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Abstract Mesh segmentation and semantic annotation are used as preprocessing
steps for many applications, including shape retrieval, mesh abstraction, and adap-
tive simplification. In current practice, these two steps are done sequentially: a
purely geometrical analysis is employed to extract the relevant parts, and then these
parts are annotated. We introduce an original framework where annotation and seg-
mentation are performed simultaneously, so that each of the two steps can take ad-
vantage of the other. Inspired by existing methods used in image processing, we
employ an expert’s knowledge of the context to drive the process while minimiz-
ing the use of geometric analysis. For each specific context a multi-layer ontology
can be designed on top of a basic knowledge layer which conceptualizes 3D object
features from the point of view of their geometry, topology, and possible attributes.
Each feature is associated with an elementary algorithm for its detection. An expert
can define the upper layers of the ontology to conceptualize a specific domain with-
out the need to reconsider the elementary algorithms. This approach has a twofold
advantage: on one hand it allows to leverage domain knowledge from experts even
if they have limited or no skills in geometry processing and computer program-
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ming; on the other hand, it provides a solid ground to be easily extended in different
contexts with a limited effort.

1 Introduction

During the last two decades, adding a semantic description to a scene has been an
emerging problematic in the data mining and mesh processing communities. One of
the main goals is to be able to extract an abstract description of the manipulated data,
using some semantic descriptors. Bridging the gap between raw data and semantic
concepts is a very complicated task which usually requires a good knowledge of the
specific applicative domain the systems are working on. This link between the expert
knowledge and the raw data can be achieved either by using learning techniques or
by designing a deterministic system which expresses the knowledge of the expert in
a language of computer science.

By assuming that an object belongs to a specific semantic class, advanced mesh
segmentation techniques can tag both the whole object and its subparts with se-
mantic terms that describe the shape, the structure and sometimes even the func-
tionality of the object [Laga et al., 2013]. When the overall context in known, the
identification of an object from its shape may rely on a two-step approach: the ob-
ject’s relevant parts are first recognized through shape segmentation and then la-
belled using the concepts available in a specific formalization of the context (e.g.
an ontology). Some of these approaches [Hudelot et al., 2008, Hassan et al., 2010,
Fouquier et al., 2012] are able to exploit the partial semantic description of the scene
and to adjust their behaviour to the context. Unfortunately, the algorithms and pro-
cedures used in the aforementioned approaches are very specific to their applicative
domain and are hardcoded within their implementation.

In this article, we describe an original framework for mesh segmentation that
pushes up the semantic approach, thus creating a bridge bewteen an expert knowl-
edge description and the segmentation algorithms. This framework allows an expert
in a specific area to formally describe his own ontology, without the need to have
any particular skill in geometry processing or shape analysis. The formalized do-
main description is then used by the system to automatically recognize objects and
their features within that domain.

The genericity of our approach is enabled by a multi-layer ontology which for-
mally describes the expert knowledge. The first layer corresponds to the basic prop-
erties of any object, such as shapes and structures. The upper layers are specific to
each application domain, and describe the functionalities and possible configura-
tions of the objects in this domain. The segmentation and the annotation mechanism
is hidden behind the concepts of the first layer, which are associated to specific
geometric algorithms.

In section 2 an overview of the existing methods for part-based annotation of 3D
shapes is presented. Section 3 introduces our framework for semantics-driven mesh
segmentation and annotation; here we describe how to model the expert’s knowl-
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edge, how our synthetic catalog of segmentation algorithms is composed, and how
our expert system works. The elementary algorithms that compute the basic shape
features are described in Section 4. Section 5 presents some experimental results to
illustrate the relevance and feasibility of our approach. Section 6 is reserved for the
discussion of possible extensions of this work and future improvements to overcome
its current limitations.

2 Related Work

The design of enhanced vision systems can take a significant advantage from
semantic formalizations such as ontologies. The ontology paradigm in informa-
tion science represents one of the most diffused tools to make people from var-
ious backgrounds work together [Seifert et al., 2011]. Ontology-based interfaces
are a key component of ergonomic adaptive computer systems [Seifert et al., 2011,
Maillot and Thonnat, 2008], especially in biological/clinical fields [Othmani et al., 2010,
Hassan et al., 2010, Fouquier et al., 2012] for which concepts and standards are
constantly shifting. Furthermore, reasoning capabilities embedded in the logical
framework on which ontology softwares are built up can be exploited to improve
the performances of existing computer vision systems. Even though still brittle
and limited, reasoning inferences out of visual data may enhance the vision sys-
tem experience [Othmani et al., 2010] as well. In the Computer Graphics commu-
nity the use of semantics has been a key for significant achievements in appli-
cations such as anatomy [Hassan et al., 2010], product design in e-manufacturing
[Attene et al., 2009] and robotics [Albrecht et al., 2011, Gurau and Nüchter, 2013].

In [Camossi et al., 2007], a system to assist a user in the retrieval and the seman-
tic annotation of 3D models of objects in different applications is presented. The
ontology provides a representation of the knowledge needed to encode an object’s
shape, its functionality and its behavior. Then, the annotation and the retrieval are
performed based on the functional and the behavior characteristics of the 3D model.

In [Attene et al., 2009], the ontology is used to characterize and to annotate
the segmented parts of a mesh using a system called “ShapeAnnotator”. To this
aim, the ontology is loaded according to the input mesh type and the user can
link segments to relevant concepts expressed by the ontology. While the anno-
tation of the mesh parts is done by a simple link within the “ShapeAnnotator”,
[Gurau and Nüchter, 2013] and [Shi et al., 2012] proposed to feed an ontology with
a set of user-defined rules (e.g. geometric properties of objects, spatial relationships)
and the final annotation is created according to them.

In [Hassan et al., 2010], an ontology including an approximation of the geomet-
ric shape of some anatomical organs is used to guide the mesh segmentation. The
parameters needed to segment the input mesh are provided by the ontology. For the
case of semantic classification, an ontology is also used in [Albrecht et al., 2011]
to “idealize” SLAM-generated 3D point cloud maps. The ontology is used to gen-
erate hypotheses of possible object locations and initial poses estimation, and the
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final result is a hybrid semantic map where all the identified objects are replaced by
their corresponding CAD models. Recently, [Feng and Pan, 2013] proposed a uni-
fied framework which bridges semantics and mesh processing. The mesh is divided
into a fixed number of parts corresponding to the number of concepts in the ontol-
ogy. The parts are then annotated based on some rules defined in the ontology and
specific to the context (e.g. in a human body the head and a limb are very dissimilar).

In [Symonova et al., 2006], the authors focus their work on mesh annotation us-
ing an already segmented object. The regions to annotate are defined by connected
components in the shape, and the low level labelling is done by using the distribution
of local geometric features. The high level annotation is then produced by using con-
nectivity rules and geometrical primitive constraints. Our present work can be seen
as a generalization of this original work for the annotation part, while we introduce
specific and robust algorithms for the low level labelling, and a complete framework
that extends the possibilities introduced by Symonova et al. In our proposal, each
new relation or low level label with the corresponding elementary algorithm will be
handled automatically by our expert system.

3 Proposed Method

Segmenting an object based on its geometry and associating semantic concepts
to each part are non trivial problems, both requiring a very specific process-
ing. Previous works [Hudelot et al., 2008, Attene et al., 2009, Hassan et al., 2010,
Fouquier et al., 2012] on this topic are more and more going in the direction of mix-
ing the two problems, in order to help the segmentation using the already extracted
semantics, and by extracting the semantics from the partial segmentations.

The framework we present in this section addresses the same goal by focusing on
the separation between the segmentation algorithms and semantic reasoning. Thanks
to such a separation, addressing a new applicative domain will only require the user
to design the corresponding ontology, without code modification. All the necessary
geometric machinery and the low-level semantic rules, indeed, are already encoded
in the original core of the framework. In the next section, we propose complemen-
tary benefits of this approach, and we discuss in the last section several possible
extensions.

In a first part, we describe our multi-layer ontology paradigm and how the ex-
pert knowledge on a specific domain is implemented on top of elementary concepts.
Then we introduce our framework to tackle the problem of semantics-driven mesh
segmentation using the defined ontology paradigm. Finally, we give the specifica-
tions of the elementary algorithms involved in the segmentation process.



Multi-layer ontologies for integrated 3D shape segmentation and annotation 5

3.1 Terminology

Our work focuses on mesh processing, with the aim to achieve both segmentation
and semantic labelling. In the remainder, we call object a 3D shape defined by a
triangular mesh. A region of the mesh is a connected subset of its triangles. A seg-
mentation is a subdivision of the mesh into a collection of regions called segments.
A region is not necessarily a segment. Finally, we use the term concept in the usual
way to describe an abstract semantic class.

3.2 Expert Knowledge Description

The idea behind our expert knowledge system is to mimic our visual mechanism
of object recognition. Indeed the expert knowledge description follows a “whole-
to-part” analysis, where the object of interest is modelled in the top layer of our
ontology and is first decomposed into regions according to a criterion (shape, tex-
ture, . . . ). A region can potentially be further divided until elementary subparts are
obtained corresponding to the intermediate layers of our ontology. Features of these
parts as well as relations between them are described using semantic concepts gath-
ered in the last layer of the ontology. Putting these informations together along with
user-defined rules allow us to label each part ultimately leading to the recognition
of the object.

A segmentation and semantic labelling process implies that the algorithmic part
is able to identify and label regions with specific properties, such as geometrical
properties (e.g. sphere, cube, vertical region), color or texture properties (e.g. color
uniformity, reflectance, texture patterns), but also properties linked to the relative
position and configuration of subparts (e.g. parallel regions, A is up wrt B, A is
between B and C ). We note however that all these properties cannot be formalized
in the same way. Indeed, some of them extend the knowledge on a given part of the
mesh by detailing its features (e.g. geometry, color, orientation), while other link
several regions together (e.g. through topology, distance) thus describing the overall
structure of the object.

3.2.1 Features and unary properties

A first group of properties characterizing an object are based on the aspect of its
parts (e.g. geometry, color, etc.). These properties extend the knowledge on a given
part and thus link it to a feature concept (e.g. A is a cube, is red, etc.). Since each
property only involve one part of an object, we will refer them as unary property.

More specifically, in the ontology, each unary property corresponds to an object
property where the domain is the object parts. The range concept corresponds to
the features of interest (e.g. shape, orientation, color) which are further specialized
into elementary semantic concepts corresponding to the possible value of the object
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hasShape
Cube

(a)

Cube

isReferenceRegion isTargetRegion
UpFrom

(b)

Fig. 1: Examples of unary and n-ary property. A and B correspond to regions of
the object.

Fig. 2: A subpart of the elementary semantic concepts of the core ontology. The
number beside some concepts indicate that they link several regions together (e.g.
UpFrom relates 2 regions A and B).

property. An example of unary property is given in Fig. 1-(a) and range concepts
and their associated elementary semantic concepts are illustrated in Fig. 2 (green
ellipses).

3.2.2 Topology and n-ary properties

The second group of properties allows to link object’s parts together thus giving
the overall structure of the object. This kind of properties combines 2 or more parts
along with a topological concept (e.g. A and B are close, B is above A , etc.) and
will thus be refered to as n-ary property.

However, ontologies cannot directly model n-ary properties and we thus model
them following the “N-ary Relation” pattern described in [Dodds and Davis, 2012]1.
More specifically, a concept (e.g. position, distance) is created for the relation and
is also specialized into elementary semantic concepts (e.g. position→ UpFrom, Be-
tween, etc.). Each object part corresponds to a ressource of the relation and is related
to it through two distinct object properties. The first one “isTargetRegion” allows to
define the region we wish to position in space, while the other “isReferenceRegion”
states the fixed region used to orientate the space (i.e. to define the semantic).

Considering the example given in Fig. 1-(b), the n-ary property can be read as B
(the target) is above A (the reference). The violet ellipse in Fig. 2 illustrates a range
of two n-ary relations where the number on the right of each elementary semantic
concepts indicates the number of object parts related through this concepts (e.g. 2
parts for UpFrom).

1 see also http://patterns.dataincubator.org/book/nary-relation.html for notations
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Fig. 3: Example of multi-layer ontologies for Furnitures. Note how a more detailed
expert knowledge description of the same domain can be achieved by simply adding
a layer, e.g. for the concepts of Back or Support in the case of Furnitures.
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Fig. 4: Example of multi-layer ontologies for Streets.

3.2.3 Multi-layer Ontology

In order to model our “whole-to-part” recognition mechanism, we structured our
ontology in layers. The first layer (called S0, blue blocks in Fig. 3 and Fig. 4) is part
of the core of our framework. It contains the feature and topological concepts and
associated unary and n-ary concepts described in the previous sections.

The S0 layer is enriched for each applicative context with specific semantic con-
cepts which are grouped into two (or more) layers: one layer called S1 (yellow
blocks in Fig. 3 and Fig. 4), using only references to concepts from the S0 layer, de-
scribes all the object configurations that can be combinatorially built, i.e the result
of a cartesian product between elementary semantic concepts. Fig. 5 illustrates an
example of such a cartesian product for 2 unary properties (Shape and Orientation).

The supplementary layers (S2, . . . , Sn, green, red and purple blocks in Fig. 3 and
Fig. 4) describe the combination rules to populate a complete scene. The top layer
of the ontology corresponds to the list of objects one wish to label. The advantage
of this representation is that it is very easy to fit the level of details in the description
of objects required by the application. Indeed if supplementary informations are
required for an object part, it only requires to add a layer in the ontology. Similarly
if only a rough description of the part is sufficient, one may remove the unnecessary
layer.

To illustrate this motivation, consider the example given in Fig. 3. In Fig. 3-(a),
a furniture is obtained by combining a seat, a back and a support, all of which being
described using S0 concepts. For instance, the back of a furniture is modelled in a
rough manner as being a vertical board possibly linked to vertical sticks (e.g. for a
chair) and above the seat. However this may not be sufficient to distinguish between
all the furnitures: namely a difference between a chair and an armchair resides in
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Shape
Board
Cube
Stick
×

Orientation
Horizontal

Vertical

=

Shape × Orientation Eq. Concept
Board Horizontal Seat
Board Vertical Foot
Cube Horizontal Seat
Cube Vertical Impossible
Stick Horizontal Impossible
Stick Vertical Foot

Fig. 5: Cartesian product between two range of elementary semantic concepts, and
the corresponding equivalent concepts.

the fact that armchair may have a headrest. To add this supplementary knowledge, a
supplementary layer is introduced (see Fig. 3-(b)) describing the back of a furniture
as a backrest and a possible headrest above it.

3.2.4 Linking two Layers: Equivalent Concepts

In addition to the semantic concepts of the application domain, another important
expert knowledge consists in how the concepts are linked with each other. This
can be expressed as a set of equivalent concepts of the Sn layer describing pos-
sible or impossible combinations of concepts of the Sn−1 layer. The work of the
expert is thus strongly simplified since he can describe not only positive rules (i.e.
valid/plausible configurations), but also negative rules (i.e. impossible/incompatible
combinations). For example, in the furniture ontology a chair leg can be described
as a stick shape with a vertical orientation; on the other hand, the combination of a
headrest without backrest is an incompatible configuration.

In practice, incompatible configurations are specialized in specific concepts, one
for each incompatibility type. This specialization allows to perform some reasoning
and classification on partially annotated individuals.

Once these equivalent concepts are given by the expert, they are used in two
ways: either to build a decision tree (which will be detailled in Section 3.3) or to
suggest a correction of the segmentation. Indeed, during the segmentation / annota-
tion process, incompatible configurations might appear due to either a segmentation
error or a missing equivalent concept. In this case, the reasoner can be asked for the
cause of the inconsistency which is then presented to the user for correction. The
main advantages of this approach is that it allows us to ask the user to correct errors
only in the regions that caused an incompatibility instead of having to explore the
whole mesh / labelling.
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Fig. 6: Overview of the proposed method applied on the furniture domain.

3.3 Expert System

In this section, we describe how the expert knowledge is used in our framework to
efficiently segment and annotate an object. Fig. 6 gives an overview on this frame-
work.

3.3.1 Generation of a Decision Tree

One of the advantages of our approach is that it gives the possibility to easily com-
pute a tree containing the order of the questions to ask to reach the solution in the
most efficient way. To build this decision tree, we first use the equivalent concepts
of each layer to build the set of possible configurations. For each layer and starting
at the first layer S0, the Cartesian product between all the properties of the layer is
performed (Fig. 5, Shape × Orientation column). The reasoner is then used to clas-
sify the instances in equivalent concepts and incompatible candidates are removed
(Fig. 5, Eq. Concept column). The remaining ones are then used in the above layer
as semantic concepts in the Cartesian product to compute the new list of possible
configurations.

Once the set of all possible configurations Ω is created, the idea is to split it
according to the concept maximizing a criterion C. The choice of this concept gives
us the question to ask and thus a node of the tree. For each possible answer, we
then get the corresponding subset and look for the next concept maximizing C. This
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Fig. 7: Offline decision-tree generation from the ontology of the application domain.

operation is iterated until only one possibility is left in each subset. In the resulting
tree, the root thus corresponds to Ω and stores the first question to ask, each leaf is
a possible configuration and intermediary nodes are subsets of Ω storing the next
question to ask. Note that this step can be performed only once and offline in order
to speed up the process. This procedure is illustrated in Fig. 7 and an example of
complete decision tree is given in Fig. 8 where the criterion used to split Ω is the
dichotomy. The reader will also find an illustration on the applicative context of
furnitures in section 5.1.1.

3.3.2 Optimized Segmentation using the Decision Tree

The first inline step of our expert system is to browse the decision tree: starting from
the root, the system gets the question to ask and runs the associated elementary al-
gorithm on the input object (see section 3.4 for the formulation and classification
of these algorithms). The system then selects the child node corresponding to the
algorithm’s result and the process iterates until a leaf of the tree is reached, meaning
that the semantics associated to the object is known as only one possible configura-
tion remains. A complete run of the inline process is given in section 5.1.2 on the
applicative context of furnitures.

In some cases, the expert system might reach a leaf before every part of the
mesh is segmented or annotated (because some concepts might be inferred from
the presence / absence of others). Some supplementary algorithms can then be run
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YES

NO

Total 5

Board Backrest 4
Stick Back 1
Board Horizontal Foot 1
Board Vertical Foot 1
Stick Foot 3
Board One Seat 2
Board Several Seats 2
Cube Several Seats 1

Total 3

Board Backrest 2
Stick Back 1

Stick Foot 3

Board One Seat 2
Board Several Seats 1
Cube Several Seats 0

YES

NO

Total 1

Stick Back 1
Stick Foot 1

Board One Seat 1
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Total 2

Board Backrest 2

Stick Foot 2

Board One Seat 1
Board Several Seats 1
Cube Several Seats 0

YES

NO

Total 1

Board Backrest 1

Stick Foot 1

Board One Seat 1

Total 1

Board Backrest 1

Stick Foot 1

Board Several Seats 1
Cube Several Seats 0

Total 2

Board Backrest 2
Stick Back 0
Board Horizontal Foot 1
Board Vertical Foot 1
Board One Seat 0
Board Several Seats 1
Cube Several Seats 1

YES

NO

Total 1

Board Backrest 1
Stick Back 0
Board Horizontal Foot 1
Board One Seat 0
Board Several Seats 0
Cube Several Seats 1

Total 1

Board Backrest 1
Stick Back 0
Board Vertical Foot 1
Board One Seat 0
Board Several Seats 1
Cube Several Seats 0

Fig. 8: Illustration of the generation of the decision tree. The dashed lines group the
elementary semantic concepts into a common property. Yellow: best question at a
given node of the tree; Orange: asserted concepts through previous question; Blue:
inferred concepts (because only one possibility left in the property)

on the mesh to confirm the global semantics and annotate the missing parts. This
can again be done very efficiently by questionning the reasoner, which will give the
expert system the missing concepts and thus the elementary algorithm to run.

3.4 Mesh Processing Formalisation

In this work, the core idea about the mesh processing part is to split the processing
into elementary algorithms, each dedicated to the evaluation of one of the elemen-
tary semantic concepts. To produce a synthetic catalog of the algorithms, however,
the signature of each algorithm must be defined both by the concept it handles and
by the desired specific task.



12 Authors Suppressed Due to Excessive Length

3.4.1 Semantic Type Signatures of Algorithms

Each elementary algorithm is involved in the segmentation and labelling process
and can realize the following tasks:

• looking for a given concept and segmenting the mesh in corresponding subparts,
• checking if an existing region satisfies or not a given concept,
• focusing on relative positions or links of several regions.

Since a region can be described by more than one concept (for example, a part
can be both a “stick” and “vertical”), and since our goal is to have as many elemen-
tary algorithms as possible, we deduce that there also exist algorithms that do not
split the given region, but only increase the knowledge on this region. Finally, and
because we want to deal with concepts that are not necessarily involving a single re-
gion, we need to distinguish functions associated to unary properties, and functions
associated to n-ary properties.

The following synthetic catalog is a proposal to identify each segmentation algo-
rithm in the context of semantic labelling:

• semantical questions starting with find all (SF), with unary concepts (e.g. find all
rectangles in region A ),

• semantical questions starting with is it a (SI), with unary concepts (e.g. is B a
flat region),

• topological questions (T), identifying n-ary relations between regions (e.g. are B
and C connected),

• topological questions starting with find all (TF), using an n-ary relation and 1 to
n− 1 regions, to find regions satisfying the relation wrt the input regions (e.g.
find all regions connected to the region B; find all regions between the regions
B and C ).

Each algorithm takes as input one or more regions of the original object and
returns a set of regions, each enriched by a semantic description generated by the
function, plus a score in [0;1] to illustrate the matching between this region and the
associated concept. This first synthetic catalog of possible semantic type signatures
covers all the useful algorithms for mesh segmentation using semantic description,
as illustrated in section 3.3 and thereafter.

3.4.2 Minimal Set of Algorithms

Designing one algorithm of each type for each property can be very complex, in
particular for concepts that are not very precisely defined. In particular, if a SI
algorithm can be designed for each property, the SF algorithms are taking on them
the complicated task of segmentation. Depending of the accuracy of the concept, it
can be very complicated to design a corresponding SF algorithm.

Fortunately, the expert system described in the next paragraph is able to deal with
a minimal set of algorithms that does not contain all the SF algorithms. Whenever a
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new find all algorithm is required, the system restricts itself to the existing ones. The
only mandatory constraint is that all the regions of the objects must be segmentable.
We describe in section 4 an example of such a minimal set.

For n-ary properties we can proceed in a similar manner. T algorithms must be
implemented for each n-ary properties. On the other hand, TF algorithms can be
implemented, or only deduced using a combination of T and SF algorithms.

3.4.3 Region Description

The algorithms of our framework use regions of meshes as input, and can also pro-
duce regions in case of “find all” algorithm. A classical way to describe regions
consists on using existing vertices, edges and triangles without refining the data
structure. Moreover, a segmentation process consists in splitting a given object into
subregions. Using triangles as elementary parts of a surface mesh is then a straight-
forward choice.

However, we know that the result of a segmentation step is sometimes uncer-
tain, in particular on the segment borders. To handle this uncertainty, we choose to
use in this work fuzzy maps to describe regions. A fuzzy map is defined as a func-
tion that associates to each triangle of the mesh a membership value in [0;1]. This
formulation gives a way to deal with contradictory segmentations such as partially
overlapping regions.

4 Details of the Elementary Algorithms

We defined a minimal set of algorithms corresponding to the S0 concepts described
in figure 12 left.

4.1 Fuzzy Membership

Each of the defined algorithms is able to express its result using a score value
in [0;1] to illustrate the matching between the manipulated region and the corre-
sponding concept. In this work, we choose to use trapezoidal membership func-
tions [Klir and Yuan, 1995] to compute this score. A trapezoidal membership func-
tion is defined by 4 real parameters a1 ≤ a2 ≤ a3 ≤ a4 as described in Fig. 9.

The defined algorithms are described in the next section, with a common use of
the trapezoidal membership functions as fuzzy rules: we first measure a geometric
property on the manipulated region (such as an angle with the vertical axis, or a ratio
between scales), then we use a specific fuzzy rule to obtain the final score.
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Aa1,a2,a3,a4 (x) =


x−a1

a2−a1
if x ∈ [a1;a2[

1 if x ∈ [a2;a3[
x−a4

a3−a4
if x ∈ [a3;a4[

0 otherwise.

Fig. 9: Trapezoidal membership function Aa1,a2,a3,a4

We can notice here that more complex membership functions can be used for this
description, but trapezoidal functions has been identified as rich enough to drive our
algorithms in the applicative context described in section 5.

4.2 Elementary Algorithms

For each of these concepts we designed an “is-a” algorithm. “Find-all” algorithms
have been defined only for the shape properties, since this property domain is han-
dling all the possible regions we want to address. This partial implementation of the
“find-all” algorithms is motivated in section 3.4.2, and we focus our work on the
shape properties due to their efficiency to define strict boundaries.

4.2.1 “is a” Algorithms

Each of the elementary properties has been translated into an “is a” algorithm. As
described in section 3.4, the input of these algorithms is defined by a fuzzy region
F on a mesh M .

Using elementary geometric algorithms, we designed “is a” algorithms to iden-
tify shape properties (cube, stick, board), vertical and horizontal orientations, com-
pactness of a shape, and position properties wrt the vertical axis. The details of these
algorithms presented in section 6.2 are related with the extraction of an oriented
bounding box, and some fuzzy rules to quantify the examined properties.

4.2.2 “Find all” Algorithms

The quality of the final segmentation and annotation is mainly related to the quality
of the “find all” algorithms: in our framework, the location of the region and the
accuracy of their boundaries depend only on these algorithms. We focus our imple-
mentation work on the algorithm able to detect boards, i.e. able to detect regions
made up of two parallel planar regions and possibly lateral surfaces. Fig. 10 give an
example of board that illustrate possible specific configurations: the lateral surfaces
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a

Fig. 10: A board is composed of two parallel planar regions (pink) with lateral sur-
faces (blue), possibly with holes due to connections with other regions (leg, back).

a b

Fig. 11: a: hierarchical primitive fitting [Attene et al., 2006] on a bench. b: what we
expected.

may not be perfectly orthogonal to the planes, and the shape may contain holes both
in the planes and the lateral surfaces, due to the junction with other regions.

Mesh segmentation based on primitives is a classical problem with many existing
approaches. These methods are usually focusing on a few number of primitives,
such as spheres, planes and cylinders. These techniques are able to segment each
of the faces of a board, and possibly the lateral surfaces if the shape is not too
complicated. Hierarchical techniques [Attene et al., 2006] are able to handle more
complex shapes by providing a multi-level segmentation. Fig. 11-a illustrates the
inability of these approaches to handle board shapes: a lateral surface of the seat has
been selected as a part of the back rest.

Alternative approaches are using first a primitive fitting procedure, then combine
the detected primitives to generate thin-plates [Geng et al., 2010].

We have designed an alternative approach that performs the fitting of two parallel
primitives at the same time, then defines the shape by adding the lateral surfaces.
This approach avoid the over segmentation of planar regions without opposite parts,
and could possibly be extended to non straight boards, by introducing a parametric
model for parallel bended surfaces.
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Section 6.4 gives the details of our approach, which uses first an estimation of
the local thickness of the object, then uses a growing process from the thin points to
find the two sides of each region. Finally, a last step is applied to localize the side
triangles.

5 Experiments on Furnitures Segmentation and Annotation

The experiments have been done on furniture segmentation and annotation, using
basic shapes relevant to this domain (see Fig. 12 right). We implemented the expert
system detailed in section 3.3 using Java and the OWL API, and designed our
prototype such that the purely mesh manipulations are written in C++, using CGAL
(see section 4). The connection between these two parts is done using a client/server
paradigm via sockets. The complete software has been released as an Open-Source
software under GPL2.

5.1 Applicative Context and Results of the Annotation

The specific context of furnitures is addressed by designing a dedicated ontology
(see Fig. 12 left) using Protégé3 and the reasoner HermiT on top of a simplified
version of the elementary concepts introduced in sections 3.2.1 and 3.2.2. These
ontologies has been released with our source code under GPL2.

5.1.1 Decision Tree Generation

The decision tree associated to this ontology is generated as described in section 3.3
where the criterion C was chosen to be the dichotomy, i.e. we look for concepts
allowing to split the set into two subset of same size.

5.1.2 Expert Segmentation Processing

Once the decision tree is generated, we can run our expert segmentation system on
meshes. Fig. 13 gives the list of questions that are computed in order to segment
and recognize the first bench in Fig. 12. The other images in Fig. 12 illustrate the
segmentation and annotation process using the same expert ontology with various
meshes.

2 Software and ontologies of our work are available online: http://odds.jmfavreau.info/
3 Protégé, an ontology editor: http://protege.stanford.edu/
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Fig. 12: Ontology and meshes used for our experiments on furniture segmentation
and annotation. Right: result of the segmentation and annotation on 5 objects from
the furniture domain. Result of the annotation: orange ⇒ backrest, blue ⇒ seat,
other colors⇒ feet.

R0 R1 R2 R3 R4

1. SF StickShape in R0: false
2. SF BoardShape in R0

• R1: true (0.999)
• R2: true (0.999)
• R3: true (1)
• R4: true (0.999)

3. SI HorizontalOrientation in R1: true (1)
4. SI HorizontalOrientation in R2: false (0)
5. SI HorizontalOrientation in R3: false (0)
6. SI HorizontalOrientation in R4: false (0)

7. SI DownPosition in R1: false (0)
8. SI CompactProperty in R2: false (0.082)
9. SI M27 in R2: false (0)

10. SI DownPosition in R2: false (0)
11. SI CompactProperty in R3: true (0.999)
12. SI M27 in R3: false (0)
13. SI DownPosition in R3: true (1)
14. SI CompactProperty in R4: true (0.999)
15. SI M27 in R4: false (0)
16. SI DownPosition in R4: true (1)
17. SI CompactProperty in R1: false (0.062)

Fig. 13: List of the elementary algorithms and corresponding answers generated by
our expert system to segment and annotate a bench mesh. SF: semantic find all, SI:
semantic is it a.

Fig. 14 illustrates the consequence of a rule (Section 3.2.4) that detects a con-
figuration that is not part of the possible furnitures described in the expert system:
a board is identified in the foot part, and the object is classified as incompatible
(concept FootIncompatibleFurnitures).
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1. SF StickShape in R0

• R1: true (1)
• R2: true (0.999)
• R3: true (1)
• R4: true (1)
• R5: true (1)
• R6: true (1)

2. SI VerticalOrientation in R1: true (1)
3. SI VerticalOrientation in R2: true (1)
4. SI VerticalOrientation in R3: true (1)
5. SI VerticalOrientation in R4: true (1)
6. SI VerticalOrientation in R5: true (1)
7. SI VerticalOrientation in R6: true (1)
8. SI DownPosition in R1: true (1)
9. SI DownPosition in R2: true (1)

10. SI DownPosition in R3: true (1)
11. SI DownPosition in R4: true (1)
12. SI DownPosition in R5: false (0)

13. SI DownPosition in R6: false (0)
14. SI CompactProperty in R5: false (0)
15. SI M27 in R5: false (0)
16. SI CompactProperty in R6: false (0)
17. SI M27 in R6: false (0)
18. SF BoardShape in R0 - { R1, R2, R3, R4, R5, R6 }

• R7: true (0.999)
• R8: true (0.999)
• R9: true (1)

19. SI VerticalOrientation in R7: false (0)
20. SI VerticalOrientation in R8: false (0)
21. SI VerticalOrientation in R9: true (1)
22. SI UpPosition in R9: true (0.858)
23. SI CompactProperty in R7: true (0.999)
24. SI M43 in R7: false (0)
25. SI CompactProperty in R8: true (0.999)
26. SI M43 in R8: true (0.956)
27. SI CentralPosition in R8: true (0.699)

Fig. 14: Example of a mesh which is not valid wrt the expert knowl-
edge, the corresponding list of elementary algorithms and answers pro-
duced by our expert system, and the final diagnosis: ChairFurniture,
FootIncompatibleFurnitures.

5.2 Evaluation of the Approach

In this section, we first give time information on the experiments we performed,
providing computation times for each of the main stages of our pipeline. In the next
section, we present some comparison facts with existing work. Finally, we present
some high level complexity elements considering the usage of the ontology.

5.2.1 Computation Time

The presented computations has been done on an Intel i-7 2.00GHz with 8 Go of
RAM, using the software prototype presented below. The decision tree generation
for the furnitures context illustrated in figure 8 takes 11.45 seconds from the loading
of the ontology to the saving of the results.

Once this offline process is done, each mesh can be processed as illustrated in
figure 13 using our software prototype. Table 1 gives some computation times of
the key steps for several furniture meshes.

Mesh #subparts #triangles Find all (s) Is a (ms) Total (s)
bench 4 36 0.188 0.259 2.270
bench2 6 52 0.216 0.319 2.712
chair 6 52 0.231 0.326 3.096
chair2 8 82 0.276 0.509 2.376
couch 6 52 0.291 0.264 2.295

curved-bench 29 2542 1.038 6.167 6.743
strange-object2 9 100 0.337 0.695 2.502

Table 1: Computation time of the expert system for segmentation and annotation of
several meshes.
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Noise 0% 0.5% 1%
Our method 3.40s 5.25s 7.01s
Fitting primitives 24s 6s 6s

Table 2: Computation time of the segmentation process on a 75 520 triangles mesh
with different levels of noise, with our method and with [Attene et al., 2006].

The computation time of the “find all” steps is obviously strongly related to the
number of triangles of the mesh, due to the computation technics introduced in
section 4.2.2. This fact can be seen in Table 1.

The planarity of the shapes is also a criterion that modifies the computation time.
To illustrate this fact, we applied a multiscale random noise on an complex original
shape (Figure 16) composed of 75 520 triangles gathered in 4 board-like regions.
We used a root mean square deviation of 0.5 percent (respectivly 1 percent) of the
object’s bounding box diagonal length. Table 2 illustrate this property.

It gives the computation time of the ‘‘find all” segmentation process that seg-
ments the shape into two board regions, one stick region and one cube region.

We also used the same computer to run the implementation of [Attene et al., 2006]
provided by the author. This existing work is not exactly analogous, since it provides
a complete hierarchical representation of fitted primitives, and do not gives a way
to obtain a solution to the board finding problem. However, it gives a good intuition
about the state of the art in primitive detection.

The computation times given in Table 2 are illustrating the fact that the two meth-
ods share the same order of magnitude.

5.2.2 Comparison with Existing Work

Comparing our current work with existing methods can be separated into two sides:
segmentation and annotation.

In our current implementation, the segmentation part is mainly driven by the
“find all” board described in the previous section. As we underline at the begin-
ning of this section, the closest approach is the thin-plates mesh model splitting
approach [Geng et al., 2010]. This reference work does not contain any complex-
ity or computation time evaluation, but the fact that we fit simultaneously the two
planes of our boards necessarily reduces the complexity of our approach, since our
model avoids the segmentation of single planes that are not accompanied by another
parallel surface. For example, a thin board with a profile composed of n segments
will be composed of n+ 2 planes. A classical approach will detect n+ 2 planes,
while the proposed method will detect only a pair of planes. The n other planes will
be part of the detected border, without subdivision. Moreover, our method is able to
handle thin-plates with complex boundary shapes (as illustrated in Fig. 16), that are
not handled by classical fitting primitive approaches.
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Object #subparts
S. then I. Naive S&I Our method

preprocessing - -
# SF # SI # SF # SI # SF # SI

bench 1 4 0 28 3 20 2 15
bench 2 6 0 42 3 30 3 14
couch 6 0 42 3 30 2 13
chair 1 6 0 42 3 30 2 14
chair 2 8 0 56 3 40 2 22

Table 3: Number of segmentation steps for a complete annotation and segmentation.

The other “is a” algorithms are not strongly novel. The novelty consists here on
the categorisation and review described in section 6.3: to the best of our knowledge,
no other work provides such a comprehensive analysis.

The annotation part of our framework consists both of the “is a” algorithms that
we mentioned above and the expert system described in section 3.3. This work can
be compared with existing works such as [Feng and Pan, 2013] or [Attene et al., 2009],
but in these two approaches the complexity of the annotation is handled by either
the user or context-specific algorithms. As a result, we are not aware of any other
significant existing work which we could compare to.

5.2.3 On the Usage of the Ontology

In this section, we present a short comparison of our framework with two alternative
approaches, in case the ontology is not exploited to drive the expert system. Experi-
mental results of this comparison are summarized in Tab. 3. The first column, which
is entitled S. then I. corresponds to an approach where a first segmentation pre-
processing is done to split regions, then each region is labeled using the semantic
concepts. The second column which is entitled Naive S&I corresponds to an ap-
proach where the initial split is produced using segmentation algorithms dedicated
to shape detection, then by using the complementary algorithms to fully identify
the regions. The last column corresponds to our approach. For each method, we de-
tailed the number of semantic “find all” (SF) and semantic “is it a” (SI) algorithms
required to segment and annotate the 5 objects shown in Fig. 12 right.

We choose to distinguish the 2 kinds of algorithms, because the complexity
of each algorithm family is significantly different: a SF algorithm will require to
browse all the given regions (possibly the whole mesh), and will have to extract the
subparts from it. In comparison, a SI algorithm will only have to validate or not a
feature on a given region. Minimizing the number of SF runs is thus the main goal
of a segmentation and annotation process.

For each region of an object, the expert of the ontology uses 5 range concepts
(shape, position, orientation, modulor, compactness) that implies 12 elementary se-
mantic concepts. The number of SI algorithms in the S. then I. has been estimated
counting for each subregion of the mesh one SI per elementary semantic concept
(minus 1 per range concept that can be deduced). The Naive S&I consist in running
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the SF algorithms dedicated to shapes, then run all the other SI algorithms on each
of the segmented regions (all minus one per concept range). The number of SF and
SI of our method comes from the trace of the experimental runs (see an example in
Fig. 13).

We first compare our work to a S. then I. approach, where a segmentation pre-
processing is applied before the annotation. We cannot quantitatively compare this
approach with ours, but since we use the expert knowledge to reduce the number of
SF algorithms in our approach, we can deduce that our SF computations are almost
equivalently expensive as the preprocessing stage of the S. then I. approach4. The
number of SI algorithms is also strongly reduced with our approach.

The second approach considered for comparison is a Naive S&I approach, where
all the SF algorithms of the shape range are run, then all the complementary SI al-
gorithms are run. The number of SF algorithms is at least preserved by our approach
and sometimes reduced, and many SI runs are saved thanks to our framework.

These first results motivate the relevance of our method with respect to the ex-
isting approaches: mixing segmentation and annotation steps is a good approach to
reduce the theoretical complexity of the global algorithm, by reducing the number
of segmentation and identification algorithms to run. Moreover, it gives a global
framework to extend the existing approaches to more complex contexts.

6 Conclusion and Future Work

In this paper, we presented a new framework for efficient segmentation and anno-
tation of meshes. It is composed of two blocks: a multi-layer ontology gathering
the semantics and a segmentation part allowing to detect elementary geometrical,
chromatical and topological concepts. The main advantage of our method is that it
separates the domain knowledge with the processing allowing an expert to segment
and annotate an object without knowledge in image or mesh processing. Another
advantage is that using the expert knowledge, we are able to build a decision tree to
perform an efficient search amongst the set of possible objects while being able to
suggest segmentation and annotation corrections to the user if an impossible config-
uration is reached.

6.1 Limitations

We can identify two kind of limitations in this work. First, the elementary concepts
and the associated algorithms which we designed are mainly focused on manufac-
tured shapes. In other words, the first layer of our ontology does not effectively con-
ceptualize other objects such as organic shapes. Furthermore, we assume that the

4 The best strategy for a preprocessing can be to choose the smallest range concept, then run for
each elementary concept a SF algorithm.
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input geometry is clean enough: as it is, our current implementation is not appropri-
ate to treat digitalized meshes which may include a significant amount of noise.

Moreover, we would like to underline here that the original goal of this project
was to design a framework able to handle shapes in a well defined domain. In par-
ticular, our pipeline will consider any unexpected configuration of the shape as a
default, and will highlight it as an incompatible configuration. This behavior is mo-
tivated by closed world contexts, such as industrial inspection for example, where
the context is fully controlled, but can be a limitation for applications in an less
constrained context.

6.2 Future Work

The ontology designed for this experiment is very basic, and we forsee significant
extensions in our future work. In particular, the n-ary properties will be integrated
in order to express more realistic constraints between subparts of the objects.

The results which we presented in section 5 are using basic elementary algo-
rithms only. In a near future, we plan to introduce more flexible and robust ap-
proaches to detect features as described in [Mortara et al., 2004, Laga et al., 2013].
The next algorithms which we plan to introduce will be methods to handle curved
shapes and relative positions of the objects.

Besides the algorithmic aspects, the approach which we presented here gives
some interesting tracks on the semantic side. One of the challenges will be to re-
place the current dichotomical algorithm selection with a more elaborated strategy
that better adapts to the situation at hand. A first criterion to consider could be a
weighting system that favours algorithms with a small computational time, or to
include the accuracy of the algorithms. These weights will be introduced in the de-
cision tree computation in order to design an expert system that handles the question
of efficiency.

In addition, applying our approach on meshes acquired from low resolution de-
vices will complicate the job of the segmentation algorithms. It will probably gen-
erate incoherent subregions, with overlappings or unlabelled parts. In fact the use
of fuzzy maps solves a part of the problem, but we still have an open question: how
to adjust an existing partial segmentation? Our framework is a good candidate to
provide a specific answer to this problem, since the expert knowledge contains in-
formation about the expected configurations. One possible extension of this work
could be to introduce adjustment algorithms for each elementary concept, that will
be able to refine a first segmentation using the global knowledge of a specific do-
main.

Finally, a long term extension of this work will be to introduce it into a ma-
chine learning system, where an existing training set of shapes will be used to either
deduce an ontology from scratch or find a suitable extended ontology based on a
fundamental one. This extended framework will be a possible challenge of the 3D
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Shape Retrieval Contest (SHREC) organized each year in the mesh segmentation
community.
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Appendix: Details of the Segmentation Algorithms

In section 4 we introduced a series of elementary algorithms to segment and identify
regions of a requested object. We already introduced in section 3.4.1 the two families
of algorithms: “Is a” algorithm to label an already segmented region, and “Find all”
algorithms to extract regions corresponding to a specific property. In this section,
we present the implementation details of the core algorithms we’ve introduced to
handle the experiments on Furnitures (see section 5).

6.3 “Is a” Algorithms

Shape properties are associated with dedicated “is a” algorithms that follow a com-
mon pipeline. First we compute an approximation of the minimal volume oriented
bounding box using ApproxMVBB5, a C++ extension of [Barequet and Har-Peled, 2001]
with many efficient preprocessing steps.

Using the three lengths l0 ≥ l1 ≥ l2 of this bounding box, we wrote fuzzy rules
to express the following descriptions:

• in a cube, l1 is almost equivalent to l0 and l2,
• in a board, l0 and l1 are obviously longer than l2,
• in a stick, l0 is obviously longer than l2, and l1 is almost equivalent to l2.

Vertical and horizontal orientations are well defined for sticks and boards,
using the main directions of the minimal volume oriented bounding box. Let v0 be
the axis associated to the largest side of the box (w.r.t. its area), and let v1 be the axis
associated to the smallest side of the box.

We wrote fuzzy rules to express the following descriptions if the region is a
board:

• if v0 is almost parallel to the up-down axis, the region is horizontal,
• if v0 is almost orthogonal to the up-down axis, the region is vertical.

If the region as been identified as a stick, we introduce the following descriptions:

• if v1 is almost parallel to the up-down axis, the stick is vertical,

5 https://github.com/gabyx/ApproxMVBB
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• if v1 is almost orthogonal to the up-down axis, the stick is horizontal.

The compactness of a shape is defined by comparing the two first lengths l0 and
l1 of the bounding box. If l0 is sufficiently longer than l1 the shape is elongated. If
these two lengths are almost equivalent, the region has a compact shape.

In this work, we assume that the input mesh has as correct scale (in our case, 1
unit corresponding to 1 meter) and is correctly oriented. Existing methods such as
[Fu et al., 2008] are available to automatically estimate the orientation of a manu-
factured object.

This property has been used to define two kinds of properties relative to the height
of the regions. First we used the relative vertical positions comparing the highest,
the central and the lowest points of the region with respect to the equivalent points
of the object, to define algorithms able to identify position properties: up position,
down position and central position.

To define the global position of a region, we compared the lowest point of the
object with the highest point of the region. In his work Le Corbusier defined stan-
dard sizes for furnitures and buildings, based on the golden ratio [Corbusier, 2000].
In this work, we defined two Modulor properties: M27 and M43, corresponding
respectively to bench and chair classical height.

6.4 “Find all” Algorithms

We introduced in section 4.2.2 the motivations to design a board segmentation al-
gorithm. To achieve this goal, we designed an original approach that performs the
fitting of two parallel primitives at the same time, then it defines the shape by adding
the lateral surfaces.

Fig. 15 illustrates our board segmentation algorithm, defined as follows:

• let t be a triangle of a board (Fig. 15-a), and −→n its outward normal,
• find the opposite triangle t ′ using a ray in the opposite direction of−→n (Fig. 15-b),
• fit two parallel planes to these triangles (Fig. 15-c),
• starting from t and t ′, grow iteratively the two regions by selecting only triangles

if they fit with one of the two planes (Fig. 15-d), and readjust the model at each
step,

• when the growing process is finished, we stop the process if the two sides are not
similar enough (areas significantly different, or too small overlapping),

• otherwise, we consider the adjacent triangles as initial triangles of the lateral
surface growing process (Fig. 15-e),

• for each new triangle, find the closest edge e in the boundary of the parallel
surfaces (Fig. 15-f),

• consider the virtual facet orthogonal to the planes starting from e, and compare
it with the new candidate, using the distance between barycenters and the angle
between normals.
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a b c

d e f g

Fig. 15: Details of the “find all” board algorithm, starting from a single triangle (a),
growing a region by fitting two parallel planes (a–d), then adding the lateral surface
(f–g).

region label score (original) score (noise 0.5%) score (noise 1%) # triangles
cube cube 0.999966 0.983023 0.939295 45 568

vertical board board 0.99997 0.944411 0.86583 14 592
stick stick 0.999915 0.974192 0.926152 6 656

horizontal board board 0.99996 0.95555 0.876332 8 704

Table 4: Result of the segmentation: semantic labelling and score.

The initial triangles are selected by first computing a simplified version of the Shape
Diameter Function (SDF) [Shapira et al., 2008] where only one ray is used, since
we are manipulating CAD models and meshes that represent manufactured objects.
Then we sort triangles by ascending SDF value. For each non-visited triangle, we
run our board segmentation algorithm. Finally, we run the “is a” algorithms to decide
if it is as board shape, a stick shape or a cube shape.

Figure 16 left illustrates the detection of board, stick and cube in a basic shape
composed of 75 520 triangles, with a computation time of 3.4 seconds on a Intel i-7
2.00GHz. We applied a multiscale random noise on the original shape with a root
mean square deviation of 0.5 percent (respectivly 1 percent) of the object’s bounding
box diagonal length.

During the fitting process, a fitting score is computed for each triangle. The final
score of the region (table 4) is estimated using the mean of these scores, multiplied
by the fuzzy result of the corresponding “is a” algorithm.
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