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Increasing the bioactivity of polymeric materials used for bone repair is a con-cern that can be achieved by

loading growth factors or using in vitro tissue engineering approach. However, these techniques may have to

address regu-latory issues as the implants are shifted from the medical device class to the more constraining

drug delivery systems. Alternatively, implants can be coated with bioceramics to achieve bioactivity, but

existing coating processes can hardly be applied to polymers because they usually involve thermal treatments or

sintering. Here we report an efficient way of coating a bioactive glass phase onto a complex polymeric substrate,

namely gelatin scaffolds with controlled spherical porosity, at ambient temperature through a dip-coating

process. A multiscale analysis of the bioactive glass-coated gelatin scaffolds properties has been carried out.

Homogeneous and remarkably uniform layer of SiO2–CaO bioactive glass is obtained. The bioactive glass 

coating exhibits a very high and fast apatite-forming ability, with full mineralization of the coating being

achieved in less than 24 h contact with body fluids. Importantly, the mineral-ization takes place homogeneously

throughout the scaffold while the remark-able uniformity and thickness regularity of the coating are preserved.

These features should enhance the in vivo behaviour of polymer scaffolds and make reconsider the interest of

non-bioactive polymers for tissue engineering.

Introduction

Accelerating bone healing at early implantation time

is one of the main concerns when developing new

biomaterials. [1]. As an implant first interacts through

surface reactions, adequate modifications of its sur-

face can enhance or introduce new implant proper-

ties regarding, e.g. bioactivity, osteoconduction,

biocompatibility and mechanical response [2]. A

large number of techniques have been developed to
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improve the surface compatibility of medical devices.

Among them, surface coating with bioceramics is an

efficient way of conferring bioactivity to the implant,

i.e. the ability to bond with host tissues. For example,

a biocompatible calcium phosphate coating can be

applied to the stem of hip endoprostheses or to dental

root implants, in order to support osseointegration

[3, 4]. Due to its similarity with the inorganic content

of bone, this coating will be an adequate site for the

adhesion and further proliferation of bone cells and

will finally result in a strong and lasting bond

between the implant and surrounding host tissues

[3–5]. Since bioactive glasses (BG) are known to

demonstrate the highest bioactivity among synthetic

materials [6], it can be of great benefit to take

advantage of their superior properties to coat

implants. Metallic prostheses have been coated with

BG with the aim of improving the implants stability

by bonding them to host tissues [7–9] and preventing

fibrous encapsulation usually induced by metal

implants. For instance titanium implants were dip-

coated with a SiO2–CaO–Na2O–P2O5-K2O–MgO–B2O

glass before implantation in rabbit femurs and

showed superior bone formation in vivo compared to

non-coated implants [10]. A clinical trial demon-

strated that glass-coated titanium implants behaved

as well as hydroxyapatite-coated implants after

1-year implantation [11].

However, there is only a scarce literature about

bioactive coating—and in particular BG coating—on

polymer matrices. This is a challenging task since

thermal treatments cannot be handled, to avoid the

polymer thermal degradation. Kokubo, Tanahashi

et al. [12–15] put a polymer substrate in direct contact

with SiO2-CaO BG particles soaked in simulated

body fluid (SBF). This allowed the formation of apa-

tite nuclei at the polymer surface, that were further

grown into a dense, uniform apatite layer by

immersing the polymer again into another solution

with ion concentrations 1.5 times those of SBF. In

addition to being slow (about 1 week required to

obtain a uniform coating), this 2-steps process can

hardly be used to uniformly coat the inner walls of

porous matrices or complex shapes like scaffolds,

since the apatite nuclei are only formed on the

material surface that is directly facing the BG parti-

cles. Miyaji et al. [16], followed by Oliveira et al.

[17, 18], soaked polymer matrices into a sodium sili-

cate gel in order to obtain a SiO2-Na2O glass coating.

They demonstrated this coating to be an effective

initiator of apatite nucleation on polymer substrates

with complex shapes like scaffolds [17]. However,

conducting the process remains heavy, since an

incubation period of 7 days in SBF is first needed to

induce the formation of apatite nuclei, followed by

7–14 days soaking in concentrated SBF solutions

(1.5 9 to 2 x SBF ionic concentration) for efficient

growth of the apatite layer. Moreover, there is only

little data about the in vivo behaviour and corrosion

of sodium silicate [19]. There have been finally very

few attempts to coat BG directly onto polymeric

materials. Leach et al. [20], Day et al. [21] and Li et al.

[22, 23] made slurries consisting of micron-sized BG

particles to coat PLGA, PGA or PET, respectively.

However, they reported either a non-uniform coating

to be obtained, or a loss of porosity inside the mate-

rial [21], or insufficient concentrations of BG particles

in the coating unable to induce a robust osteogenic

action [20]. Another drawback of this technique is

that the BG particles are only deposited onto the

polymeric substrate and are likely to be released once

in contact with body fluids. Stamboulis et al. [24],

Niiranen et al. [25] proposed a variant where the BG

particles were ‘‘implanted’’ into a Vicryl polymer

matrix by pressing the coating using a uniaxial press

at 2–160 MPa. Of course, it is unconceivable to apply

this method to polymer scaffolds since they would be

flattened.

Here we propose a convenient way to coat polymer

scaffolds with BG. BG usually need to be sintered,

either as a result of their method of production,

which derives from the fusion process or the sol–gel

process, or for the coating to adhere [6]; but here our

process is fully conducted at ambient temperature.

Indeed using calcium alkoxide as a calcium precursor

in the sol–gel route makes it possible to obtain silicate

glasses with calcium ions well incorporated into the

inorganic network without the need of thermal

treatments otherwise necessary [26–29]. The polymer

scaffolds here coated were based on gelatin, since

gelatin is obtained from collagen and, therefore,

naturally contains biologically relevant functional

groups [30]. It shows good cell viability without any

antigenicity and has long been used in pharmaceu-

tics, wound dressing and adhesives [31–34]. Exten-

sive in vivo data on the suitability of gelatin-based

scaffolds for bone reconstruction are available

[35–39]. In this study bovine gelatin scaffolds with

controlled porosity were fabricated using the micro-

sphere leaching technique [40, 41]; they were then
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dip-coated with a BG alkoxide sol. The physico-

chemical properties and potential towards bone

mineral formation of these BG-coated gelatin scaf-

folds are investigated.

Materials and methods

Gelatin scaffolds synthesis

3-D interconnected macroporous gelatin structures

are obtained using the microspheres-leaching tech-

nique [40, 42]. A 12.7 wt% gelatin (type B, 225 g

bloom number, Aldrich) aqueous solution was first

prepared in a thermostated bath at 37 �C. After full

completion of gelatin dissolution, the gelatin sol was

infiltrated into a compact stack of PMMA micro-

spheres (100–300 lm diameter, Kisker Biotech) in

cylindrical polyethylene moulds and centrifugated at

6000 rpm. Gelation and ageing of the blend was

performed at room temperature for 24 h. The

obtained cylinders were immersed in acetone for 24 h

to dissolve the PMMA porogen spheres. This opera-

tion was renewed two times. Macroporous gelatin

scaffolds with controlled porosity were obtained and

further dried in an oven at 40 �C for 24 h. Finally, the

gelatin scaffolds were crosslinked in a 1 wt% glu-

taraldehyde/ethanol solution for 24 h. The reticula-

tion of the gelatin was indeed required to prevent its

dissolution in the BG sol during the dip-coating

process, and to prevent premature degradation of the

scaffolds after implantation or when interacting with

body fluids. The crosslinked gelatin scaffolds were

rinsed in ethanol and dried at room temperature.

SiO2-CaO BG sol–gel synthesis and
dip-coating of gelatin scaffolds

Hydrolysis of tetraethylorthosilicate (TEOS, Aldrich,

99% purity) was performed in ethanol (absolute

99.8%, Aldrich) containing 2 M HCl (obtained from

37% fuming, Aldrich), following a volume ratio

EtOH:HCl = 6:1 and molar ratio EtOH:TEOS = 6:1.

In parallel, calcium ethoxide (ABCR) was dispersed

in absolute ethanol. Then the two solutions were

mixed in stoichiometric proportions, in order to

obtain a 75–25 wt% SiO2-CaO glass at a 12.7 wt%

concentration in the sol. A translucent and yellowish

sol was obtained and left for condensation for a few

hours.

The cylindrical gelatin scaffolds were then simply

dipped into the BG sol for 1 min and left for drying

for 15 min. These operations were repeated again 1

time.

SEM observations

The scaffolds were carbon-coated using a carbon

thread prior to analysis. Observations were con-

ducted on a Hirox SH-3000 mini-SEM operating at

10 kV voltage.

Porosity calculation

Pore diameters and interconnections were extracted

from SEM pictures thanks to the Image J software.

This method of measurement is here preferable to

traditional mercury intrusion porosimetry which is

limited to the characterization of pores under 250 lm

[43]. Total porosity of the scaffolds was deduced from

apparent density of cylindrical scaffolds of measured

weights and dimensions and from gas pycnometry

measurements (1.5 g/cm3 scaffold skeletal density)

using the formula: %porosity = (1 - dapparent/

dskeletal).

Apatite-forming ability test in SBF

The ISO-23317 standard procedure was followed.

Briefly, c- SBF2 [44], a protein-free solution of inor-

ganic composition close to human blood plasma, was

prepared following recommendations of Bohner et al.

[45]. Scaffolds were immersed in SBF at a 1 mg/mL

ratio for up to 7 days at a constant temperature of

37 �C. After interaction, aliquots of the solution are

used for determination of the fluids composition by

ICP-AES, while the scaffolds are carefully rinsed with

pure ethanol and dried to avoid further mineraliza-

tion reactions.

TEM observations

Prior to observation, the scaffolds were embedded in

resin (AGAR, Essex, England). 100-nm ultrathin cross

sections of materials were cut using a LEICA EM UC6

with diamond knives. A Phillips CM 20 microscope

(LaB6 thermoelectronic gun) operating at 200 kV was

used to study the microstructure and morphology of

hybrid scaffolds before and after soaking in SBF. The

images were recorded with a Keenview CCD camera
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with 18.67 lm pixel size and processed with the

analysis software.

FTIR analysis

The FTIR was conducted on a Nicolet spectrometer

380. Prior to analysis the materials were grinded into

a fine powder and then mixed with KBr (Aldrich, IR

grade) at a 3 wt% concentration. They are finally

pressed into pellets that are ready for FTIR analysis.

PIXE ion beam analysis

Particle-Induced X-ray Emission (PIXE) quantitative

microanalysis is very similar to SEM–EDS or electron

microprobe analysis, but provides a deeply increased

sensitivity due to limited bremsstrahlung back-

ground radiation of incident heavy charged particles.

It allows visualizing the chemical changes occurring

inside BG-coated scaffolds during interaction with

SBF. After interaction with SBF, the scaffolds are

dried and embedded in resin (AGAR, Essex, Eng-

land). Cross sections of materials (40 lm thick) were

cut using a LEICA RM 2145 microtome. PIXE

microanalysis of the cross sections was carried out at

the AIFIRA platform (CENBG, France) using a 3-MeV

incident proton beam (beam diameter of 1 lm). An

80 mm2 Si(Li) detector (equipped with a 12-lm-thick

beryllium window and an aluminium funny filter

(a) (b)

(c) (d)

(e) (f)

0

MaxSi Ca

Figure 1 a–b SEM

micrographs of bioactive

glass-coated gelatin scaffold,

c–d PIXE chemical maps

showing the cross-sectional

distribution of silicon and

calcium inside the scaffold. e–

f TEM magnification of

previous images revealing the

morphology of BG coated

onto the gelatin struts.
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with a tiny hole of 2 mm) orientated at 135� with

respect to the incident beam axis was used for X-ray

detection,. Quantification was done using the

Gupixwin software after calibration against NIST 620

(soda-lime glass) standard reference material.

ICP-AES

Five 0 to 50 ppm solutions containing the elements to

analyse (P, Si, Mg, Ca) have been prepared for cali-

bration. A ULTIMA-C spectrometer (Horiba scien-

tific, Jobin–Yvon) was used. This instrument

combines two spectrometers to measure emission

lines from elements excited in a single plasma torch:

one polychromator and one scanning monochroma-

tor. The polychromator was used for the simultane-

ous measurement of emission lines from Si, Ca and

Mg. The scanning high-resolution monochromator

was used for sequential determination of emission

line from P. The ICP-AES operating conditions were

the following: incident power 1.1 kW; reflected power

\15 W; plasma gas flow rate 16 l/min; permanent

sheath gas flow rate 0.2 l/min; carrier gas flow rate

0.8 l/min; and solution uptake 0.9 l/min. The ana-

lytical lines used were 213.618 nm (P), 288.158 (Si),

279.553 (Mg) and 334.940 (Ca).

Compression tests

Mechanical properties of the scaffolds were mea-

sured under compression on cylindrical samples

(diameter = height = 10 mm) using a UTS testing

machine, equipped with a 50 kN-load cell and cir-

cular plates, at a crosshead speed of 0.5 mm/min.

Results and discussion

To elaborate a BG coating without thermal treatment,

it is necessary to use a 100% alkoxide route, which

implies using a calcium alkoxide as calcium precur-

sor [29]. Any other calcium source, such as calcium

salts, involve thermal stabilization at high tempera-

ture ([400 �C) required to make calcium enter the

silicate network [26, 46]. On the contrary, calcium

alkoxides can readily be incorporated into the silicate

network at room temperature, as a result of the

hydrolysis/condensation reactions. Yet the known

instability of calcium alkoxides has restricted their

use due to the difficult processability of obtained sols

[47]. To limit this instability, we previously reported

that limiting the amount of water in the sol was the

key as calcium alkoxides are very sensitive to water

hydrolysis [48]. In our synthesis, tetraethylorthosili-

cate (TEOS) is first hydrolysed in a slightly acidified

alcoholic solution and then calcium ethoxide

Ca(OEt)2 is added.

Figure 1 shows the multiscale characterization of

as obtained BG-coated gelatin scaffolds, from the

macroscopic down to the submicron scale. On SEM

micrographs (Fig. 1a, b) it can be seen that the scaf-

folds own a well-ordered porosity with highly

interconnected pores. The diameters of pores lie in

the 100–200 lm range, with interconnections

20–50 lm. The scaffold walls are very thin, with

struts less than a few microns thick. Figure 1c, d

displays the chemical distribution of silicon and cal-

cium inside a pore strut. Si and Ca are homoge-

neously distributed, demonstrating both the

uniformity of the BG coating over the gelatin sub-

strate and the intrinsic homogeneity of the SiO2–CaO

glass. Figure 1e, f is magnification of the struts as

observed in TEM. Here enough contrast is provided

to allow distinguishing between the organic gelatin

substrate and the SiO2–CaO BG coating. The dark

regions correspond to areas of higher density or

higher average atomic number, leading to high

absorption of the electron beam, such as the inorganic

SiO2–CaO BG coating. On the contrary, gelatin

domains appear as bright areas since the organic

matrix is associated to both lower density and Z

atomic number. TEM observation of ultrathin cross

sections of BG-coated gelatin scaffolds reveals our

dip-coating process is successful to yield a uniform

glass layer around 200 nm thickness that surrounds

the gelatin struts of the scaffold. The BG layer is

Figure 2 FTIR spectra of SiO2–CaO bioactive glass coated on the

gelatin scaffold compared to raw SiO2–CaO BG.
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dense, as expected from the acid-catalysed sol–gel

route we employed, which leads to polymeric and

dense silicate gels [49].

The atomic structure of SiO2–CaO BG coatings was

investigated through FTIR spectroscopy and com-

pared to raw SiO2–CaO glass derived from the same

synthesis but not coated onto gelatin scaffolds. Fig-

ure 2 evidences the characteristic absorption bands

attributed to the transverse optical (TO) modes of

siloxane Si–O–Si bridges: at *450 cm-1 a low fre-

quency mode is assigned to the TO rocking motions

of the oxygen bridging two adjacent Si atoms [50];

near 800 cm-1 is observed (weak band) the bending

Si–O vibration characteristic of ring structures in the

glass matrix [51–53]. TO antisymmetric Si–O-Si

stretching modes, resulting from the motion of the O

atom back and forth along a line parallel to the Si–Si

axis [54], are visible at 1050 cm-1 (intense shoulder)

and *1170 cm-1.

Importantly, the shoulder located around 940 cm-1

and the peak at 890 cm-1 are assigned to the Si–O--

non-bridging oxygen (NBO)16-17 stretching mode

with one NBO involved per SiO4 tetrahedra (Q3

groups, calling for 3 bridging O and 1 NBO per SiO4

tetrahedra). The presence of NBO can result from

calcium ions disrupting the siloxane bridges, as a

result of their successful incorporation into the sili-

cate network. It can also result from the presence of

silanols SiOH, which yields Q3 groups as well. In a

previous work [48], we had characterized the SiO2–

CaO BG through 29Si–1H cross-polarization (CP)

MAS (magic-angle spinning) NMR experiments and

we demonstrated the incorporation of Ca into the

silicate network, being able to distinguish between

the contribution of QH
3 and QCa

3 units. Since the same

Figure 3 Images of BG-

coated gelatin scaffolds after

7 days soaking in simulated

body fluid, a–b SEM, and c–

d TEM observations

highlighting the formation of a

uniform bone-like

hydroxyapatite (HA) layer.

Figure 4 EDXS spectra showing the elemental composition of

non-coated gelatin scaffold and BG-coated gelatin scaffold after

7 days of immersion in SBF. The EDXS spectrum of BG-coated

gelatin scaffold before immersion is also shown.
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SiO2-CaO BG is here considered, and because from

Fig. 2 the FTIR fingerprint of silicate networks is

identical for the SiO2-CaO BG and the SiO2–CaO

coating, we assume we can interpret the shoulder at

940 cm-1 and the band at 890 cm-1 as an evidence of

Ca incorporation.

Moreover, gelatin yielded 3 characteristic bands

between 1400 and 1700 cm-1. The 1540 cm-1 peak is

associated with amide II absorption arising from N–

H bending and C–N stretching vibrations [55]. The

band at 1440 cm-1 is due to the gelatin amino acids

(C–H groups) [56]. The 1650 cm-1 band attribution is

more ambiguous since it results both from the SiOH

bonded with molecularly adsorbed water

Si Ca P

0d

6h

1d

7d

0

Max

Figure 5 PIXE chemical

maps of silicon, calcium and

phosphorus inside cross

sections of SiO2–CaO-coated

gelatin scaffolds, as a function

of increasing interaction time

with simulated body fluid.

Scale bar is 100 lm.
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Figure 6 Evolution of Si, Ca, P, Mg concentrations in the

mineralized areas of the scaffolds with increasing time of

interaction with SBF. Starting composition of the BG coating is

75 wt% SiO2—25 wt% CaO.
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(*1630 cm-1) already present on the raw BG spectra

[54], and from the C=O stretch vibrations

(*1650 cm-1) of the peptide linkages of gelatin’s

amide I [57–59], but its intensity is clearly increased

on the BG-coated gelatin spectra compared to raw

BG.

The apatite-forming ability of BG-coated gelatin

scaffolds was investigated at different scales as visi-

ble on Figs. 3, 4, 5 and 6. SEM observations (Fig. 3a)

show the macroscopic porous structure is preserved

even after 7 days soaking in SBF. Higher magnifica-

tion (Fig. 3b) highlights the presence of small pre-

cipitates uniformly spread over the scaffold’s surface.

The ability to induce the homogeneous nucleation of

apatite nuclei over the substrate is key for the coating

to confer optimum biocompatibility. Images of cross

sections of the coating as observed in TEM show it

has endured deep structural and morphological

changes. As visible on Fig. 3c, d, the coating now

consists of nanocrystalline needle-like aggregates

typical of apatites. Importantly, the coating still pre-

sents a uniform thickness all along the gelatin scaf-

fold walls, but its thickness has increased up to

*500 nm as a result of the apatite crystal growth.

Pure crosslinked gelatin scaffolds, i.e. without BG

coating, were also immersed in SBF for comparison.

SEM observations did not show the formation of any

precipitate after 7 days soaking. Figure 4 is an EDXS

measurement of the elemental composition of non-

coated (pure gelatin) scaffolds compared to BG-

coated gelatin scaffolds. Non-coated scaffolds do not

show any change in composition, apart from the

deposition of chlorides coming from NaCl salts dis-

solved in the SBF. On the contrary, BG-coated gelatin

scaffolds composition is changed from calcium sili-

cate to calcium phosphate after 7 days soaking in

SBF. Therefore, this composition change can be

unambiguously attributed to the presence of BG as a

bioactive layer coated over the gelatin scaffold.

Figures 5 and 6 investigate in detail the chemical

changes endured by the BG-coated gelatin scaffolds

during their progressive mineralization as observed

through PIXE quantitative chemical imaging. The

homogeneity of mineralization throughout the scaf-

fold is well deduced from Fig. 5, demonstrating the

efficient circulation of fluids due to the good inter-

connected structure of the BG-coated scaffolds. The

BG coating reacts extremely rapidly; right after 6 h,

the SiO2–CaO original phase is changed into a cal-

cium phosphate whose composition (see Fig. 5)

stabilizes after 24 h interaction with SBF. The mea-

sured Ca/P weight ratio is very close to the 2.2 value

(equivalent to 1.67 atomic ratio) of stoichiometric

apatite. Interestingly, small amounts (*1 wt%) of

magnesium are found to be substituted for calcium in

the apatite crystals. As Mg2? is known for stimulation

of bone formation and promotion of cellular adhesion

and stability due to interaction with integrins [60–62],

its incorporation into the coating layer is an attractive

feature. From Figs. 6 and 7, which show the evolution

of ion concentrations in the coating layer and in the

SBF, respectively, we observe the dissolution of the

silicate network is very fast, being achieved in the

first 24 h of interaction with SBF. Phosphate ions are

depleted from SBF, and all concentrations reach

equilibrium right after 24 h interaction.

Finally, the mechanical properties of BG-coated

gelatin scaffolds were tested in compression. Figure 8
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reports the stress–strain curves compared for gelatin

scaffolds coated with BG vs non-coated, both having

the same 80% porosity. A slight increase in the yield

strength is observed for BG-coated scaffolds. The

yield strength is near 1 MPa in both cases, lying in

the low range of reported values for trabecular bone

[63, 64]. Because only a thin BG coating layer of

200 nm has been applied here, the mechanical prop-

erties are mainly dependent upon the nature of the

polymer chosen to build the scaffold, the toughness

being here tightly bound by the gelatin properties.

Conclusion

Coating a substratewith a bioceramics is awell-known

and efficient way of making it become bioactive.

However, only very few methods can be applied to

polymer scaffolds due to their limited processability

post-synthesis. We have employed here a dip-coating

process involving a BG sol obtained from an alkoxide

route. Itwas successful to yield abioactive coatingwith

remarkable homogeneity without the need of thermal

treatments, preserving the polymer integrity. We

believe it can be applied to any other complex shape or

substrate. Gelatin scaffolds are coated with layers of

BG with a noticeably uniform 200 nm thickness. The

coating is highly reactive towards SBF and demon-

strates a quick apatite-forming ability. Importantly,

mineralization takes place homogeneously through-

out the scaffold and the coating, while being chemi-

cally changed into an apatite phase, keeps its

remarkable uniformity and thickness regularity. A

slight increase in the mechanical response to com-

pression tests is also observed. These features should

enhance the in vivo behaviour of polymer scaffolds

and make reconsider the interest of polymers that are

non-bioactive for tissue engineering, as both the glass

dissolution products from the coating and the newly

formed apatite layer help attracting, recruiting and

stimulating bone cells. Alternatively, this method can

be considered as an efficient way of obtaining a uni-

form apatite coating on complex polymer shapes at

ambient temperature.
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