breach would then lie, unresolved, beneath unit 3,
and the LBA intracaldera tuffs below that.
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Dynamics and duration of flooding. Initially, the flooding event
through the NW strait would have been analogous to those
associated with dam failure, with rapid erosion of the retaining
wall leading to inflow. However, lake- or dam-breach floods cease
once the upper reservoir is empty. In the LBA case the upper
reservoir (the sea) was effectively infinite, and the flood stopped
when the lower reservoir (the caldera) filled up to sea level. Thus
the late-stage dynamics was different: at the end of a dam failure,
the water still flows down a similar topographic drop, giving it
similar potential energy drop per unit volume of water, whereas
in our case, the potential energy drop decreases as the caldera fills.
The erosive power of the influx will also decrease as it flows into
increasingly deep water. A close, if smaller-scale, analogue was the
flooding of a Malaysian open cast tin mine, when the wall
separating the mine from the sea collapsed26. A much larger-scale
analogue was the flooding of the Black Sea 8,400 years BP27.

The time that it took to fill the caldera was constrained by
numerical modelling of the water flow through the NW strait.
The model used the depth-averaged equations for water flow and
is described in the ‘Methods’ section; it neglects shoreline wave

breaking, wave energy dispersion and the Coriolis force, but
captures the first-order behaviour of water flow in a deep
environment28. Similar models have been widely used in tsunami
modelling29. The initial conditions for modelling were created as
follows: the caldera floor bathymetry was modified by removing
the post-caldera Kameni edifice, which would have been absent
immediately following the LBA eruption. An artificial wall was
placed across the two SW straits in order to prevent entry of the
sea from this direction. The bathymetry of the northern strait was
modified by reconstructing the original NW-dipping flank of the
volcano using a conical surface with an outward-dipping 2�-slope,
then setting the water depth in the breach (equal to the entry
depth of the subsequent inundation flow) to a specified value by
cutting the cone by a horizontal surface of that depth. In this way
we were able to simulate caldera inundation through a series of
entry channels of five different specified depths, from 20 to 300 m
(Fig. 7). Finally an artificial wall was placed across the NW strait
at its entry point into the caldera. This wall was then removed
instantaneously in order to allow the sea to flow into the caldera
through the NW strait.
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volcano18–21 and the main phases of the eruption1–5. Before the eruption there existed an ancient caldera in the northern half of the volcanic field18,19.

This caldera was lagoonal, as shown by the presence of fragments of ancient travertine, stromatolites and brackish to marine fauna in the LBA ejecta20,21.

There was also an andesitic edifice within this caldera5. In eruptive phase 1 a Plinian eruption took place, which in phase 2 was joined by the production of

syn-plinian pyroclastic surges. In phase 3, eruption of ‘cold’ phreatomagmatic pyroclastic flows constructed a large tuff cone that filled the old caldera,

cutting it off from the sea. In phase 4, eruption of hot pyroclastic flows took place from multiple subaerial vents, forming at least three ignimbrite fans

(NW, E and S), and associated caldera collapse enlarged and deepened the ancient caldera. The main eruptive vents are shown in these figures as red stars

(locations well constrained for phases 1 to 3, but speculative for phase 4). Black arrows show schematic emplacement vectors for the pyroclastic flows of

phases 3 and 4. (d,e) Post-eruptive opening of the NW and SW straits (based on the present research). At the end of the eruption the caldera was dry and
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For each fixed entry depth, we modelled the inundation of the
caldera, and measured the time for filling to � 5 m of the final
water level, then � 1 m of the final water level (Fig. 7c,d). In
reality, the entry depth, and indeed the bathymetry of the entire
strait, would have evolved with time due to landslip into the
caldera, followed by erosion by the rapidly flowing water;
however, this time-variation is unknown and cannot be predicted
by our model. By fixing the entry depth, and keeping the breach
bathymetry constant in each model run, we place constraints on
the possible range of caldera-filling times for entry depths 420 m
(the lowest value we chose to simulate). The models simply
predict caldera-filling times under a range of fixed conditions.

In the 20 m entry depth model, the inflow velocity reached
19 m s� 1, the water flux reached 2.5� 105 m3 s� 1, and the filling
time was about 50 h. In the 300 m model, the corresponding
values were 45 m s� 1, 92� 105 m3 s� 1 and 0.6 h. Hence,
irrespective of the exact time-variation of breach bathymetry
through landslip and water erosion, once the entry depth had
reached 20 m, caldera filling would have proceeded to completion
in o2 days, and possibly in as little as a few hours. Our model
provides no constraints on how long it would have taken to
initially erode the entry point to 20 m depth, but given that the

NW strait was blocked by unconsolidated LBA tuffs, it seems very
likely that, once breached, erosion to this depth would have
proceeded very quickly.

Inflow of the sea through the NW strait could have generated
large waves inside the caldera (with run-ups up to B200 m above
the caldera floor on the eastern and southern cliffs), but no
significant (amplitude oB10 m) waves outside the caldera
(Supplementary Movie 1).

Discussion
Tsunamis generated by eruptions at ocean islands are a major
hazard worldwide30. Those from Krakatau in 1883 impacted the
coasts of the Sunda Straits, where run-ups averaged 15 m and
reached 40 m, killing 35,000 people31–35. Tsunamis from the LBA
eruption have been proposed as a factor in the demise of the
Minoan culture in the southern Aegean region through damage
to coastal towns, harbours, shipping and maritime trade (please
see refs 36–38 and references there in). Evidence for regional
tsunamis generated by the LBA eruption has been reported from
deep sea megaturbidites39–46 and from sediment layers at or near
the coasts of Santorini, northern Crete, west Turkey and
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starting profiles with caldera-entry depths of 20, 50, 100, 200 and 300 m. The bathymetry was kept constant over the duration of each model.

(c) Intracaldera sea water volume as a function of time for the five models. (d) Caldera filling time as a function of caldera-entry depth for final conditions of

5 and 1 m below sea level.
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Israel37,47–50. While some of the sedimentary evidence has been
questioned51, chaotically deposited debris layers at the Minoan
archaeological site of Paleokastro provide particularly convincing
evidence for a run-up of at least 9 m along the northeast coast of
Crete by tsunamis generated by the LBA eruption52.

Tsunamis associated with large explosive eruptions in marine
settings are generated by rapid displacement (upward or
downward) of the sea surface, the possible mechanisms including
submarine explosions, entry into the sea of pyroclastic
surges/flows or debris flows, submarine landslides and caldera
collapse30. A major challenge is the development of reliable
forward models with which to predict impacts from such
tsunamis. Although existing models are physically robust29,38,53,
the relative importance of different tsunami source mechanisms
are commonly poorly constrained. In the case of the LBA
eruption, modelling of either pyroclastic flow entry into the sea,
or caldera collapse, can explain waves of several m on N Crete,
depending on exact initial conditions and rates38,48,53. Assuming
a pyroclastic flow source, inverse modelling of a 9 m high wave at
Palaeokastro implies a wave up to þ 35 m high, or � 11 m deep,
at source52. This may be an overestimate, since shoreline run-up
can overestimate deep-water wave height by a factor of 2 or more
due to effects of shoreline configuration, substrate roughness and
of wave diffraction, resonance and edge effects29. However, even
half the inferred initial values are consistent with the occurrence
of a sediment layer interpreted as a tsunami deposit on Santorini
10–12 m above sea level37.

Submarine explosions during the LBA eruption were mainly
confined inside the caldera during the phreatomagmatic phases 2
and 3, and probably radiated little energy outside the caldera.
Dense pyroclastic flows of LBA phases 3 and 4 entered the sea in
all directions, providing a viable source for major tsunamis1–5.
Indeed pyroclastic flow deposits up to 60-m thick lie offshore
Santorini, implying discharge of large volumes of pyroclastic
flows into the sea at the peak of the eruption54. Multiple thick
megaturbidites with volumes of at least 16 km3 and containing
LBA tephra occur in the Cretan basin to the south of Santorini,
and may record large-scale remobilisation of submarine eruption
products during and following the eruption13.

Our new data on the origin of the NW caldera strait bears on
the importance of caldera collapse in tsunami genesis. Caldera
collapse associated with the eruption amounted to several
hundreds of metres of vertical displacement, and could
potentially have generated large tsunamis if it occurred rapidly
enough38,53. However, this requires that the caldera was already
flooded and connected to the open sea during collapse, which we
have shown was not the case. Although the pre-LBA caldera was
lagoonal, it became isolated from the sea and dried up before
eruptive phase 4. Caldera collapse during (perhaps continuing
after) phase 4 then deepened and widened the old caldera,
forming the present-day LBA caldera. Reconnection to the sea
then did not take place until the new caldera was flooded through
the NW strait after the eruption had ended. It is, moreover,
unlikely that the flood event itself could have generated major
waves outside the caldera (Supplementary Movie 1). Mass
slumping associated with the opening of the NW strait, as well
as the later SW straits, would also have generated waves inside the
caldera, but would have contributed little to tsunamis on a
regional scale.

We conclude that regional-scale tsunamis associated with the
LBA eruption were generated by the pyroclastic flow inundation
of eruption phases 3 and 4, augmented perhaps by mass slumping
of rapidly deposited pyroclastic deposits off the seaward slopes of
the island volcano. This is consistent with tsunami modelling that
shows that pyroclastic flows were indeed capable of generating
waves of the observed height in northern Crete38,53. It is also

consistent with previous assertions that pyroclastic flows were the
main cause of tsunamis at Krakatau31,33,34.

Methods
Multi-beam surveys. The seabed morphology of Santorini Volcano was
investigated by multi-beam surveys by the R/V AEGAEO of the Hellenic Centre for
Marine Research (HCMR), using a SEABEAM 2120 swath system as part of
international projects ‘GEOWARN’ and ‘THERA 2006’ (refs 7–9,54 and as part of
a documentary production ‘ATLANTIS FOUND’ in May 2015 using a Teledyne
RESON SeaBat7125 MBES system that was mainly operated at 400 Khz. The data
were processed using a MB-System for statistical and manual flagging of erroneous
beams, and were gridded at 10 and 5 m grid spacing using GMT (the Generic
Mapping Tools)55.

Multi-channel seismic surveys. Multi-channel seismic data were collected during
RV POSEIDON cruise P338 in 2006 (ref. 56 and during the ‘ATLANTIS FOUND’
project in 2015. The respective sources for the high-resolution seismic profiling
system were a 45/105. GI-airgun system (SERCEL US) with a dominant frequency
of 100 Hz, and a Delta Sparker with frequencies up to 500 Hz. The processing flow
included editing, frequency filtering, trace balancing and amplitude loss
compensation. Data were edited, bandpass-filtered, CMP-sorted, nmo-corrected,
stacked and time-migrated. A poststack f-x deconvolution reduced incoherent
noise.

Digital elevation model. The multi-beam bathymetry point cloud was merged
with LIDAR data covering the Kameni Islands and elevation data from Thera and
Theresia9 and gridded at 10 and 5 m spacings using a continuous curvature
algorithm55. In the 10 m grid data gaps are interpolated (Figs 1a and 2a). In the 5 m
grid data gaps are masked (Fig. 1b–d). Morphological parameters (slope gradient,
tangential curvature and flowline density) were computed from the 5 m grid using
the /r.slope.aspect/ and /r.flow/ tools from GRASS GIS57. The tangential curvature
is the curvature of the surface in the direction perpendicular to the maximum slope
gradient at each grid point. The flowline density is the density of flowlines per grid
cell, where flowlines are particle trajectories calculated by modelling the preferred
path of particles starting at each grid cell and moving down slope under the effect
of gravity58.

Estimation of eroded volumes. The volume of material eroded from the
breach was estimated using a modified version of the GMT resurfacing technique
developed for lava flows9, with the reconstruction of the pre-erosion surface done
in two phases in order to recreate the steep slope inside the caldera (Supplementary
Figs 5 and 6). The perspective view of the NW breach (Fig. 2b) was generated from
the 10 m grid using Fledermaus.

Numerical modelling. Numerical modelling of caldera flooding was carried out
using the classic shallow water equations of mass (equation 1) and momentum
(equations 2 and 3) balances29,59–62.
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where, a is the slope of the sea floor, u is velocity, g is gravity and h is water depth.
The viscosity of water has no influence on the simulation, and is neglected. The
terms on the right-hand side of the momentum-balance equations describe the
effects of gravity and pressure gradients.

We solved the equations numerically using the code VolcFlow (developed and
tested in ref. 63), which has been used to simulate tsunamis64–67 using the same
equations and boundary conditions as here. The code is based on a double-upwind
scheme that limits the numerical dissipation of velocity, and allows calculation of
wave amplitudes even at large distances from the source. Depth-averaging in
VolcFlow is carried out perpendicular to the underlying sea floor. To permit free
propagation of surface waves, open boundaries were defined at the border of the
model domain (Fig. 7) by calculating the water velocity normal to the border, ub,

from the water thickness h:

ub ¼ 2 c1 � c0ð Þ ð4Þ
where, c1 ¼

ffiffiffiffiffi
gh

p
and c0 equals the value of c1 at t¼ 0. The sea level was

maintained constant around the edges of the model domain.
The modelling was carried out using a published digital elevation model of

Santorini and its caldera1, with the spatial resolution degraded to 125 m (Fig. 7a).
The models were run at a spatial resolution of 125 m and a time step of 0.5 s.
Changing either parameter did not significantly change the results. Owing to the
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125 m discretization of the digital elevation model, the model does not ‘see’ a
vertical cliff at the entry point of the caldera, but rather a slope ranging from 70�
(for the elevation of � 20 m) to 26� (for the elevation of � 300 m). We investigated
the effect of this numerical slope on the model results, and found it to be negligible.

Data availability. Multi-beam and seismic data are available on request from the
corresponding author. The simulation of the filling of Santorini caldera by the sea
has been done with the code VolcFlow (http://lmv.univ-bpclermont.fr/volcflow/).
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