
HAL Id: hal-01622695
https://uca.hal.science/hal-01622695v1

Submitted on 26 Jan 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Evidential seed-based semi-supervised clustering
Violaine Antoine, Nicolas Labroche, Viet-Vu Vu

To cite this version:
Violaine Antoine, Nicolas Labroche, Viet-Vu Vu. Evidential seed-based semi-supervised cluster-
ing. 7th International Conference on Soft Computing and Intelligent Systems (SCIS), Dec 2014,
Kitakyushu, Japan. pp.706-711, �10.1109/SCIS-ISIS.2014.7044676�. �hal-01622695�

https://uca.hal.science/hal-01622695v1
https://hal.archives-ouvertes.fr


Evidential seed-based semi-supervised clustering

Violaine Antoine

Blaise Pascal University,

UMR 6158, LIMOS, F-63006,

Clermont-Ferrand, France

Email: violaine.antoine@univ-bpclermont.fr

Nicolas Labroche

Sorbonne Universities,

UPMC Paris 06, UMR 7606, LIP6,

F-75005, Paris, France

Email: nicolas.labroche@lip6.fr

Viet-Vu Vu

Electronics Faculty,

Thai Nguyen University of Technology,

Thai Nguyen, Viet Nam

Email: vuvietvu@tnut.edu.vn

Abstract—Evidential clustering algorithms produce credal
partitions that enhance the concepts of hard, fuzzy or possibilistic
partitions to represent all assignments ranging from complete
ignorance to total certainty. This paper introduces the first
semi-supervised extension of the evidential c-means clustering
algorithm that can benefit from the introduction of a small set of
labeled data (or seeds). Experiments conducted on real datasets
show that the introduction of seeds can lead to a significant
increase in clustering accuracy compared to a traditional evi-
dential clustering algorithm as well as a decrease in the number
of iterations to convergence.

I. INTRODUCTION

Semi-supervised clustering algorithms rely on a small set of
expert constraints to improve the quality of the output partition.
This knowledge can be either provided as must-link (ML) or
cannot-link (CL) pairwise constraints, or as a small set of
labeled data [1]. Until now, almost every clustering methods
have been improved to handle such expert supervision. One
may cite k-means [2], [3], hierarchical [4], density-based [5],
[6], spectral [7] and even stream [8] clustering algorithms. If
we consider more specifically soft clustering approaches, an
emphasis has been made on fuzzy semi-supervised algorithms
[9], [10], [11], [12]. However, fuzzy clustering algorithms are
known to produce sometimes poor results against noise and
outliers. Thus, possibilistic methods [13], [14] and more re-
cently evidential methods have been proposed [15], [16], [17].
These latter use the theoretical framework of belief functions,
which enables to represents all kind of partial knowledge, in
order to generate a new concept of partition, called credal
partition. This partition enhances the existing concepts of hard,
fuzzy and possibilistic partitions. Adding extra information
in such unsupervised clustering algorithm enables thus to
improve the accuracy as beneficing of the advantages of a
model based on belief functions. Some recent works [18], [19]
have already proposed a semi-supervised evidential clustering
algorithms based on ML and CL constraints. However, in
some applications, pairwise constraints are not available and
only some pre-existing labeled data can be used as an expert
knowledge.

This paper describes the first seed-based evidential clus-
tering algorithm that benefits from the introduction of a small
amount of labeled data to significantly improve the clustering
accuracy. To achieve this goal, we propose a reformulation of
the objective function that encourages the respect of the labels
provided by the expert while building the credal clustering.

This paper is organized as follows: Section II first illustrates
how seeds are used in semi-supervised clustering algorithms

and second gives more details about belief function and
evidential clustering algorithms. Then, Section III introduces
our new seed-based evidential clustering algorithm. Section IV
presents the results of experiments on real data sets from UCI
Machine Learning Repository [20] and illustrates the benefit
of introducing expert knowledge in the context of evidential
clustering. Finally, Section V presents the conclusion and
future works.

II. BACKGROUND

A. Seed-based semi-supervised clustering algorithms

Traditional clustering methods such as k-means, fuzzy c-
means (FCM) or DBSCAN are known to be simple and
efficient [21]. However, they all have certain limitations due to
their metric (spherical clusters for k-means), their random ini-
tialization (for k-means or fuzzy c-means) or the difficulty for
an expert to directly set their internal parameters (for example
the size of the neighborhood in DBSCAN). Moreover, even
when these methods succeed in minimizing their objective
function, still the obtained clustering can mismatch the primary
objective of the analyst in real world applications.

One solution to all these problems consists in introduc-
ing some expert knowledge as pairwise Must-Link (ML)
or Cannot-Link (CL) constraints or as seeds [2]. Pairwise
constraints are known to be easier to produce for an expert
and indicate that two points must or must not belong to the
same cluster. Similarly, seeds correspond to data points for
which the expert has provided a class label.

Two main approaches have been proposed so far to take
into account these instance level constraints during the clus-
tering process. First, in some methods, constraints are used
to guide the clustering process. This can be done at the
initialization step such as in [3], or during the iterations with
either a strict enforcement of the constraints as in COP Kmeans
[2] or a modification of the objective function to penalize
solutions where constraints are not respected as in [22]. For
instance, in [23], the authors propose an enhanced fuzzy c-
means whose objective function includes a penalty term that
considers the actual membership value of a point i to a cluster
k, let say uik, and the membership as it should be according
to the expert labels, let say ũik, as shown in Equation 1.
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where {x1, . . . xn} is a set of vectors in R
p describing n

objects to classify among c classes, U, V respectively denote
the membership matrix and the centers of the clusters. γ
is a regulation parameter that allows to balance the relative
importance of the label constraints in the objective function.

In some other algorithms such as SSDBSCAN [6], the
seeds are used to identify the radius of dense regions while
in spectral clustering, seeds can be used to reduce efficiently
the similarity matrix and to speed-up the convergence [24],
[7].

Second, in some other methods, the clustering process is
not modified but the constraints are used to learn a metric that
is compatible with the knowledge provided by the expert as
in the MPC k-means algorithm [25]. For instance, in [26], the
authors describe an adaptive metric extension of the algorithm
introduced in [23], where the distance to each cluster is derived
from a traditional Gustafson-Kessel distance [27].

In our work, we propose to modify the objective function of
the evidential c-means clustering algorithm to take into account
the constraints provided as labels with a regulation parameter
similarly to [23].

B. Belief functions

The major strength of an evidential clustering algorithm is
its capability to represent the doubt regarding the assignment
of an object to a cluster. To that aim, evidential methods rely
on the mathematical model referred to as the Dempster-Shafer
theory of evidence or belief function theory [28], [29].

Let ω be a variable taking values in a finite set Ω =
{ω1, . . . , ωc} called frame of discernment. Partial knowledge
regarding the actual value of ω can be represented by a basic
belief assignment (bba) m, which is an application from the
power set of Ω in the interval [0, 1], such that

∑

A⊆Ω

m(A) = 1. (2)

The subsets A ⊆ Ω such that m(A) > 0 are called the
focal sets of m. The quantity m(A) represents a fraction of
a unit mass of belief allocated to A and which, for lack of
information, cannot be allocated to any subset of A. Total
ignorance corresponds to m(Ω) = 1 whereas full certainty
specifies a certain bba, i.e. the allocation of the whole mass
of belief to a unique singleton of Ω. If all focal sets of m are
singleton, then the mass function is equivalent to a probability
function, and is called a Bayesian bba. The quantity m(∅) may
be interpreted as the belief that the actual value of ω does not
belong to Ω [30]. When m(∅) = 0, the bba is said to be
normalized.

Knowledge expressed by a bba can also be represented by
the plausibility function pl : 2Ω → [0, 1] defined as following:

pl(A) =
∑

B∩A 6=∅

m(B), ∀A ⊆ Ω. (3)

The quantity pl(A) is interpreted as the maximal degree of
belief which can be potentially assigned to the hypothesis that
the actual value of ω belong to A.

When a decision has to be made regarding this actual
value of ω, it can be interesting to transform a bba m into
a probability distribution. This can be achieved using the
pignistic transformation, which, for a normal bba, equally
distributes each mass of belief among the elements of A [29]:

BetP (ω) =
∑

ω∈A

m(A)

|A|
, ∀ω ∈ Ω, (4)

where |A| denotes the cardinality of A ⊆ Ω. When there exists
m(∅) = 0, a step of normalization must precede the pignistic
transformation. The Dempster’s normalization, which consists
in dividing all the masses by 1−m(∅), is a classical method
of normalization.

C. Evidential c-means algorithm

The belief function theory can be used in clustering to
generate an informative partition, called credal partition. In this
framework, partial knowledge regarding the class membership
of an object i is represented by a bba mi on the set Ω of
possible classes. Thus, a degree of belief can be assigned
not only to singletons, but also to any subsets of Ω. This
representation enables to model a wide variety of situations,
ranging from complete ignorance to total certainty.

The evidential version of k-means, called ECM, is a
clustering algorithm that aims at deriving a credal partition
from data. For each object xi, the bba mi is computed by
setting high (resp. low) quantity of belief on the subsets close
(resp. far) in term of distance to xi. This distance dij is a
metric function between an object xi and a representation in
R

p of a subset Aj . As the FCM algorithm, each class ωk is
modeled by a prototype vk. Then, for each subset Aj ⊆ Ω,
Aj 6= ∅, a centroid vj is calculated as the barycenter of the
centers associated to the class composing Aj :

vj =
1

|Aj |

c
∑

k=1

skjvk with skj =

{

1 if ωk ∈ Aj ,
0 else.

(5)

The distance d2ij can now be defined by a Euclidean dis-
tance [16]. More recently, a variant has been proposed to take
in account a Mahalanobis distance [18]. Similarly to Gutafson
and Kessel [27], it enables to detect clusters with different
geometrical shapes, thanks to a fuzzy covariance matrix Sk

associated to each cluster ωk. Then, similarly to the prototypes,
for each non singleton subset Aj , a matrix Sj is calculated by
averaging the matrices included in Aj . The resulting distance
between an object xi and a center vj can be written as:

d2ij = (xi − vj)
T Sj(xi − vj). (6)

The ECM algorithm searches to minimize the following
objective function for the M, V matrices and S matrices:

JECM (M,V, S) =

n
∑

i=1
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|Aj |
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2
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n
∑
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δ2m
β
i∅, (7)

subject to:
∑

j/Aj⊆Ω,Aj 6=∅

mij +mi∅ = 1 ∀i = 1 . . . n, (8)



and

mij ≥ 0, ∀i = 1 . . . n, ∀Aj ⊆ Ω, (9)

where mij = mi(Aj) and mi∅ = mi(∅). Since mi∅

corresponds to the belief that xi is an outlier, it is separate from
the rest of the subsets. The δ parameter denotes the distance of
all objects to the empty set. Let us remark that a penalization of
the subsets Aj ∈ Ω with high cardinality has been introduced
with the weighting coefficient |Aj |α. The exponent α controls
the degree of penalization.

As FCM, the evidential partition is carried out through
an iterative optimization with the alternate update of M, V
and S. Note that the complexity of an evidential clustering
algorithm is linear with the respect to the number of samples
and is exponential with the respect to the number of classes.
Consequently, such approach remains limited to few hundreds
of samples and a small number of classes.

III. SEED-BASED EVIDENTIAL C-MEANS (SECM)

A. Problem formalization

The main idea of the proposed algorithm is to add a term of
penalty in the objective function of ECM, in order to take into
account a set of labeled objects. Indeed, we consider that an
expert can give for one object one or several classes, depending
on his confidence about the final label of this object. Thus, an
object with more than one label represents a doubt for its actual
class, and not a multi-class assignment.

Let us now take an example to explain the expression of
the labeled objects in the framework of belief functions. If xi
is an object associated to the class ωk, then the certain bba
mi(ωk) = 1 fully respect the constraint. Inversely, a bba on
an other subset of Ω express an uncorrect consideration of the
constraint and must be penalized. However, this penalization
must be gradual. Indeed, mass of belief on subsets containing
(resp. not containing) the class ωk partially respect (resp.
totally unrespect) the constraint.

In order to detect mass functions which partially or fully
respect a constraint on a label ωk, one can compute its plausi-
bility pl(ωk). A 1 value will indicate a good consideration of
the label and a 0 value a non-respect of the constraint.

The same whole reasoning can be made for an object
constrained in several classes, and lead us to propose the
following penalty term:

JS =
n
∑

i=1

∑

Aj∈Ω,Aj 6=∅

bij(1− pli(Aj)), (10)

with

bij =

{

1 if xi ∈ ωk and ωk ∈ Aj .
0 else.

(11)

Note that pli(Aj) represents the plausibility that the object
xi belongs to the subset Aj .

We propose then to minimize the following objective
function:

JSECM = (1− γ)
1

2cn
JECM + γ

1

s
JS , (12)

such that the constraints (8) and (9) must be respected. The
parameter s is the number of constraints. Consequently, when
distances dij are normalized, the coefficients 1

2cn and 1

s scale
the two terms of JSECM between 0 and 1. Finally, γ ∈ [0, 1]
is a coefficient controlling the tradeoff between the objective
function of ECM and the constraints. The weighting coefficient
|Aj |α in JECM enables us to gradually penalize subsets Aj ∈
Ω which perfectly minimize JS but have high cardinalities.

B. Main algorithm

The objective function JSECM can be optimized as ECM,
that is to say with an iterative refinement of the mass functions
M, the prototypes V and the covariance matrices S. Since the
penalty term JS does not depend on V and S, their updates
are equivalent to ECM, and the formulas can be found in [16].
The mass functions, by contrast, are present in JS . If we
set β = 2, the objective function becomes quadratic with
the respect to the mij . Since there exists linear constraints,
a classical optimization method [31] can be employed and the
convergence is ensured in a reasonable time.

It is well-known that k-means and its variants may converge
to a local optimum, depending on the initialization given to
the prototypes. The resulting partition may then be counter-
intuitive. The ECM and SECM algorithms deal with the
same problematic. A classical solution is to run the clustering
algorithm several times with different initializations of the pro-
totypes, and to keep the solution giving the smallest objective
function value.

The SECM algorithm handles a second type of local
minimum problem: the first term of its objective function
generates cluster labels on its own, mostly depending on the
initialization of the prototypes. However, some class labels
may have already been given as prior information and may
not be coherent with the cluster labels found. Consequently,
the objective function may reach a local minimum. In order
to avoid such case, a permutation scheme has been introduced
after the update of the mass functions: for all possible permu-
tations of the labels on constraint objects, JSECM is evaluated.
Finally a permutation is validated if its value of JSECM is the
smallest one.

IV. EXPERIMENTS

Two main experiments are reported in this paper. First,
a comparative study has been conducted with the uncon-
strained ECM evidential c-means clustering algorithm [16].
The objective of this experiment is to show to which extent
the introduction of seeds impacts the clustering accuracy, the
number of iterations before convergence or the running time of
the algorithm. Second, a parameter study has been conducted
to observe the influence of the γ parameter that balances the
evidential clustering quality with the penalty term that forces
the respect of the constraints.

A. Experimental protocol and evaluation

a) Datasets: for the ease of reproducibility of the
experiments, several classical benchmark datasets from UCI
Machine Learning Repository [20] have been used in our tests.
Table I indicates for each dataset its number of objects, its
number of attributes and its number of clusters as well as the



TABLE I. DESCRIPTION OF THE DATASETS FROM UCI MLR [20]

Name # objects # attributes # clusters Metric

Iris 150 4 3 Mahalanobis

Wine 178 13 3 Euclidean

LettersIJL 227 16 2 Mahalanobis

Ionosphere 351 34 2 Mahalanobis

metric that was used for clustering following [18]. Note that
LettersIJL is the Letters data set transformed as [25].

b) Protocol: as c-means like algorithms are known to
be heavily dependent on their initial partition, for each dataset
and each parameter γ value, 25 runs have been conducted
and for each of these runs, 5 random initializations have been
performed. Then, for each run only the initialization that led
to the minimum value of the objective function (i.e. the best
value) is kept.

c) Parameters setting: for each experience and simi-
larly to [16], we set α = 1, β = 2 and δ2 = 1000. In order
to give equivalent importance to the global structure of the
clusters and to the constraints, the parameter γ is set by default
to 0.5.

d) Evaluation: the evaluation of the clustering accuracy
is performed with the Adjusted Rand Index (ARI) [32] which
is a corrected version of the Rand index that takes into account
the expected Rand index that a random clustering would score
as follows:

ARI(X,Y ) =
Rand Index − Expected Index

Max Index − Expected Index
(13)

The ARI is measured for each dataset and each run both on
all the dataset and on only the unconstrained data to evaluate
the real impact of the introduction of labeled data on non
labeled data. We also measure the number of iterations before
convergence and the overall computing time in seconds. In this
case, tests are conducted in the same experimental conditions.

B. Comparative results

1) Clustering accuracy: Figure 1 shows comparative re-
sults obtained in terms of Adjusted Rand Index (ARI) on
our benchmark datasets for a ratio between 0 and 50% of
labeled data. It is important to notice that, in the case where
the percentage of constraints is set to 0, we use the original
ECM algorithm as described in [16] and not our algorithm set
with no constraint.

It can be seen from Figure 1 that, for all datasets, an
increase in the number of labeled data improves the overall
ARI scores. However, when looking into more details, two
distinct behaviors can be observed.

On the one hand, for Iris and Letters datasets, constraints
help the algorithm to reach the expected solution. Indeed, when
we increase the number of seeds provided to the algorithm, this
also improves the ARI for unconstrained data. This increase in
the unconstrained ARI scores is directly related to the quality
of the learning that our algorithm performs based on the seeds
that are provided.

On the other hand, for Wine and Ionosphere datasets,
although the global ARI score always increases, the ARI score
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Fig. 1. Comparison of the ARI scores on benchmark datasets with parameter
γ = 0.5 for several percentages of constraints ranging from 0% to 50%.



for unconstrained data is either stable (from 10% of constraints
for Ionosphere) or eventually decrease punctually (between
20% and 30% constraints for Wine). In this case, the global
structure of the class has already been found with no con-
straints and objects misclassified are located in the boundary
of two or more clusters. Thus, constrained objects does not lead
unconstrained object towards a better solution and moreover
can be locally counter-productive. Further investigation should
be conducted, but it is a well-known result in semi-supervised
clustering that not all constraints are beneficial [33], [34].

2) Iterations and computation times: Figure 2 presents the
average number of iterations and the average computation
times (in seconds) for each dataset when parameter γ = 0.5.

It is interesting to notice as a general rule that the more
seeds are provided to our algorithm, the less iterations are
needed to converge. Only Iris and Ionosphere datasets show a
slight increase in the number of iterations between the ECM
algorithm with no constraint and our algorithm with 10%
of constraints. In the case of Iris and according to previous
results on clustering accuracy, this means that even if clustering
accuracy is improved, more constraints are needed to reach the
expected partition. In the case of Ionosphere, it seems that the
constraints provided add some complexity to the algorithm but,
in turn, help to improve significantly the accuracy compared
to the ECM algorithm.

Finally, it is also interesting to notice that for all datasets,
the computation time increases between the ECM algorithm
and our constrained evidential algorithm. There are three
reasons: first, as explained before, for some datasets there is an
increase in the number of iterations. Second, for all datasets,
our semi-supervised algorithm relies on a quadratic solver
for the optimization of the mass functions while the ECM
algorithm simply use Lagrange multipliers and find a direct
formula for the update of M. Finally, SECM is composed of
an extra step consisting on the search of labels permutation
for constrained objects.

3) Parameter setting: Experiments on all datasets have
been conducted with values of parameter γ ranging from
0.2 to 0.6, that is to say from a configuration where the
convergence is mainly guided by the ECM objective function
to a configuration where most of the weight in the decision
is given to the constraint penalty term. On our benchmark
datasets, two behaviors can be observed. On the one hand,
for Iris, Wine and Letters the evolution of γ has little or
no influence on the clustering accuracy. On the other hand,
for Ionosphere, giving more weight to the constraints force
the constrained points to specific labels, even if it does not
match with the global structure found by the first term of
the objective function. As illustrated in Figure 3, it induces
two particular results: (1) the γ coefficient should be lower
so that the algorithm gives more importance to constraints
leading to a structure that is compatible with the metric used
and (2) accuracy on unconstrained object slightly decrease,
which confirms that selecting smartly sets of constraints may
lead to better results.

V. CONCLUSION

This paper introduces a novel semi-supervised clustering
algorithm that extends the evidential c-means with the intro-
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Fig. 2. Comparison of the average number of iterations (top) and computation
times in seconds (bottom) on benchmark datasets with parameter γ = 0.5 for
several percentages of constraints ranging from 0% to 50%.

duction of expert knowledge as seeds. To that aim a penalty
term based on the plausibility of the labeled data is proposed.
One known difficulty in seed-based approaches is to link labels
provided by the expert to those discovered by the algorithm
automatically. To this aim we use a simple cluster label permu-
tation procedure. Extensive experiments on real datasets from
UCI Machine Learning repository show that the introduction
of seeds in evidential clustering is possible and improves the
clustering accuracy. Our tests also reveals that it is possible
to reduce the number of iterations by adding more expert
knowledge. Our results also highlight that our computation
times are penalized by the exhaustive permutation procedure
as expected, but that increasing the number of constraints can
counter-balance this problem. Finally, our work illustrate the
need for a utility function to determine sets of interesting
constraints. Indeed, for some datasets, our experiments show
that the clustering accuracy becomes stable or can decrease
when the number of seeds increases. Future work includes:
(1) extensive comparisons with other seed-based soft clustering
algorithm such as those presented in [26] and experiences with
objects labeled in more than one class, (2) the development
of specialized utility function that use the information of
the credal clustering to ask better queries to the expert and,
(3) finally the search for a time-efficient clusters permutation
procedure.
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