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ABSTRACT 

We determined the major and trace element concentrations of olivine-hosted melt 

inclusions in basalts from the active Baekdusan volcano situated on the border between China 

and North Korea in order to understand better the nature of the mantle source and the 

geodynamic processes that gave rise to volcanism at this site. Rehomogenized melt inclusions 

(after ‘Fe-loss’ correction) can be divided into three groups: a low-Si alkaline group, a high-
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Si alkaline group, and a high-Si sub-alkaline group. The low-Si group is composed of 

picrobasalt to basanite, and the high-Si group consists of (trachy)basalt to basaltic 

(trachy)andesite. The low-Si group has generally higher TiO2, CaO, and P2O5, but lower 

Al2O3, Na2O, and K2O contents at a given MgO concentration compared with those in the 

high-Si group. The CaO and P2O5 contents are positively correlated, indicating the presence 

of a calcium phosphate, probably tuite [γ-Ca3(PO4)2], in the source. The melt inclusions are

enriched in light rare earth elements [(La/Yb)N = 7.8–30.4]. On a primitive-mantle-

normalized incompatible element plot, the low-Si group has positive anomalies in Ba and P 

compared with typical oceanic island basalt (OIB). On the other hand, the high-Si group 

exhibits remarkable positive anomalies in Eu, Ba, Rb, K, Pb, P, and Ti, implying that K-

hollandite and tuite are essential phases in the source. The high-Si subalkaline group has 

lower abundances of incompatible elements than the high-Si alkaline group, reflecting 

different degrees of partial melting from the same source. In contrast to OIB, Baekdusan 

magmatism is characterized by positively fractionated (Zr/Hf)N ratios, and is best 

approximated by admixture of partial melts derived from both clinopyroxene-rich eclogite 

and garnet peridotite. Intraplate volcanism in northeastern Asia is closely associated with 

deep subduction of the Pacific plate. The subducting Pacific slab flattens and stagnates in the 

mantle transition zone under northeastern Asia, and this zone may yield a wet plume. Focused 

mantle upwelling through a gap in the stagnant slab may also be accompanied to the plume 

responsible for the Baekdusan magmatism. Thermal decomposition of K-hollandite within 

recycled continent-derived sediments is likely to metasomatize the ambient mantle peridotite 

above the stagnant slab. As the plume ascends through the upper mantle, the metasomatized 

mantle and recycled oceanic crustal materials (tuite-bearing eclogite or garnet pyroxenite) 

entrained by the plume may undergo partial melting, resulting in the volcanism observed at 

Baekdusan. 
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1. Introduction

Silicate melt inclusions (hereafter ‘melt inclusions’) are small droplets entrapped in 

phenocrysts during their growth within magmatic systems (e.g., Lowenstern, 1995; Roedder, 

1984). Melt inclusions entrapped by phenocrysts that formed early in the process of magma 

evolution may represent snapshots of primitive magmatic conditions (Kent, 2008; Schiano, 

2003; Shimizu, 1998; Sobolev, 1996). Studies of such melt inclusions can provide important 

insights into the nature of mantle sources and the melting and melt transport processes that 

occur in primitive magma and are subsequently erased from the basaltic rock by fractional 

crystallization, magma mixing, or crustal contamination during its evolution. Meanwhile, it is 

well recognized that the original composition of a melt inclusion may be altered by post-

entrapment processes during natural cooling, such as crystallization of host minerals on the 

walls of inclusions, crystallization of other daughter minerals inside the inclusions, formation 

of shrinkage bubbles, or diffusive re-equilibration between host minerals and the external 

magma (e.g., Chen et al., 2011; Cottrell et al., 2002; Danyushevsky et al., 2000; Gaetani and 

Watson, 2000; Qin et al., 1992; Roedder, 1984). Such modification, however, can be reversed 

by rehomogenization experiments and/or numerical reconstruction (e.g., Danyushevsky et al., 

2002; Kent, 2008; Schiano, 2003). 
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Late Cenozoic intraplate volcanism is widespread in the eastern North China Craton 

(NCC; Fig. 1a, b). Numerous petrological and geochemical studies have shown that Cenozoic 

basaltic rocks have oceanic island basalt (OIB)-like patterns of trace element distribution, 

including enrichment of light rare earth elements (LREE) and a lack of depletion of high field 

strength elements (HFSE), and thus might be derived from a peridotitic source in the 

subcontinental lithospheric mantle or asthenosphere (Basu et al., 1991; Chen et al., 2003; Chu 

et al., 2013; Kuritani et al., 2009, 2013; Li et al., 2014; Sakuyama et al., 2013; Xu et al., 2005, 

2012a; Yan and Zhao, 2008; Zhang et al., 1995, 2015; Zou et al., 2008). However, there is a 

general consensus that the peridotitic source contains a significant proportion of mafic 

lithologies such as pyroxenite, eclogite, or hornblendite, which may play an important role in 

generating OIB-like intraplate basaltic magmatism (e.g., Eisele et al., 2002; Gao et al., 2004, 

2008; Hauri, 1996; Hirschmann et al., 2003; Keshav et al., 2004; Kogiso et al., 2003; Kogiso 

and Hirschmann, 2006; Pertermann and Hirschmann, 2003a, b; Rehkämper and Hofmann, 

1997; Sobolev et al., 2005, 2007; Yaxley and Green, 1998). Recycled oceanic crust or melt-

peridotite reaction products may provide the mafic source rocks (e.g., Hauri, 1996; Herzberg, 

2011; Sobolev et al., 2005, 2007; Straub et al., 2008), and some Cenozoic basaltic rocks from 

the eastern NCC (e.g., Abaga-Dalinuoer, Chifeng, Jilin, Hebei, Hannuoba, Liaoning, Bohai 

Bay, Shandong, Anhui, Jiangsu) may be derived from a source lithology containing 

pyroxenite in addition to peridotite (Hong et al., 2013; Li et al., 2016; Liu et al., 2008; Qian et 

al., 2015; Zhang et al., 2009; Zhang and Guo, 2016). 

The Baekdusan volcanic field (also called Changbaishan in China; N41°20′–42°40′, 

E127°00′–129°00′), located on the border between China and North Korea, represents the

largest exposure of intraplate volcanic rocks on the NCC (Fig. 1b, c). The volcanoes in this 

area have erupted repeatedly in historical times. The most powerful eruption, called “the 

Millennium Eruption”, occurred with a Volcanic Explosivity Index (VEI) of 6 or 7 in ca.
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938–946 AD (Horn and Schmincke, 2000; Iacovino et al., 2016; Wei et al., 2013; Xu et al.,

2013; Yin et al., 2012; Zou et al., 2010). Voluminous Plinian fallout, ignimbrite, lahar, and 

other erupted materials covered 33,000 km
2
 of northeastern China and Korea (Stone, 2011;

Sun et al., 2014), and extended as far as northern Japan, ~1200 km from the volcano 

(Machida and Arai, 1983). After the Millennium Eruption, minor volcanic activity continued, 

with eruptions in 1413, 1597, 1668, 1702, 1898, and 1903 AD, exhibiting a roughly 100-year 

periodicity (Cui et al., 1995; Stone, 2011; Xu et al., 2012b, 2013). Although the volcano has 

not erupted in the past 100 years, all available geological data including seismicity, ground 

deformation, and geochemical monitoring of springs indicate that Baekdusan is an active 

volcano with the potential for eruption in the near future (Ramos et al., 2016; Wei et al., 2003, 

2013; Xu et al., 2012b; Yun and Lee, 2012). Thus, it is of the utmost importance to 

understand the nature of the magmatism to anticipate its behaviour at this site. Previous 

studies have primarily focused on the history of Baekdusan volcanic activity (Wei et al., 2003, 

2007, 2013), magma evolution and the eruptive mechanism (Liu et al., 2015a; Wang et al., 

2003; Zhang et al., 2015; Zou et al., 2008, 2010, 2014), and geochemical lines of evidence of 

enriched mantle sources (Basu et al., 1991; Chen et al., 2007; Hsu et al., 2000; Kuritani et al., 

2009; Liu et al., 2015a). Here, we describe for the first time the major and trace element 

compositions of re-heated melt inclusions entrapped in olivine phenocrysts from the 

Baekdusan basaltic rocks. Combining these data with whole-rock major element, trace 

element, and host olivine compositions, we shed light on (1) the particular mineral phases and 

lithologies of the mantle source, (2) the nature of source heterogeneities, and (3) the 

geodynamic processes that gave rise to volcanism at Baekdusan. 

2. Geological setting and sampling
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The NCC is one of the oldest cratons in the world (~3.8 Ga; Liu et al., 1992; Zheng 

et al., 2004), and the Baekdusan volcanic field is located on the northeastern margin of the 

NCC (Fig. 1a, b). The basement of the eastern NCC consists primarily of Archean tonalite-

trondhjemite-granodiorite (TTG) gneisses, granitoids, and supracrustal rocks, which are 

locally overlain by Proterozoic to Paleozoic strata (e.g., Wang et al., 2003, Zhang et al., 2015, 

2017). The eastern NCC experienced widespread tectonothermal reactivation during the Late 

Mesozoic to Cretaceous, as indicated by the emplacement of voluminous silicic intrusions 

and volcanic rocks (e.g., Meng, 2003). The Central Asian Orogenic Belt (CAOB; Fig. 1a) 

bounds the NCC to the north. Disappearance of the Paleo-Asian Ocean between the NCC and 

the southern accretionary margin of the Siberian Craton was completed in the Late Paleozoic 

to Early Mesozoic (Eizenhöfer et al., 2014), and the paleo-Pacific plate began to subduct 

under the Asian continent in the Early Jurassic (Sun et al., 2013). The Baekdusan volcanic 

field lies ~1,300 km away from the Japan Trench. Recent studies of seismic tomography 

show that the subducting Pacific slab flattens and stagnates in the mantle transition zone 

(~410 to 660 km depth) under northeastern Asia (Duan et al., 2009; Guo et al., 2016; Huang 

and Zhao, 2006; Lei and Zhao, 2005; Liu et al., 2015b; Zhao et al., 2009). The leading edge 

of the stagnant slab reaches a longitude of 120
o
E (e.g., Huang and Zhao, 2006).

The Baekdusan field has >100 volcanic centers, including three main mountains: 

Tianchi in the China-North Korea border region, Wangtian’e in China, and Namphothe in 

North Korea (Fig. 1c). Tianchi is the youngest and tallest cone with a 5-km-wide and 384-m-

deep crater lake at its summit. These mountains are the source of the headwaters of the 

Songhua, Yalu, and Tumen Rivers (Fig. 1b). The eruptions of these three volcanoes are 

geochemically indiscernible (e.g., Liu et al., 2015a), and the volcanoes each consist of an 

early-stage basaltic plateau, a middle-stage trachytic cone, and a late-stage explosive 

comenditic ignimbrite (Liu et al., 2015a; Wei et al., 2003, 2007, 2013) (Fig. 1c). The main 
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early shield-forming eruptions took place between 22.6 and 1.5 Ma (Wei et al., 2007, 2013), 

and the cone-construction stage lasted from ~1.0 Ma to ~20 ka, followed by mostly 

comenditic eruptions (Wei et al., 2013). Eruption of trachytic and comenditic magmas 

reflects a long period of differentiation from the parent basaltic magma (e.g., Wei et al., 

2007). 

Samples used in this study were collected from Wangtian’e volcano and Tianchi 

volcano along the Tumen River (Fig. 1b, c). The K-Ar whole-rock ages for the basalts range 

from ca. 5.5 to 0.2 Ma (Fan et al., 2007). Most samples exhibit a porphyritic texture with 

plagioclase phenocrysts (>0.1 mm in size) in a groundmass of olivine, clinopyroxene, 

plagioclase, ilmenite, and/or titanomagnetite. One sample (BDH-01) contains large olivine 

and plagioclase phenocrysts (up to 2–3 mm in size) in a groundmass of olivine,

clinopyroxene, and plagioclase. Melt inclusions are randomly distributed throughout the 

olivine grains, and are generally rounded ellipsoidal shapes ~20 to ~200 μm in size. We

carefully selected melt inclusions far from crack planes, which usually contain a shrinkage 

bubble and daughter minerals grown from the trapped melt during slow cooling. 

3. Analytical procedures

All samples used in this study were freshly collected. Samples for the whole-rock 

analysis were crushed into small pieces (< 5 mm in diameter) in a tungsten carbide mortar, 

and cleaned in an ultrasonic bath containing Milli-Q water. Fresh fragments were pulverized 

in an agate ball mill prior to geochemical analysis. Whole-rock major element contents were 

analyzed by X-ray fluorescence spectrometry (XRF) at Pukyong National University in 

Pusan, South Korea. The data were reduced using a weighted regression line created from 

standards BIR-1 and MO-5. The precision of the technique for preparing and analyzing 
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standards was within 5% (Table S1). Whole-rock trace element concentrations were 

determined using inductively coupled plasma mass spectrometry (ICP-MS) at Act Labs, 

Ontario, Canada. Precision was estimated to be ±10% based on replicate analyses of 

international rock standards (BIR-1, JR-1, and DNC-1; Table 1). 

Heating experiments were conducted at the Laboratoire Magmas et Volcans 

(Clermont-Ferrand, France) with a Vernadsky-type heated microscope stage (Sobolev et al., 

1980) to determine the composition of melt at the time of its entrapment. The contents of the 

inclusion (glass, gas, and daughter minerals) were homogenized by heating the host olivines 

in a 6-mm-long vertical Pt90Rh10 tube in a purified He atmosphere under redox conditions 

that correspond to the iron-wüstite buffer. The temperature was monitored by a Pt-Pt90Rh10 

thermocouple welded to the sample holder. The accuracy of the temperature measurements 

was approximately ± 20ºC, and the system was calibrated at the melting temperature of Au 

(1064ºC). All experiments were performed with heating rates of 0.9ºC/s from 20ºC to 900ºC 

and 0.4ºC/s for T > 900ºC in order to access the effects caused by variations in the rate of the 

transformations in the inclusions. The homogenization temperatures of melt inclusions varied 

from 1216ºC to 1313ºC (Table S2). After quenching, the samples were polished to expose the 

inclusions for electron microprobe analyses. Textural evidence of quench crystallization was 

absent in back-scattered electron images of the inclusions studied. Some homogenized melt 

inclusions, however, contain tiny sulfide globules (Fig. S1). 

Major element concentrations of homogenized melt inclusions and host olivines were 

determined using a CAMECA SX-100 electron microprobe at the Laboratoire Magmas et 

Volcans. Analyses for glass samples were performed using an accelerating voltage of 15 kV 

and a probe current of 8 nA for major elements (Na, Al, Si, Ca, Fe, Mg, Ti, Mn, K, and P) 

and 80 nA for S, with a defocused (5–10 μm) beam. For host minerals, the beam size was 1 

μm and the beam current was 15 nA. Counting time was 10 s for peaks and 5 s for the 
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background. Sulfur was analyzed in integrated mode, using 5 steps of 10 s each. The 

detection limit for S was ~50 ppm and analytical uncertainties were better than 10%. Natural 

and synthetic minerals and oxides were used for routine calibration, except for S, which was 

calibrated to VG2 basaltic glass according to the Smithsonian Microbeam Standards. For the 

glass analysis, an inter-laboratory check was performed using the international glass standard 

A99 (Kilauea basalt glass; Jarosewich et al., 1979; Thornber et al., 2002). These results are 

provided in Tables S2 and S3. 

Trace element concentrations of reheated melt inclusions were analyzed by laser 

ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) at the Laboratoire 

Magmas et Volcans. This instrument comprises an Excimer ArF laser (193 nm) coupled with 

an Agilent 7500 CS quadrupole mass spectrometer. A spot size smaller than the area of each 

exposed inclusion was used for analysis, which varied from 10 to 20 µm. The laser pulsed at 

2 Hz, and data acquisition time was 30 s for background and 60 s for peaks. Before melt 

inclusion ablation and after every five batches, the reference materials NIST-610 and NIST-

612 were analyzed to test for and correct any signal variation. The United States Geological 

Survey (USGS) Basalt of Columbia River (BCR) glass standard was analyzed as an unknown 

to check the accuracy of the analysis. The calibration values for NIST-610 and NIST-612 

used in data reduction were from Gagnon et al. (2008). Trace element concentrations were 

corrected for variations in ablation efficiency between samples and standards using minor 

isotopes of Ca (
43

Ca and
44

Ca) as an internal standard. CaO concentrations in the melt 

inclusions had been determined previously using an electron microprobe. Multiple analyses 

of BCR indicated that analytical reproducibility and accuracy were better than 10% for most 

reported elements. No corrections for interfering molecular or isobaric species were required 

due to the selection of appropriate analytical isotopes and minimal formation of molecular 

species, with 
+
ThO/

+
Th <0.5% (Table S4).
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4. Results and interpretation

4.1. Host basaltic rocks 

Major and trace element concentrations in the host rocks are given in Table S1. On a 

total alkali versus silica (TAS) diagram (Le Maitre et al., 1989) (Fig. 2), they are 

compositionally basalt to basaltic andesite, belonging to the sub-alkaline suite. The host rocks 

have a limited range of SiO2 (51.1–52.3 wt%) with Mg#s [=100Mg/(Mg+Fe
2+

)] varying from

46.0 to 59.0 (Table S1; Fig. 3). The Ni, Co, and Cr contents of the samples were 50–110, 34–

39, and 70–150 ppm, respectively (Table S1). The Mg# and the Ni and Cr contents of the

host basaltic rocks were lower than those of primitive basalt (Mg# >70; Ni >250–350 ppm,

Cr > 500–600 ppm; Ulmer, 1989; Wilkinson and Le Maitre, 1987), reflecting fractionation of

ferromagnesian minerals such as olivine and clinopyroxene. They exhibit a light rare earth 

element (LREE)-enriched pattern [(La/Yb)N = 8.8–10.2] on chondrite-normalized REE plots

(Fig. 4a and b), with a slight positive anomaly in Eu [(Eu/Eu
*
)N=1.1–1.2, where (Eu*)N =

(SmN + GdN)/2]. Extended primitive-mantle-normalized trace element patterns (also called 

spidergrams) are provided in Fig. 4c and d, along with the composition of typical OIBs (Sun 

and McDonough, 1989). The samples reveal overall enrichment in highly incompatible 

elements compared with less incompatible ones. They exhibit Nb and Ta enrichment relative 

to LREE, resembling a typical OIB (Fig. 4c and d). However, some samples have small 

negative anomalies in Nb and Ta (Fig. 4c and d). Furthermore, they were distinguished by 

marked positive anomalies in Ba and K, and possibly P, compared with the OIB (Fig. 4c and 

d). Also note that these host rocks have higher fractionated (Zr/Hf)N ratios than OIB (Fig. 4c 

and d). 
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4.2. Olivine phenocrysts 

Olivines are present as euhedral to subhedral phenocrysts in thin section. Major 

element concentrations of inclusion-bearing olivines are given in Table S3. They have Fo 

values ranging from 71.5 to 82.7 (Fig. 5). The CaO contents range from 0.17 to 0.28 wt%, 

much higher than those of mantle peridotite xenoliths (CaO < 0.1 wt%; Thompson and 

Gibson, 2000) (Fig. 5), indicating that these olivines are phenocrysts crystallized from 

basaltic magmas. 

4.3. Melt inclusions in olivine phenocrysts 

The major element concentrations of reheated melt inclusions are presented in Table 

S2. Owing to their mobility, volatiles can rapidly diffuse out of inclusions when they are 

breached during reheating. Thus, the sulfur content was determined in order to monitor 

inclusion integrity during rehomogenization experiments (Nielsen et al., 1998). The S 

contents obtained varied from 240 to 1380 ppm (Table S2). Reported S contents of quenched 

mid-ocean ridge basalt (MORB) and submarine OIB (e.g., Mauna Kea, Pitcairn, Society, and 

Galapagos) glasses range from ~400 to 1800 ppm and ~700 to 2200 ppm, respectively 

(Kendrick et al., 2014; Mathez, 1976; Nielsen et al., 1998; Stolper et al., 2004; Yi et al., 

2000). We note that none of the reheated inclusions reported in this study appeared to be 

breached based on visual inspection. However, some homogenized melt inclusions contain 

tiny sulfide globules (Fig. S1), which may result in artificially low S measurements when the 

entire melt inclusion cannot be ablated during analysis (Danyushevsky et al., 2002). To test 

olivine-liquid equilibria, we calculated the Mg-Fe exchange coefficient, Kd = 

(Fe
2+

/Mg)Ol/(Fe
2+

/Mg)Liq, between inclusions (Liq) and host olivines (Ol). The calculated Kd

values ranged from 0.38 to 0.65, significantly higher than the nominal value of 0.30 ± 0.03 at 

1 atm (Roeder and Emslie, 1970), indicating that the melt inclusions are in disequilibrium 
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with their host olivines. Trapped melt composition can be modified by re-equilibration with 

host olivines after entrapment and prior to natural quenching (Danyushevsky et al., 2000, 

2002), particularly where magma cools significantly before eruption. When re-equilibration 

occurs, elements that are incompatible with host minerals are unlikely to be significantly 

exchanged, but compatible elements can be modified and the change in composition of the 

trapped melt is unlikely to be reversed experimentally (Cottrell et al., 2002; Danyushevsky et 

al., 2000; Sobolev, 1996; Spandler et al., 2007). For olivine-hosted melt inclusions, a re-

equilibration process called “Fe-loss” has been recognized in several studies (e.g.,

Danyushevsky et al., 2000; Sobolev and Danyushevsky, 1994), whereby Fe diffuses from a 

melt inclusion into the host olivine while Mg diffuses from the host into the melt inclusion, 

increasing the Kd value. The S solubility in a melt is positively correlated with its FeO 

content (e.g., Mathez, 1976; Wallace and Carmichael, 1992). Therefore, the sulfide globules 

observed in some homogenized melt inclusions could be a consequence of Fe-loss 

(Danyushevsky et al., 2002). We have corrected for Fe-loss using the computer program 

"Petrolog3" introduced by Danyushevsky and Plechov (2011). This calculation requires an 

independent estimate of the initial FeO* contents of melt inclusions. The FeO* contents of 

Baekdusan basalts do not show a meaningful variation attributed to magmatic differentiation 

(Fig. S2). We thus assumed the initial FeO* contents of melt inclusions to be a mean value of 

the host basaltic rocks. The Fe2O3 contents of trapped melts were calculated using 

(Fe
2+

/Fe
3+

)melt = 9. Corrected melt compositions are reported in Table S5. The Kd (Fe
2+

-Mg)

values between host olivines and corrected melt inclusions are between 0.29 and 0.32 (Table 

S5), within the range (0.30 ± 0.03; Roeder and Emslie, 1970) determined experimentally. 

The SiO2 contents of melt inclusions range from 41.7 to 53.1 wt% (Fig. 2). Based on 

the SiO2 and trace element contents (see below), we divided the melt inclusions into two 

groups: a low-Si group (SiO2<45 wt%) and a high-Si group (SiO2>45 wt%). The low-Si 
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group is compositionally picrobasalt to basanite in the alkaline series (Fig. 2). The high-Si 

group consists of (trachy)basalt to basaltic (trachy)andesite, which can be further divided into 

two sub-groups: an alkaline (trachy)basalt-basaltic trachyandesite group and a sub-alkaline 

basalt-basaltic andesite group (Fig. 2). The MgO contents of the low-Si group are limited to 

~7.0 wt%, but those of the high-Si group vary from 3.8 to 7.3 wt% (Fig. 3). The low-Si group 

has higher TiO2, CaO, and P2O5 concentrations, but lower Al2O3, Na2O, and K2O contents at 

a given MgO than the high-Si group (Fig. 3). The sub-alkaline group has higher SiO2, and 

lower Al2O3, Na2O, and K2O contents than the alkaline group at a given MgO concentration 

(Fig. 3). The TiO2, Na2O, and K2O contents of the high-Si group increase with decreasing 

MgO, but the SiO2, Al2O3, CaO, and P2O5 contents do not correlate well with MgO (Fig. 3). 

The trace element concentrations of reheated melt inclusions are given in Table S4. 

They exhibit LREE-enriched patterns [(La/Yb)N = 7.8–30.4] similar to a typical OIB (Table

S4; Fig. 4a and b). However, most of the high-Si group are distinguished by positive Eu 

anomalies [(Eu/Eu
*
)N=1.0–1.3) compared with the OIB. Furthermore, in terms of primitive-

mantle-normalized multi-element patterns (Fig. 4c and d), the high-Si group is generally 

similar to the host basalt, characterized by significant enrichments in Ba, Rb, K, Pb, P, and Ti, 

and exhibits fractionated (Zr/Hf)N ratios compared with the OIB. The low-Si group also 

exhibits distinctive positive anomalies in Ba and P and fractionated (Zr/Hf)N ratios, but has 

relatively low abundances of Ba and Rb and a significantly negative anomaly in K compared 

with the high-Si group or host basalt. Also note that sample BD-07-5a exhibits pronounced 

Nb and Ta depletion relative to LREE. 

5. Discussion

5.1. Source mineralogy and lithology 
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Melt inclusions exhibit a wider diversity of compositions than their host basalts (Fig. 

3). For example, TiO2, K2O, and P2O5 contents of melt inclusions varied from 2.4 to 5.3, 0.2 

to 3.0, and 0.2 to 5.3 wt%, respectively, but those species in the host basalt are lower, from 

2.1 to 3.0, 1.3 to 1.8, and 0.3 to 0.7 wt%, respectively. Significant compositional diversity has 

often been observed in melt inclusions from a single sample (e.g., Choi et al., 2013; Gurenko 

and Chaussidon, 1995; Kamenetsky et al., 1998; Kent et al., 1999; Li et al., 2016; Sobolev 

and Shimizu, 1993). In these cases, melt inclusions have been interpreted as sampling a range 

of liquids reflecting a range of source compositions, extents of melting and/or melting 

processes, and trapped before mixing and homogenization in magma chambers diluted or 

averaged them to produce the compositions of erupted lavas (Kent, 2008; Schiano, 2003; 

Sobolev and Shimizu, 1993). 

Low-Si group melt inclusions are typified by much higher MgO and lower SiO2 

concentrations than the high-Si group or host basalts, implying that they record an early stage 

in the evolution of magma, prior to mixing and blending at a shallow depth. The low-Si group 

has notably elevated CaO and P2O5 contents (Fig. 3d, g), and these two elements are 

positively correlated (Fig. 6). Major element concentrations in the high-Si sub-alkaline group 

generally resemble those of the host basalts, but the high-Si alkaline group exhibits 

significantly higher compositional diversity (Fig. 3). MgO concentrations of the host basalts 

apparently lie in the middle of the compositional range of high-Si alkaline group (Fig. 3). 

However, this group is characterized by generally lower SiO2 and higher TiO2, Al2O3, K2O, 

and P2O5 values at a given MgO content than host basalts (Fig. 3). 

Trace element concentrations of melt inclusions may be modified by diffusive 

equilibration with host minerals or external melts (e.g., Kent, 2008). Diffusive exchange 

occurs more readily for elements with higher diffusivity in host minerals, higher partition 

coefficients between the host mineral and melt, and smaller melt inclusions and host minerals 
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(Qin et al., 1992). Olivine is a favorable host for isolation of melt inclusions from the external 

media, because this phase possesses minimal concentrations of most elements that 

characterize basaltic melt, with the exceptions of Mg, Fe, and Si (e.g., Cottrell et al., 2002; 

Qin et al., 1992; Sobolev, 1996). Experimental result of Cherniak (2010) suggests that 

timescales ranging from tens of thousands to a few million years are necessary for REE in a 

melt inclusion with a 50-μm radius within a 1-mm radius olivine to reach 90% re-

equilibration with the external melt at a temperature of 1300°C. Note that our study is limited 

to inclusions (> 20 μm in size; Table S2) located at the center of host olivines (> 1 mm in

size). Given that estimated times for the processes of basaltic melt formation, extraction, 

ascent, and residence in the crust range from ~10 to 10
5
 years (Reid, 2005), it is thus likely

that incompatible elements in olivine-hosted melt inclusions record the signatures of primary 

melts from the mantle. Despite this assumption, we use incompatible element abundances and 

ratios in order to minimize the possibility of any modification. 

Compared with a typical OIB, high-Si group melt inclusions and host basalts exhibit 

significantly positive anomalies in Eu, Ba, Rb, K, and Pb (Fig. 4a, c). These anomalies are 

also present in near-primary (i.e., highly magnesian and low SiO2) melts hosted in Fo-rich 

olivine (e.g., sample BD-07-2: Fo = 82.7; MgO = 7.3 wt%; SiO2 = 49.5 wt%) (Fig. 4a, c), 

suggesting a lack of crustal contamination. K-hollandite [KAlSi3O8], a high-pressure (above 

~10 GPa) polymorph of potassium feldspar, is characterized by relatively high concentrations 

of K, Rb, Ba, and Pb concentrations (Rapp et al., 2008; Schmidt, 1996; Urakawa et al., 1994; 

Wang and Takahashi, 1999; Yagi et al., 1994). The positive anomalies, along with the 

elevated Al2O3 contents of the high-Si alkaline group at a given MgO (Fig. 3c), suggest a 

possible presence of K-hollandite in the source (Kuritani et al., 2011). 

This K-hollandite signature, however, is not present in the low-Si group (Fig. 4b, d). 

Instead, the low-Si group together with some high-Si alkaline group have a remarkable spike 
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in P (Fig. 4d). Also note that the P2O5 contents exhibit a positive correlation with CaO 

contents (Fig. 6). These observations indicate the presence of a calcium phosphate in the 

source. Apatite is one of the major phosphates in terrestrial rocks, including the garnet 

lherzolite (e.g., Konzett et al., 2012; Konzett and Frost, 2009; Murayama et al., 1986). 

However, experimental data and thermodynamic calculations indicate that apatite is 

transformed to tuite [γ-Ca3(PO4)2] at pressures above ~8 GPa (Konzett et al., 2012; Konzett

and Frost, 2009; Murayama et al., 1986; Sugiyama and Tokonami, 1987; Thompson et al., 

2013). Xie et al. (2002) reported the coexistence of tuite and Na-hollandite [NaAlSi3O8] in 

the shock-produced veins of the Suizhou chondrite. Natural K-hollandite may exist as a solid-

solution phase containing NaAlSi3O8 (Yagi et al., 1994). Thus, we consider tuite and/or K-

hollandite to be essential phases in the mantle source of Baekdusan magmatism. 

Low-Si melts and some high-Si melts exhibit a slight negative anomaly in Nb-Ta 

relative to the neighboring La (Fig. 4c and d). This apparent anomaly could be accounted for 

by crustal contamination during magma differentiation, because continental crust has a 

distinct negative Nb-Ta anomaly (e.g., Rudnick and Gao, 2005). We note, however, that 

(Nb/La)N ratios do not show a meaningful correlation with the Fo values of host olivines (Fig. 

7a), implying an insignificant role for AFC (assimilation and fractional crystallization) 

processes. This has also been substantiated by previous studies (e.g., Kuritani et al., 2011; Liu 

et al., 2015a), which found no discernible correlations between SiO2 and 
87

Sr/
86

Sr or Ba/Th

ratios in the Baekdusan basalts. Instead, we observe a meaningful negative correlation 

between (Nb/La)N and (P/P*)N ratios (Fig. 7b), where (P*)N = (NdN + SmN)/2. The partition 

coefficient (D) of La between apatite and basaltic melt is significantly higher than that of Nb 

(DLa=1.9–13.3, DNb = 0.0011–0.0035, DTa = 0.0010–0.0026; Prowatke and Klemme,

2006). Thus, inasmuch as partitioning coefficients for tuite are unknown, we suggest that the 
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Nb-Ta depletion might be attributed to relative enrichment in La by presence of tuite in the 

source. 

The magmatism at Baekdusan is characterized by positively fractionated (Zr/Hf)N 

ratios, in contrast to OIB (Fig. 4c and d). Recycled oceanic crust (e.g., eclogite or garnet 

pyroxenite) has been proposed as a reservoir with a suprachondritic Zr/Hf ratio (Klemme et 

al., 2002; Pertermann et al., 2004). Experimental studies (Hauri et al., 1994; Pertermann et al., 

2004; van Westrenen et al., 1999) show complementary DZr and DHf values in clinopyroxene 

(DZr < DHf) and garnet (DZr > DHf). The partition coefficient for Zr and Hf in tuite might be 

about one order of magnitude lower than that determined for clinopyroxene and garnet 

(Prowatke and Klemme, 2006). The Zr/Hf ratio in melt can thus be controlled by the modal 

proportions of clinopyroxene and garnet in the source. Fig. 8a shows the Zr/Hf versus La/Yb 

relationship in partial melts derived from eclogite and peridotite, calculated using the Shaw’s 

(1970) equation. The peridotite is assumed to melt non-modally, but the eclogite in modal 

proportions. The partition coefficients between minerals and melts, and the concentrations of 

select trace elements used in the calculations are listed in Table S6. Notably, partial melting 

of garnet peridotite alone is unlikely to produce the elevated Zr/Hf ratios observed in the 

Baekdusan melts. The Baekdusan data are best approximated by admixture of partial melts 

derived from clinopyroxene-rich eclogite and garnet peridotite (Fig. 8a). 

To examine the relative contributions of garnet- or spinel-facies sources, we 

calculated Dy/Yb ratios and Yb concentrations for melts (Fig. 8b). Garnet preferentially 

incorporates heavy rare earth elements over LREE relative to spinel (McKenzie and O’Nions, 

1991; Pertermann et al., 2004). Therefore, garnet peridotite produces a melt with a higher 

Dy/Yb ratio and lower Yb content than a spinel peridotite source (Fig. 8b). Partial melts 

derived from spinel-garnet peridotite contain slightly elevated Yb and a reduced Dy/Yb 

compared with those of garnet peridotite (Fig. 8b). The Baekdusan melts have Dy/Yb ratios 
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overlapping with those of partial melts from a garnet peridotite, but their Yb contents are too 

high for modeled melts of garnet peridotite (Fig. 8b). Clinopyroxene-rich eclogites can 

produce melts with Yb contents higher than a garnet peridotite source (Fig. 8b), which further 

supports a mixed garnet peridotite-eclogite source. 

The sub-alkaline group exhibits lower abundances of incompatible trace elements 

than the high-Si alkaline group (Fig. 4a, c). Meanwhile, both groups show similar 

geochemical characteristics such as positive anomalies in Eu, Ba, Rb, K, Pb, and P, and 

positively fractionated (Zr/Hf)N ratios compared with OIB (Fig. 4a, c), indicating different 

degrees of partial melting from the same source. The sub-alkaline melts represent a higher 

degree of partial melting than the alkaline melts (Fig. 8a, b). 

In summary, there are at least two distinct source materials (i.e., altered oceanic crust 

component (tuite-bearing eclogite) and sediment component (metasomatic agent from K-

hollandaite) together with a garnet peridotite component for the Baekdusan magmatism. The 

concentrations of incompatible elements were modeled in order to investigate the nature of 

the mantle source of Baekdusan magmatism (Fig. 9). The partition coefficient between 

minerals and melts, and concentrations of trace elements used in the calculations are provided 

in Table S7. We used an “enriched” depleted MORB source (E-DMM; Workman and Hart,

2005) for modeling. For high-Si melts, we first assumed a metasomatized mantle [a mixture 

of 0.5% K-hollandite (Rapp et al., 2008) and 99.5% E-DMM], and P-rich melt I [a mixture of 

5% tuite melt (Zhai et al., 2014) and 95% of a 1% eclogite melt]. We used two approaches to 

determine high-Si melt compositions: (1) a 3% partial melt of a hybrid source [95% 

metasomatized mantle and 5% P-rich melt I] (Model 1), and (2) a mixture containing 90% of 

a 1% partial melt of metasomatized mantle and 10% P-rich melt I (Model 2). Phase 

proportions (by weight) in the solid and melt modes for the metasomatized mantle are 

Ol55Opx25Cpx10Grt10 and Ol5Opx5Cpx45Grt45, respectively, whereas those for eclogite are the 
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same as Cpx89Grt11. Eclogite compositions were determined using the average oceanic crust 

values from the PetDB database and the mobility of elements during slab dehydration 

(Becker et al., 2000; Kogiso et al., 1997). Model 1 is strongly enriched in large-ion lithophile 

elements (LILE) and exhibits positive anomalies in Pb and P, but no meaningful anomaly in 

K (Fig. 9a). On the other hand, Model 2 has characteristic spikes in K along with Pb and P, 

and a positive (Zr/Hf)N ratio, as observed in high-Si melts (Fig. 9a). For the low-Si group, we 

assumed P-rich melt II [a mixture of 7% tuite melt and 93% of a 1% eclogite melt], and a 

hypothetical mantle [90% E-DMM with 10% P-rich melt II]. We modeled low-Si melt 

compositions in two ways: (1) a 2% partial melt of a hypothetical mantle (Model 3), and (2) 

75% of a 1% melt of E-DMM with 25% P-rich melt II (Model 4). Model 3 yield melt 

compositions significant enriched in LILEs compared with low-Si melts (Fig. 9b). Also note 

that Model 3 has a positive anomaly in Pb, contrary to observations in low-Si melts (Fig. 9b). 

Meanwhile, the elemental abundances in Model 4 match those of the low-Si melts, exhibiting 

a positive anomaly in P and negative anomalies in K and Rb (Fig. 9b). Taken together, we 

suggest that the high-Si melts may have originated from an enriched MORB mantle source 

together with subordinate amount of K-hollandite and tuite-bearing eclogite, and the low-Si 

melts came from the same source but with insignificant contribution from K-hollandite. 

5.2. Tectonic implications 

To account for the mineral phases (K-hollandite, tuite) present in the source, the 

Baekdusan magmatism must be derived from a mantle source deeper than ~10 GPa. Recently, 

replacement of thick (~150–220 km), cold, refractory Archean lithospheric mantle by thin

(~60–120 km), hot, fertile Cenozoic lithospheric mantle has been reported from the eastern

NCC (Gao et al., 2002; Griffin et al., 1998; Menzies et al., 1993; Menzies and Xu, 1998; Xu, 

2001; Yang et al., 2010). Dramatic changes in the mechanical, thermal, and chemical 
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characteristics of the lithospheric mantle may record the removal of Archean lithospheric 

mantle during the Phanerozoic, possibly via delamination (Gao et al., 2002; Menzies et al., 

1993; Menzies and Xu, 1998). Removal of thickened lower continental crust comprising 

eclogitic rocks may be accompanied by lithospheric mantle delamination (Gao et al., 2004, 

2008). Lower crustal materials foundered in the convecting mantle could provide a mafic 

source for Baekdusan’s magmatism. However, it is still unclear whether the delaminated

lower crust reaches a depth near the upper boundary of the subducted Pacific plate, and its 

duration in the asthenospheric mantle is also unknown. It should be noted that melts derived 

from foundered eclogitic lower continental crust are characterized by strong depletion of 

HFSEs, a highly radiogenic initial 
87

Sr/
86

Sr ratio (0.7053 to 0.7101), and negative εNd values

(−14 to +2) (e.g., Gao et al., 2004, 2008; Xu et al., 2002, 2006, 2008). As discussed above, 

the Baekdusan melts do not show any obvious geochemical characteristics of crustal 

contamination. Furthermore, the Sr-Nd isotopic compositions of the Baekdusan basaltic rocks 

are generally close to bulk silicate Earth values (
87

Sr/
86Sr = 0.7046 to 0.7062; εNd = −4 to +3;

Basu et al., 1991; Kuritani et al., 2009; Liu et al., 2015a; Zhang et al., 2015). We thus rule out 

the possibility of foundered lower continental crustal materials in the source. 

Instead, we propose recycled oceanic crust as a possible source of eclogitic materials. 

Oceanic crust may have been recycled into the mantle beneath northeastern China in dual 

subduction episodes: (1) the southward subduction of the Mongol-Okhotsk oceanic plate until 

the Jurassic (Tang et al., 2014; Zhang et al., 2016; Zhou et al., 2009) and (2) the 

northwestward subduction of the Pacific plate since the Cretaceous (Duan et al., 2009; Guo et 

al., 2016; Huang and Zhao, 2006; Lei and Zhao, 2005; Liu et al., 2015b; Zhao et al., 2009). 

Subduction of the Mongol-Okhotsk oceanic plate ceased about 150 Ma ago, and the 

subducted slab penetrated down to the lower mantle (from depths of ~1,500 km to at least 

2,500 km) (van der Voo et al., 1999). No high-velocity seismic anomalies, which would 
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signify the presence of slab remnants from the Mongol-Okhotsk oceanic plate, have been 

detected in the upper mantle beneath northeastern China (e.g. Huang and Zhao, 2006; Wei et 

al., 2012). Intraplate volcanism in northeastern Asia is thus considered to be closely 

associated with deep subduction of the Pacific plate (e.g., Lei and Zhao, 2005; Tang et al., 

2014; Tian et al., 2016; Wei et al., 2012, 2015; Zhao et al., 2009). Seismic tomography of 

northeastern Asia has revealed a prominent low-velocity anomaly beneath the Baekdusan 

volcano, extending down to the 410-km discontinuity (Duan et al., 2009; Guo et al., 2016; 

Huang and Zhao, 2006; Lei et al., 2013; Lei and Zhao, 2005; Tian et al., 2016; Zhao et al., 

2009), which may indicate a wet plume from the mantle transition zone (MTZ) (Kuritani et 

al., 2011; Richard and Iwamori, 2010; Zhao et al., 2009). 

Continent-derived sediments subducted along with the oceanic lithosphere can be 

stored in the MTZ. K-hollandite may be the most dominant phase within stagnant subducted 

continent-derived sediments, and is also a major repository of LILEs (e.g., K, Ba, Sr, Pb, 

LREE, etc.) (Irifune et al., 1994; Murphy et al., 2002; Ono, 1998; Rapp et al., 2008). The 

thermal stability of K-hollandite is dependent upon the amount of H2O in the system (Rapp et 

al., 2008); it decomposes around 1600°C at 16 GPa under relatively dry conditions, but 

breaks down at ~1400°C under wet conditions (Rapp et al., 2008; Wang and Takahashi, 

1999). Subducting sediments can carry H2O to the mantle transition zone (Kerrick and 

Connolly, 2001a; Ono, 1998). The H2O fluid released from the subducting slab migrates into 

the overlying mantle peridotite, and can be trapped to form hydrous phases in peridotites or 

even incorporated into nominally anhydrous minerals (e.g., wadsleyite, ringwoodite) 

(Iwamori, 2007; Kawamoto et al 1996; Luth, 2005; Ohtani et al., 2004). Hydrous peridotite is 

likely to be dragged down by the descending slab, and can also transport H2O into the 

transition zone (Ohtani et al., 2004; Ono, 1998). The exact amount of H2O transported to the 

transition zone depends on the thermal structure of the subducting slab (Kerrick and Connolly, 
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2001a, b; Luth, 2005; Ohtani et al., 2004; Ono, 1998). If the subducted stagnant slab and its 

accompanying peridotite warm to ambient mantle temperatures, thermal decomposition of K-

hollandite can occur. Fluids or melts expelled from the breakdown of K-hollandite may 

facilitate the transfer of LILEs into the mantle above the stagnant slab, where they can 

metasomatize the ambient mantle peridotite (Kuritani et al., 2011). In addition, the presence 

of H2O in peridotite may induce Rayleigh-Taylor instabilities and thus generate wet plumes 

(Richard and Bercovici, 2009; Richard and Iwamori, 2010), which may pick up stagnant slab 

materials (Fig. 10). Alternatively, seismic images and waveform modelling show that focused 

mantle upwelling may rise through a gap in the deep stagnant slabs beneath northeast China 

(Lei et al., 2013; Tang et al., 2014). Tuite can exist within peridotitic or MORB-like bulk 

compositions (Konzett et al., 2012) and is stable over a wide range of subduction zone 

temperature regimes, but not in convecting asthenospheric mantle (Konzett and Frost, 2009; 

Konzett et al., 2012). When plumes ascend through the upper mantle, metasomatized mantle 

and recycled oceanic crustal materials (tuite-bearing eclogite or garnet pyroxenite) may 

undergo partial melting as soon as they surpass the solidus temperature (Fig. 10). The solidus 

for recycled oceanic crust falls at temperatures ~50 to 150°C lower than that of typical 

peridotite, and is therefore encountered first during adiabatic upwelling of mantle 

(Hirschmann and Stolper, 1996; Kogiso et al., 2003). High concentrations of alkali, 

especially K2O, in peridotites have a great influence on solidus temperatures, which decrease 

with increasing alkali content, possibly due to incompatible behavior during partial melting 

(Herzberg et al., 2000; Hirschmann, 2000). For example, the solidus temperature can 

decrease by ~150°C per percent alkali in the bulk composition (Herzberg et al., 2000; 

Hirschmann, 2000). Thus, the difference between the solidus temperatures for LILE-enriched 

peridotites created by K-hollandite breakdown and recycled oceanic crust may be minor. K-

rich melts from metasomatized mantle, P-rich melts from recycled oceanic crust, and 
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heterogeneous mixtures of these two components may result in compositionally diverse melt 

inclusions in olivines from the Baekdusan basalts (Fig. 10). We note that the TiO2 and P2O5 

contents of the melt inclusions are higher than those of the host basalts (Fig. 3b, g). This 

observation suggests that there must have been another component having low TiO2 and P2O5 

in the host magma, probably produced by prevailing peridotites. The absence of melt 

inclusions having low TiO2 and P2O5 suggests that the olivine phenocrysts were grown in the 

mantle source before significant melting of peridotite component. This is consistent with the 

observation of relatively low Fo values (72-83; Table S3) of the inclusion-bearing olivines. 

6. Conclusions

Olivine-hosted melt inclusions in Baekdusan basalts can be divided into two major 

groups in terms of their major and trace element compositions: a low-Si group and a high-Si 

group. The low-Si group is characterized by a distinct positive spike for P in the spidergram, 

as well as a positive correlation between CaO and P2O5. The high-Si group exhibits 

pronounced positive anomalies in Eu, Ba, Rb, K, Pb, and P. They are characterized by 

fractionated (Zr/Hf)N ratios higher than the OIB. Geochemical modeling indicates that the 

high-Si melts may be produced by mixing K-rich melt from the “enriched” depleted MORB 

source (E-DMM) metasomatized by K-hollandite breakdown with P-rich melt from tuite-

bearing eclogite. Meanwhile, the low-Si melts may have been formed by admixture of a melt 

from E-DMM with a P-rich melt from tuite-bearing eclogite. Partial melting of recycled 

oceanic crustal materials entrained within a plume ascending from the mantle transition zone 

or from depths near 700 km through a gap in the stagnant slab along with garnet peridotites 

may have played an important role in the genesis of volcanism at Baekdusan. 
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Figure Captions 

Fig. 1. (a) Simplified geological map showing major tectonic units of the North China Craton 

(NCC) and its surrounding areas, modified from Yan and Zhao (2008). (b) The distribution of 

Cenozoic volcanic rocks in northeastern China and the location of the study area, after Zhang 

et al. (2015). (c) Geological map showing fault structures and volcanic distribution in the 

study area (modified after Wang et al., 2003). Abbreviations: CAOB = Central Asia Orogenic 

Belt; SH R. = Songhua River; TM R. = Tumen River; YL R. = Yalu River. 

Fig. 2. Total alkali versus silica plots (Le Maitre et al., 1989) for corrected melt inclusions in 

olivines and host basalts. The boundary line dividing alkaline and subalkaline series is from 

Irvine and Baragar (1971). The gray shaded area represents published data for Baekdusan 

basaltic rocks (Chen et al., 2007; Fan et al., 2006; Guo et al., 2014; Kuritani et al., 2009; Liu 

et al., 2015a; Yun and Koh, 2014; Zhang et al., 2015). 

Fig. 3. Major oxide patterns of corrected melt inclusions in olivines and host basalts. MI = 

melt inclusion. 

Fig. 4. Rare earth element concentrations normalized to chondrite values (Sun and 

McDonough, 1989) for corrected melt inclusions and host basalts (a and b), and extended 

trace element plots normalized to the composition of the primitive mantle (Sun and 

McDonough, 1989) (c and d). Typical oceanic island basalt (OIB; Sun and McDonough, 

1989) compositions are shown for comparison. Solid red circles in (a) and (c) represent the 

most magnesian melt inclusion (sample BD-07-2). MI = melt inclusion. 
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Fig. 5. CaO contents versus Fo values of melt inclusion-bearing olivines from Baekdusan 

basaltic rocks. The dashed line separating magmatic phenocrysts from mantle olivines on the 

basis of CaO is from Thompson and Gibson (2000). 

Fig. 6. P2O5 versus CaO contents for corrected melt inclusions and host basalts. MI = melt 

inclusion. 

Fig. 7. Primitive-mantle-normalized (Nb/La)N ratios for melt inclusions versus (a) Fo values 

of host olivines and (b) (P/P
*
)N ratios for melt inclusions, where (P

*
)N = (NdN + SmN)/2.

Normalization values are from Sun and McDonough (1989). MI = melt inclusion. 

Fig 8. (a) Zr/Hf versus La/Yb ratios and (b) Dy/Yb ratio versus Yb (ppm) for melt inclusions 

from Baekdusan basaltic rocks. Also shown are the melt curves for modal batch melting of 

eclogites and non-modal batch melting of garnet peridotites, spinel peridotite, and spinel-

garnet peridotite using partition coefficients from Table S3. The “enriched”-depleted MORB

mantle (E-DMM; Workman and Hart, 2005) and natural eclogite compositions (John et al., 

2004) are used for modeling. Phase proportions (by weight) in the solid mode are 

Ol55Opx20Cpx15Grt10 and Ol55Opx25Cpx10Grt10 for garnet peridotites, Ol55Opx25Cpx18Sp2 for 

spinel peridotite, and Ol50Opx25Cpx19Sp3Grt3 for spinel-garnet peridotite. Phase proportions 

(by weight) in the melt mode are Ol5Opx5Cpx45Grt45 for garnet peridotite, Ol10Opx20Cpx68Sp2 

for spinel peridotite, and Ol7Opx10Cpx50Sp8Grt25 for spinel-garnet peridotite. Phase 

proportions (by weight) for eclogites are Cpx89Grt11 and Cpx82Grt18, respectively. 

Abbreviations: Ol = olivine, Opx = orthopyroxene, Cpx = clinopyroxene, Grt = garnet, Sp = 

spinel, MI = melt inclusion. 
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Fig. 9. Primitive-mantle-normalized incompatible trace element concentrations of melts 

modeled using non-modal batch melting (Shaw, 1970) for the high-Si group (a) and the low-

Si group (b). See text for details of the modeled melt compositions. Gray lines represent 

olivine-hosted melt inclusions from Baekdusan basaltic rocks. MI = melt inclusion. 

Fig. 10. A schematic illustrating the melting process in the upper mantle beneath Baekdusan. 
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