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3 Clermont-Université, Université Blaise Pascal, LMV, BP 10448, F-63000

CLERMONT-FERRAND, France
4 CNRS, UMR 6524, LMV, F-63038 CLERMONT-FERRAND, France

Abstract. This paper presents two algorithms of feature extraction and10

segmentation. The first algorithm is applied to detect tens of thousands
of targets moving at high velocities (100’s m/s) and with different sizes,
velocities, shapes and directions. Upon detection, we compute statistics
for each of these parameters for each particle, without any assumption
nor a priori information. The second algorithm was developed to detect a15

slow moving convective cloud. The challenge was to follow the evolution
of the contours of a heterogeneous element in front of a homogeneous but
possibly moving background. These algorithms were applied on images
acquired with thermal cameras with different settings (frame rate, frame
size, focal length, instantaneous field of view). A case study concern-20

ing images of volcanic explosive events is finally presented. Volcanoes
provide, during an eruption, a source of both ballistic ejecta and a con-
vective plume of finer particles, gas and entrained air both of which can
be imaged in the infrared wavelength. : Results ?
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Introduction

The first infrared high-temporal-resolution system, operating at 20 images per
second, was produced in 1965. However, the first hand-held system came with
the introduction of high-spatial resolution focal plane arrays in 1993, and the
first uncooled micro-bolometer-based system was produced in 1997. These devel-30

opments, coupled with evolutions in high-speed digital electronics that allowed
imagery to be stored on small memory disks “revolutionized the commercial-
ization of thermal imaging systems” [Holst, 2000]. From here onwards, infrared
imaging science expanded rapidly in many domains [Kylili et al., 2014]. Thermal
imaging cameras (TIC) produce a thermal image of a scene that provides infor-35

mation about both its temperature and radiative properties. Thus, TIC can be
selected to be useful in multitude of hot spot tracking roles.
Infrared Search and Track (IRST) systems were first developed for air defence
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applications [Jong, 1995]. Today, they are also used in civil applications, such
as surveillance on land, at sea and in the air and warning against intruders40

[Fernandez-Caballero et al., 2011], survey danger areas where disasters may oc-
cur. IRST is also used in military applications. Thermal emission of gears op-
erating on tanks or helicopters can, for example, be used to detect, track and
lock-on to the target, so that many automatic target recognition (ATR) algo-
rithms have been proposed [Li et al., 2001]. These segment and recognize vehicles,45

ships and aircrafts [e.g. Yilmaz et al., 2003]. TIC can be selected in a wide range
of applications, including fire control [Amon and Pearson, 2009], monitoring of
buildings [Kylili et al., 2014], medicine [Arora et al., 2008] and computer-aided
diagnosis systems [Faust et al., 2014] or volcanology. In this case, one of the first
field-based thermal measurement campaigns at an active volcano was completed50

by Thomas A. Jaggar [1917a,b]. He illustrated the benefits of remote thermal
measurements against the common contact measurements, describing problems
including equipment and personnel safety, and the limited measurement time
available for a contact measurement imposed by the radiated heat from a lava
lake. The first attempt to run a radiometer continuously was completed for a per-55

sistent degassing by Tazieff [1970] and during an explosive event by Shimozuru
[1971]. Between 1965 and the end of 2007, at least 60 studies reported results
obtained using ground-based broad-band radiometers for explosions, fumaroles
and geothermally heated surfaces as well as lava flow, lakes and domes [Harris,
2013]. These applications of volcanological science achieved using thermal cam-60

eras were clustered in five main groups by Spampinato et al. [2011]: hydrothermal
areas and fumarole fields; lava bodies; explosive activity and volcanic plumes;
pyroclastic flow deposits; fracturing and cracking. The most popular being the
explosive activity (which accounted for 48 % of the studies published between
2001 and 2011). The key advance has been the ability to collect thermal video65

with spatial resolutions of a few centimeters and sampling frequencies of up to
120 Hz, with the operator being free to choose and modify the dynamic range,
sampling rate, field of view, and targeted area, as well as acquisition start and
stop times. Some of the first progress in the domain of volcanology to made were
applications to track the dynamics of strombolian eruption plumes [Dehn et al.,70

2001].
In this paper, we aim to segment two major components of an explosive vol-
canic eruption using thermal video. First, we focused on all coarse particles as
they exit the vent to gather parameters such as size, shape, velocity and mass
for the solid (particulate) fraction of the plume, this being the contribution of75

particles with a diameter between 1 cm and 5 cm (lapilli-size) and between 6.5
cm to 35 cm (bombs-sized). We then analyzed the plume of gas and fine parti-
cles whose ascent will be buoyancy driven [Turner, 1962] and which can rise 100
meters up to over 25 000 meters above the vent. Thermal cameras have been
used for plume tracking [Spampinato et al., 2011; Valade et al., 2014], however,80

the changing contrast between the optical properties of the emission and the
background, and the evolution of plume properties over long time periods imply
that the segmentation of volcanic plume remain a challenge.
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1 Particle study (cm-sized analysis)

1.1 Methodology85

The thermal camera used in this study was a forward looking infrared (FLIR).
We used a FLIR Systems SC655, equipped with a 3.6× magnification lens and
recording at 200 frames per second. The focal length was 88.9 mm and the IFOV
was 0.19 mrad. Our acquisition frequency. We note that our frames usually have
a size 600 × 480 pixels, but are automatically truncated to allow recording at90

rates greater than 30 Hz; for example, at 200 Hz, the image size is 600 × 120
pixels. This resizing is automatically performed by the acquisition software and
the resized frame is centered on the same pixel as the large frame and the spatial
resolution does not change. The spatial resolution (or pixel dimension, Lp) will
depend on the detector instantaneous field of view (IFOV), which is defined by95

a cone opening at angle βIFOV , and the distance to the target (D), so that the
pixel diameter is given by Lp = 2[Dtan(βIFOV /2)] = D×βIFOV , using paraxial
approximation defined for the small angle.
Given the large number of particles expected and the quantity of data recorded
by the thermal camera (two hundred 640 × 120 pixel images, 150 kB in size every100

second or 1.8 GB per minute), we opted for a simple, yet-effective algorithm
to extract particle parameters. A first step is to remove the static objects of
the image, this being the static background, i.e. a set of components from the
image prior to the event. The static background can usually be removed by pre-
processing approaches, as reviewed in Brutzer et al. [2011]. Given the time of the105

beginning of the event (t = 0), the easiest way to remove the static background
is to consider the difference between the current frame It and a reference frame
acquired before the event, termed the “background image”, It<0 or IRef . Once
the static background was removed, we focused on the moving part of the video.
The positions of the particles on the images were detected by subtracting the110

previous frame It−1 from the current frame It. However, all moving elements
are detected by this process, including those we did not want to detect (e.g.,
birds, insects). This is termed the “dynamic background”. To solve for this, a
first differentiated image at time t (Tt) is generated,

Tt = It −
αIt−1 + γIRef

α+ γ
∀ t ∈ {1, n} (1)

where α and γ are weights derived empirically which change according to the115

predominance of the static versus dynamic background, those being not inde-
pendent. In the image, only particles and a low intensity hint of the background
persist. Because we only want to detect components among the brightest fea-
tures, we process Ft = Tt · 11{It−I0≥th} using a New White Top-Hat transform
[Bai and Zhou, 2010]:120

MNWTH = f −min(((f ⊕∆B)	Bb), f) (2)

where ⊕ is the dilation operator and 	 the erosion operator. Parameters ∆B and
Bb are both square-shaped structuring elements. We apply a 21 pixel diameter
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box with, following Bai and Zhou [2010], a three-pixel wide perimeter for ∆B.
That is, pixels in the central 15-pixel-wide box have values of zero, and the
three-pixel-wide perimeter have values of one.125

The second part of the algorithm tracks each particle through time. This allows
us to compute the velocity of each particle but also to clean up false detections
which may have been occurred during the segmentation process, these being
those without matching positions. We chose the maximum intensity pixel of the
target as the initial position with subpixel accuracy following Shindler et al.130

[2010]. Now, ωi,t = (xi,t, yi,t) is the subpixel-position of particle i at time t.
We defined the velocity of the particle in the image plane by the pixel distance
traveled by the particle between two consecutive frames separated by time t:

Ui,t =
‖ωi,t+1 − ωi,t‖

(t+ 1)− t
; (3)

The position of particle i at time t + 1 can now be estimated following several
conditions (spatial, intensity, trajectory). We then estimated the velocity in me-135

ters per second assuming a planar projection. We also used the radius of the
short axis rS and the radius of the long axis rL to compute the width of the
particle i as an average radius r = rS+rL

2 . The volume (Vi) is then computed
assuming a prolate spheroid, so that Vi = (4/3)πr2SrL. Finally, given an appro-
priate density, particle volume can be converted to mass mi. This algorithm was140

tested and validated on an artificial experiment (Bombrun et al. [2014]).

1.2 Natural case

The algorithm was tested on videos containing high velocity particles imaged at
Stromboli volcano (Aeolian Islands, Italy). In 2012, we completed eight hours of
recording spread over four days spanning 27 September-5 October during which145

time we recorded 13 eruptions. In 2014, we recorded for eight hours on 17 and 18
May, capturing a further 18 events. We set up our high speed camera at Pizzo
Sopra la Fossa, a natural platform which overlooks Stromboli’s active crater
terrace and at a distance of 280 m from the active vent, tilted downwards at an
angle of -23 degree. At this distance, we can detect particles down to 5.5 cm.150

Emission durations ranged from 5 s to 50 s, with an average of 14. The number
of particles ejected during single events detected ranged from 610 to 5 320 with
an average of 2 685. A total of 83 220 particles were detected for all 31 eruptions.
The particle size distribution reveals that the majority of the particles (67 %)
are between the lower limit, 5.5 cm, and 10 cm with a mean particle width of155

10 cm and a standard deviation of 5.6 cm. We assess particle shape in terms
of the following normalized shape index: (rL-rS)/(rL+rS). Using this index, a
perfectly oblate shape will have a value of -1/3 whereas a perfectly prolate shape
will have a value of +1/3; a perfect sphere will have a value of 0. We found that
only 17 % of our particles approximate a spherical shape. Of the remaining 83160

%, 29 % are oblate and 54 % are prolate. The dominance of the prolate shape
is consistent with deformation or stretching in the direction of motion.
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We used the density of samples, from lapilli to bomb size as collected during
campaigns in 2008 [Coló, 2012; Gurioli et al., 2014], 2010 [Gurioli et al., 2013]
and 2011 [Leduc et al., 2014] to compute the mass of each particle and the165

total mass ejected during the eruption. Erupted masses erupted range between
1 270 kg and 11 820 kg with a mean of 4 585 kg. The particle mass distribution
revealed that most particles have a low mass, where 46 310 (or 56 %) of all of
the detected particles had a mass of less than 4 kg. This population accounts for
10 220 kg or 4.6 % of the total mass. However, the 2 524 particles greater than170

25 cm (3 % of the total detected particles) account for 44 % of the total mass.
The velocity distribution had a mode between 20 m/s and 30 m/s, with an
average velocity of 45 m/s on which the standard deviation was 36 m/s. Particle
velocities at Stromboli are generally less than 100 m/s [Chouet et al., 1974;
Patrick et al., 2007]. Here, 91 % of all of particles measured had velocities of less175

than 100 m/s. However, 7 330 particles (8.8 %) had velocities greater than 100
m/s and up to 240 m/s. This approaches the higher velocities recently found
for normal explosion at Stromboli by Taddeucci et al. [2012], Delle Donne and
Ripepe [2012] and Harris et al. [2012]. Finally, considering the large number
of particles detected (83 220), the impact of outliers is vanishingly small. We180

concluded that our dataset is statistically robust. Full data sets and overview
statistics are given in Bombrun et al. [2015].

2 Plume study (meter-sized analysis)

2.1 Target

Our primary objective was to develop an operational algorithm capable of detect-185

ing a moving plume through time. A volcanic plume is a mixture of particles,
gases, and entrained atmospheric air, which are injected into the atmosphere
during a volcanic explosion [Carey and Bursik, 2000]. Thus, the camera used
for the plume study was a FLIR Systems SC660. Such volcanic plumes are slow
moving targets which may be dispersed on both local and global scales so that190

frame rates of 1 Hz are more than adequate.
The first step of the algorithm was to consider the differentiation (Dt,t−step) be-
tween the current frame (It) and the previous frame (It−step). We applied a single
level discrete 2-D wavelet transformation, using a Daubechies wavelet (db1), on
the absolute value of Dt,t−1. We computed the approximation coefficient matrix195

to perform a direct reconstruction from the 2-D wavelet coefficient. From the ab-
solute value of the reconstructed image, we computed a single threshold for the
image using Otsu’s method [Otsu, 1979] to obtained a partial mask of the plume.
We cleaned this mask by applying a morphological opening transformation with
a 1 pixel radius disk and removing detected elements less than 5 pixels in area.200

We completed this mask by performing the same process with another differ-
entiation, Dt,Ref , this being the difference between the current frame (It) and
a reference frame recorded before the event (IRef ). We summed the two masks
to obtain the final differentiated mask. However, because the wavelet transfor-
mation was coarse, we needed to redefine the edges. Thus, in the next step, we205
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performed a morphological reconstruction, i.e., we applied a repeated dilatation
process to the mask until its contour fitted the original image, It. Each succes-
sive dilation was constrained to lie underneath It. We cleaned the final image by
removing outliers and we computed the contour using a Canny edge detector.

2.2 Applications210

We first tested the algorithm on thermal video for the ascent of a volcanic ash
plume at Santiaguito volcano, Guatemala. This video was recorded in 2005 and
the emission duration is 170 s (i.e. 5 100 frames). The background was composed
of a homogeneous sky with weak-intensity meteorological clouds, and the ground
contrasts with the plume with a weak-intensity lava flow being apparent on the215

left side of the vent. Unfortunately the algorithm was too efficient regarding the
low contrast image elements so that some meterological clouds were detected as
a part of the plume. We removed clouds not pixel-connected with the plume by
considering the largest component and improved the contrast by using wavelets
on the differentiated image as a pre-processing step.220

The second video was recorded at Stromboli volcano, Italy in May the 28th 2012.
The camera was set up at Pizzo Sopra la Fossa and pointed at the North-East
crater over a direct distance of 300 m so that the image covered a height of
308 m. Plume emission lasted 67 s (i.e. 2 000 frames). The background was a
homogeneous sky and cold ground around the vent with another vent on the left225

which produced unwanted detection. The distance between the camera and the
vent was shorter than at Santiaguito, thus the impact of the heat radiated by
the crater was more problematic. During plume ascent, the overturn convection
continually brought hot spots to the front of the plume creating a random in-
tensity in the plume and making intensity tracking difficult.230

The third video was recorded at an experimental facility near Buffalo, USA.
The University at Buffalo completed experiments that use small chemical ex-
plosive charges buried in layered aggregates to simulate the effects of subsurface
hydrothermal and phreatomagmatic explosions [Valentine et al., 2015]. At the
same time, three more powerful blasts were performed. These released a plume235

of fine sand particles. The blast used to test our algorithm was that of Pad 5,
Blast 4. The energy produced by the explosion was 2.30 × 106 J and the depth
below the surface was 0.5 m. The camera was set up XXXX m from the source
so that the field of view was XXXX m height. The ambiant background was
composed of trees at ambiant temperature, moving with the wind to create a240

moving background. The top of the video comprised sky that had a huge con-
trast with the threes. This video was the most difficult to process due to the
numerous and contrasting features in the video. At this point, a global threshold
or a double threshold were not solutions anymore.
The last video was recorded at an experimental facility near Munich, Germany,245

where the Ludwig-Maximilians University completed large-scale ash settling ex-
periments. Natural basaltic ash (0 – 500 µm) was released with different con-
trolled volumetric flow rates in a shock tube system. The experiment used to test
our algorithm was the #33. The sample came from Monte Rossi Scoria (Italy),
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it was fully water saturated, the sample porosity was 30 % and its volume was250

29.44 cm3. The pressure of the decompression was 15 Mpa. The camera was set
up horizontally at a distance of 4 m so that the field of view was 4.6 m height.

Conclusion

We present, new approaches to deal with segmentation and feature extraction in
thermal video. The first algorithm detects, tracks and parameterizes small dim255

targets in high-speed IR videos. Based on a mathematical morphology transfor-
mation hybridized with refinement by thresholding, this method allowed us to
obtain a statistically robust database of 83 000 particles emitted during explo-
sions at Stromboli volcano. Statistically, most of the particles have sizes between
5 and 15 cm, and the majority of individual particle masses are below 0.5 kg. The260

particle velocity distribution is positively skewed with a mode between 20 and 30
m/s. The second algorithm detected and tracked fine particles in plumes moving
across large field of view IR video frames. This method is based on a background
subtraction by Daubechies wavelet transformation with a refinement by image
reconstruction. It was tested on several cases with different levels of difficulties.265

We applied it to a volcanic plume in which the heat of the crater restricted the
use of a global thresholding and on controlled/experimental explosions in which
the background was more complex (moving trees, hot spot created by warm elec-
tronic components, etc.). This algorithm proved to be robust enough to detect
these plumes despite of the complex image background. These two algorithms are270

designed to provide necessary information to allow improved understanding and
modeling of dynamics during volcanic explosions. Statistically robust databases
for vent-leaving particle dynamics remain scarce. Thus, the ability to measure
the dynamics of volcanic emissions as they exit the vent and the computation of
the particle parameters is an excellent way to understand the dynamics related275

to the fragmentation and particle emission processes. At the same time, using
algorithm output to compute plume parameters such as height, front velocity
and spreading angle could be used to constrain models that describe the source
geometry and height of volcanic jets [e.g., Jessop and Jellinek, 2014].
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NEC

Fig. 1: Overview of the three main craters at Stromboli from Pizzo Sopra la Fossa where
the cameras were set up.
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