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Abstract

Comparison of the protein interaction networks from different species is of paramount importance
for understanding physical and functional interactions between biological functions and processes
within a cell. In this paper, we introduce a novel algorithm for a global alignment of multiple protein-
protein interaction (PPI) networks called MAPPIN. The latter combines information available for the
proteins in the networks, including sequence, function and network topology. Our method is perfectly
designed to exploit current multi-core CPU architectures. MAPPIN has been extensively tested on a
real dataset (five eukaryotic species). Our experimental results show that MAPPIN sharply outper-
forms the pioneering methods of the literature in producing functionally coherent alignments as far as
it provides biologically significant alignments within an acceptable running time, even for very large
input instances.

1 Introduction
With the advent of high-throughput experimental technique such as yeast two-hybrid [1] and coimmuno-
precipitation coupled mass-spectrometry [2] there has been a steadily increase in the data available on
protein-protein interactions (PPI). These networks are typically represented as graphs, where the nodes
represent individual biomolecules (e.g., proteins) and interactions (e.g., protein binding) between biomolecules
are represented by edges connecting the corresponding nodes.

The results are stored in several public and commercial databases, such as Biological General Repos-
itory for Interaction Datasets (BioGRID) [3] and Search Tool for the Retrieval of Interacting Genes
(STRING) [4]. Therefore, network alignment looks for assessing to which extent two networks are similar
as well as in what regions they share similarity. Network alignment is the process of globally comparing
two networks, identifying regions of similarity and to detect subnetworks that are conserved across species.
Analyzing PPI networks, has been very effective in tackling many problems such as understanding the ge-
netic factors that impact various diseases [5], drug discovery [6], predicting protein functions [7, 8, 9, 10],
identifying functional modules [11], and understanding the phylogeny from these data.

Network alignment approaches can be generally classified into pairwise/multiple as well as into local
or global approaches. Pairwise approaches align two networks and multiple approaches three and more
networks. Usually, pairwise global alignment approaches aim to produce a one-to-one node alignment
between two PPI networks, whilst multiple global alignment approaches try to provide a many-to-many
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node mapping [12, 13, 14]. Local networks alignment (LNA) approaches detect conserved subnetworks,
rather than entire networks of two (pairwise local alignment) or more (multiple local alignment) networks.
However, aligned regions can overlap, leading to "‘ambiguous"’ many-to-many mappings. Thus, global
network alignment (GNA) was proposed. Unlike LNA, GNA compares the entire compared networks, by
aligning every node in the source to exactly one unique node in the target.

Several network alignment algorithms have been proposed for multiple local or global alignment
[14, 13, 15, 16, 17, 18, 19, 20, 21, 22]. For example, Graemlin 2.0 [23], is a global multiple network
alignment (MNA) algorithm that finds alignments by successively performing pairwise alignments, using
phylogenetic information and network topology and then employs a hill-climbing algorithm to generate
the alignment. SMETANA [24], another many-to-many global MNA algorithm, tries to find correspon-
dences by using a semi-Markov random-walk model. The latter is used for computing pairwise sequence
scores and pairwise topological scores. NetworkBLAST [25] searches greedily for highly conserved local
regions in the alignment graph constructed from the pairwise protein sequence similarities. LocalAli [26]
is a multiple local alignment tool that support parallel computing for the identification of functionally con-
served modules. BEAMS [27] is a fast approach that constructs global many-to-many multiple network
alignments from the pairwise sequence similarities of the nodes by using a backbone (seed) extraction
and merge strategy. NetCoffee [28] aligns multiple PPI networks based only on sequence similarity and
does not take into account the topology of the considered networks. Its alignment strategy constructs a
weighted bipartite graph for each pair of networks, searches for candidate edges from each bipartite graph
by solving maximum weight bipartite matching problem. NetCoffee applies a triplet approach similar to
T-Coffee to compute the edge weights of the k-partite graph. Then, the algorithm finds candidate edges
in the bipartite graphs and combines qualified edges through simulated annealing. IsoRankN (IsoRank-
Nibble) [29] is the first global MNA algorithm that uses both pairwise sequence similarities and network
topology, to generate many-to-many alignments. It applies IsoRank to derive pairwise alignment scores
between every pair of networks, and then employs a PageRank-Nibble algorithm to cluster all the proteins
by their alignment score.

Although several GNA methods have been developed, there is still a compelling need to improve the
alignment quality and computational efficiency. Moreover, many alignment tools encounter limitations in
introducing the functional similarities during the alignment process because it needs faster and more effi-
cient alignment tool especially for the alignment of multiple protein-protein interaction networks. More-
over, most of them make use of the Gene Ontology (GO) at the validation step of the quality of the final
alignment and not during the alignment process.

To overcome this problem, in this paper, we introduce a fast and accurate algorithm, Multiple Align-
ment for Protein Protein Interactions Networks (MAPPIN)1, which allows to find a global alignment of
multiple PPI networks. Our approach is the first approach that includes the functional similarity of pro-
teins at the core of the alignment process of k > 2 networks. The effect of including functional similarity
in global alignment is an interesting point to investigate as it would help revealing unveiled equivalences
by sequence similarity that might be biologically relevant.

MAPPIN uses sequence similarity between the individual proteins of the networks together with the
Gene Ontology Annotation (GOA) of proteins to incorporate functional similarity between the proteins and
perform the matching between the proteins of different species. We rigorously combine protein sequence
similarity, network topology similarity and functional similarity (using GO) into a suitable scoring scheme
for aligning k multiple networks. Later, the topological information of the networks is incorporated to get
the final alignment. It is worth to mention that as far as the complexity of the problem exponentially

1Details about this work as well as the running program are visible at: http://www.isima.fr/mephu/mappin/
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Figure 1: The different steps for scoring a multiple network alignment.

grows with the number of networks to be aligned, the proposed MNA algorithm uses scalable alignment
strategies (multithreading programming).

The rest of this paper is organized as follows. Section 2 depicts the architecture of the novel pro-
posed approach and presents the PPI networks alignment problem. Section 3 describes our evaluation
methodology and discusses experimental results. Finally, section 4 concludes with an outline of future
work.

2 Methods and Algorithms

2.1 The MAPPIN Algorithm
The algorithm implemented in our approach has four major steps: (1) Parsing the n PPI networks; (2)
Giving a calculated weight to each edge in the bipartite graphs using the information in the GOA and
sequence level for each aligned protein; (3) Collecting seed with high similarity scores from the bipar-
tite graphs, each seed is expanded in an iterative fashion by exploring the local neighborhood for each
compared protein; (4) Finally, MAPPIN applies a simulated annealing (SA) [30] function in order to find
a global alignments. Figure 1 shows an outline of our algorithm, including the methodology it uses for
multiple global alignment. A more detailed workflow of our approach is described with an illustrative
example in the supplementary data. It is worth mentioning that our approach is based on NetCoffee our
algorithm [28]. However, there are a difference points between them which are depicted in Table 1.

2.2 Definition of Multiple Network Alignment
Let k represents the set of PPI networks {G1,G2, ...,Gk}. Each PPI network is an unweighted undirected
graph Gi = {Vi,Ei}, where Vi =

{
v1, ...,v|N|

}
is a set of proteins. E =

{
ei j
}

is a set of m undirected edges
that represent an interaction between two proteins v1 and v2. Let V =

∪k
i=1Vi, E =

∪k
i=1 Ei and n = |V | be

the total number of N proteins. A match-set ϑ is a subset of V . By definition, a global alignment of the
k networks is a node mapping that consists of a set of mutually disjoint match sets, {ϑ1,ϑ2, ...,ϑm} with
ϑi∩ϑ j = /0, ∀i, j, i ̸= j. A match set can contain more than one node from each network [28].
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Table 1: The main difference between MAPPIN and NetCoffee.
MAPPIN NetCoffee
It aligns two or more PPI networks It aligns 3 networks or more, so it can not align two

networks.
The topological similarity is used for the detection of
hubs and in phase of Seed Expansion

Topological similarity is based on the T-Coffee ap-
proach.

It includes the functional similarity during the align-
ment process from the Gene Ontology Annotation
(GOA) collected from UniProt-GOA

It doesn’t apply any functional similarities. The Gene
Ontology, used after the process of the alignment in or-
der to test the coherence of the alignments.

It rigorously combines protein sequence similarity, net-
work topology similarity and functional similarity (us-
ing GO) into a suitable scoring scheme for aligning k
multiple networks.

It rigorously combines protein sequence similarity and
network topology similarity for aligning k multiple net-
works.

2.3 Aligning a Bipartite Graph
We make up a bipartite graph, which contains a graph Bi j =

(
Vi∪Vj,Ei j

)
for each pair of the input net-

works Gi and G j, i≤ j, i, j ∈ {1,2, ...,k}. We use the term edges to refer to elements in Ei j. To determine
the sets Ei j, we align two networks with a strategy for aligning pairwise networks described in the subsec-
tion 2.5 for each pair of species. Whereas, for bipartite graphs Bii of the same species, we add only edges
for pairs of two different proteins v1 ̸= v2 to Eii [28].

2.4 Multiple Global Alignment (MGA)

Let
(

k+1
2
)

denoting the weighted bipartite graphs, and
(

k
2
)

the bipartite graph for each compared pair-

wise network. Assigning a weight for each edge in Bi j, i < j including information about sequence,
functional and topology conservation. We obtain a collection of candidate edges, denoted as Ω. Our algo-

rithm for aligning multiple networks starts by collecting candidate edges from the
(

k+1
2
)

bipartite graphs

[28]. Given a node (protein) v ∈V from each of the compared networks, and we denote VertexCluster (v)
as the set of all nodes aligned to a node v.

In the case of a pairwise alignment, a given edge(u,v) in a network Gi is said to be conserved in another
network G j, if there is an interaction (s, t) ∈ E j such that s ∈VertexCluster (u) and t ∈VertexCluster (v).
For the edge (u,v) ∈ Ei, its edge alignment cluster EdgeClusteri j (u,v), can be computed as given in Eq.
(1):

EdgeCluster (u,v) =

{
(s, t)/

VertexCluster (u)×VertexCluster (v) :

∃G j =
(
Vj,E j

)
: (s, t) ∈ E j

}
(1)

As demonstrates the equation (1), a given interaction (u,v) ∈ Ei is conserved in k ≤ n species, when
there are k−1 distinct species, such that there exist pairs of nodes (s, t)∈E j such that s∈VertexCluster (u)
and t ∈VertexCluster (v), with the variable j indexing these species.
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Therefore, to get the MNA node mappings, we should combine each pairwise node alignments for
each node v by combining all the alignment clusters between any compared networks Gi and G j as
VertexClusteri j (v).

VertexCluster (v) = ∪VertexClusteri j (v) (2)

The set of the alignments for all vertices (proteins) in the k PPI networks, can be computed as given in Eq.
(2):

V∗= ∪{VertexCluster (v)} : ∀v ∈V (3)

Furthermore, the conserved edges for each network in the MNA are computed from the set V∗ defined
in Eq. (3):

E∗= ∪{Edge− vertex(u,v)} : ∀(u,v) ∈ E (4)

After completion of the entire multiple alignment, our algorithm produces multiple global alignment
of all compared species, by apply the SA function [28].

2.5 Pairwise Alignments
As said before our proposed approach begins by aligning two networks G1 = (V1,E1) and G2 = (V2,E2)
in addition to various configuration parameters as inputs and returns global alignment of them. MAPPIN
applies two different phases. The first phase is the computation of the alignment score matrix, and the
second one we apply a greedy approach in order to obtain the final result.

At first phase, the Alignment Score Matrix is computed relying on two other matrices named Sequence
score matrix and Functional score matrix between every two nodes i ∈V1 and j ∈V2.

Alignment Score Matrix that is computed in phase one will not change during the process of alignment
search (Seed Generation), because the values of the similarity matrix are computed based on sequence and
functional properties for each protein. In spite of that, at the phase of Seed Expansion, the Alignment Score
Matrix should be updated iteratively, leading in increased number of conserved interactions after aligning
each neighbor of two proteins.

At the second phase, in each iteration of the Edmond’s algorithm [31], we find the two nodes with
maximum score in Alignment Score Matrix and then align them. This greedy search is repeated until all
nodes of the first network are aligned with the nodes of the second network.

2.5.1 The Biological Score Matrix

The similarity between two compared proteins is a combination of sequence and functional similarity in
the seed generation phase coupled with supplementary topological similarity in the seed extension process.
The biological score matrix S is defined such that S

(
pi, p j

)
is referred to as biological similarity between

two proteins pi ∈V1 and p j ∈V2. Therefore two proteins pi and p j are biologically similar, if and only if
both of the following conditions are fulfilled:

• The actual proteins represented by pi and p j have a good sequence similarity computed from Blast.

• The actual proteins have the most common measure of similarity computed from the shared Gene
Ontology (GO).
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Sequence similarity: The sequence similarity of two proteins ai and b j is computed based on their BLAST
bit score as follows:

sseq
(

pi, p j
)
=

BLAST
(

pi, p j
)√

BLAST (pi, pi)×BLAST
(

p j, p j
)
.

(5)

s
(

pi, p j
)

is the BLAST bit score value when aligning pi and p j. Here, only pairs of proteins with an
E− value < 10−7 are used to compute sequence similarity.

Functional similarity: A common measure to assess the biological quality of alignments is based on
GO consistency of the aligned pairs of proteins. For an alignment A12, we define GOC12 as the sum
of
∣∣GO(pi)∩GO

(
p j
)∣∣, over all aligned pairs ≺ pi, p j ≻∈ V12. Here, the GO(p) denotes the set of GO

terms annotating a protein p. To exclude unreliable function annotations, GOA with evidence codes IEA
(inferred from electronic annotation) and ISS (inferred from sequence or structural similarity) were dis-
carded. GOA data that are used in this article were extracted from the GO database. The GO database is
a collection of well-defined and structured biological terms that are universal to all organisms. Each term
represents a functional class and includes the annotation of genes and gene products.

The GO terms and their annotations can significantly contribute to the analysis of PPI networks. In
our analysis, for each solution we computed semantic similarities using the set of annotations from the
Biological Process (BP) and Molecular Function (MF) ontologies in GO. Here, the GO(p) denotes the
set of GO terms annotating a protein p. Given two proteins pi and p j and their set of GOA, GO(pi) =
{t1, t2, ..., tk} and GO

(
p j
)
= {t̀1, t̀2, ..., t̀l}, the Schlicker [32] similarity measure is used to score each pair

≺ goi,go j ≻ with goi ∈ GO(pi) and go j ∈ GO
(

p j
)
. The semantic similarity of pi and p j is then defined

as the average of the scores of the best match for each GO term in GO(pi) and GO
(

p j
)

according to the
Schlicker measure. Therefore, at the biological phase, the similarity of two proteins is defined as a linear
combination of functional similarity and sequence similarity

S
(

pi, p j
)
= αsseq

(
pi, p j

)
+(1−α)sSchlicker

(
pi, p j

)
. (6)

In MAPPIN, α provides a relative weighting between sequence and functional similarity. The value
of α is manually defined at the beginning of the alignment to tuning the contribution of sequence or
functional similarity or in the overall score.

2.5.2 Seed Expansion Strategy

The extension strategy performed by our approach consists in mapping the candidate proteins (neighbour
proteins) from the seed protein pairs. The topological similarity of protein pairs is included in this step.
Since the functional similarity impact of proteins to neighbouring proteins in the networks decreases as far
as the distance between them gets larger, the proportion of score, given in extra, to candidate pairs should
also be decreased. Let two proteins vi in a specie A and v j in a specie B be two candidate proteins that are
the first neighbours of proteins in the seed vector. Let N (vi) and N

(
v j
)

be the set of all first and second
neighbours of vi and v j respectively and let d (ak,al) denote the number of interactions between ak and al
in a network, where ak ∈ N (vi) and al ∈ N

(
v j
)
. Let Sext (ak,al) denoting the calculation of the extension

similarities of the proteins ak and al . The similarity between ak and al in the extension mapping is defined
as:

Sext (ak,al) =

(
1

d (ak,vi)+1
+

1
d
(
al,v j

)
+1

)
×S (ak,al) (7)
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Input: G1 (V1,E1), G2 (V2,E2), α
Output: Biological score Matrix B̀
S←− 1;
for all i ∈V1 do

for all j ∈V2 do
4: sseq

(
pi, p j

)
←− BLAST(ai,b j)√

BLAST (ai,ai)×BLAST(b j,b j)
;

s f unct
(

pi, p j
)
←− sSchlicker

(
pi, p j

)
;

B̀←− αsseq
(

pi, p j
)
+(1−α)s f unct

(
pi, p j

)
;

end for
8: end for

S←− B̀;
return S

Algorithm 1: SimilarityScore
(
Gi,G j,α

)
The fraction

(
1

d1+1 +
1

d2+1

)
(where d1 and d2 are the distances of the two candidate proteins with the

aligned pairs in the seed vector) was designed so that it reflects the gradual loss of impact of seed proteins
to the candidate proteins. The scores of candidate proteins in extension are recalibrated based on Equation
7, resulting in a score matrix. The resulting mapped protein pairs are then added to the list of aligned
protein pairs in the seed vector. The extension step is repeated until no more pairs are added.

2.5.3 Alignment Score Matrix

Similarity score matrix A with |V1| rows and |V2| columns, indicates the similarity between nodes of two
networks, i.e. A

(
pi, p j

)
is the similarity of nodes pi and p j where pi ∈ V1 and p j ∈ V2. After computing

sequence score matrix and functional score matrix, matrix A is computed as follows:

A
(

pi, p j
)
= S

(
pi, p j

)
. (8)

However, at the phase of Seed Expansion the Alignment Score Matrix should be updated iteratively

after aligning each neighbor of two nodes. Finally, to find a one-to-one node mapping in each of the
(

k
2
)

weighted bipartite graphs, we apply the Edmond’s algorithm [31].

2.5.4 Time Complexity

Suppose we have k networks, where the maximum network size is n = maxi |Vi|, the maximum number
of interaction in a network is m = maxi |Ei|. Suppose there is a bipartite graph, Bs = (Vs1∪Vs2,Es) the
running time complexity on Bs is O(|Vs1∪Vs2| .log |Es|). Therefore, the collection of candidate edge costs(

k
2
)

O(nlog(n)) time. Finally, running the SA only depends on two parameters of the cooling scheme, K

and N, which is independent of the number of compared species k [28].
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Input: Alignment results between bipartite graph and Threshold τ
Output: A set of seeds Ê
Ê←− /0
for all a ∈ AlignmentResult do ◃ Net (v) = The network where protein v is in

for all vx,vy ∈ AlignmentResult : Net (vx) ̸= Net (vy) do
4: if S (vx,vy)≥ τ then Ê←− Ê ∪ (vx,vy)

end if
end for

end for
8: return Ê

Algorithm 2: Seed−Generation(AlignmentResults,τ)

Input: A set of seeds E∗ and vertex cluster V ∗

Output: A set of seeds of multiple networks ˆEGlobal
ˆEGlobal ←− E∗

for all
{

vi,v j
}
∈V ∗ : Net (vi) ̸= Net

(
v j
)

do
for all {ak,al} : ak ∈ N (vi) ,al ∈ N

(
v j
)

do

4: Sext (ak,al)←
(

1
d(ak,vi)+1 +

1
d(al ,v j)+1

)
×S (ak,al)

if Sext (ak,al)≥ τ then ˆEGlobal ←− ˆEGlobal ∪ (ak,al)
end if

end for
8: end for

return ˆEGlobal

Algorithm 3: Seed−Expansion(E∗,V ∗)

Input: G1 (V1,E1), G2 (V2,E2), α , τ
Output: Node set of the global alignment network
Require: |V1| ≤ |V2|

1: AlignmentResults←− SimilarityScore(G1,G2,α)
2: Ŝ←− Seed−Generation(AlignmentResults,τ)
3: return The seed Ŝ
4:

Algorithm 4: pairwiseAlignment
(
Gi,G j,α,τ

)
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Input: Set of network G1 (V1,E1), G2 (V2,E2) ... Gk (Vk,Ek), α , τ , K, Tmin, Tmax, s
Output: A set of global Multiple match-sets

1: Gs←− G1 (V1,E1)
2: Seedsinitial ←− /0
3: for all all remaining networks G j do
4: G1 j←− pairwiseAlignment

(
G1,G j,α ,τ

)
5: Seedsinitial ←− Seedsinitial ∪G1 j ◃ Create node alignment
6: Initialize V ∗ = /0
7: for each node of G1, v ∈V1 do
8: Initialize VertexCluster (v) = {v}
9: for each each pairwise alignment G1, G j do

10: VertexCluster (v) =VertexCluster (v)∪VertexCluster1 j (v)
11: end for

◃ Concatenate sets
12: Initialize V ∗ =V ∗.VertexCluster (v)
13: end for
14: Initialize E∗ = /0
15: for each edge of G1, (u,v) ∈ E1 do
16: Initialize EdgeCluster (u,v) = {(u,v)}
17: for each pair (k, l) ∈VertexCluster (u)×VertexCluster (v), (u,v) ∈ E1 do
18: if (k, l) form an edge then
19: EdgeCluster (u,v)←− EdgeCluster (u,v)∪ (k, l)
20: end if
21: end for ◃ Concatenate sets
22: E∗ = E∗.EdgeCluster (u,v)
23: end for
24: end for
25: Ω←− /0
26: Ω←− Seed−Expansion(E∗,V ∗)
27: A←− /0 ◃ Generation a feasible solution with a set of mutually disjoint match sets. The parameters

K,Tmin,Tmax and s control the SA
28: A←− Simulated−annealing(Ω,K,Tmin,Tmax,s)
29: return A
30:

Algorithm 5: Our algorithm for global multiple Alignment
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3 Results and Discussion

3.1 Test Datasets
To evaluate the performance of the proposed method on real PPI networks, we tested MAPPIN on the same
datasets used in the original publication of NetCoffee [28]. There are four datasets of up to five eukaryotic
species, which include Homo sapiens (Human), Mus musculus (Mouse), Drosophila melanogaster (Fly),
Caenorhabditis elegans (Worm) and Saccharomyces cerevisiae (Yeast). The five eukaryotic PPI networks
collected all experimentally from the public database IntAct [33]. The number of proteins and interactions
of these PPI networks are given in Table 2.

For applying the functional similarity during the alignment process, GO information was collected
from UniProt-GOA to annotate proteins with the three basic types of ontologies: biological process (BP),
molecular function (MF) and cellular component (CC). To exclude unreliable function annotations, GOA
with evidence codes IEA (inferred from electronic annotation) and ISS (inferred from sequence or struc-
tural similarity) were discarded. Therefore, to compute the semantic similarity between two GO terms,
MAPPIN uses the definition of functional similarity proposed by Schlicker et al. [32]. The functional sim-
ilarity between two proteins is based on the semantic similarities of the GOA assigned to the proteins. Our
proposed approach uses two types of GOA file taken from UniProt-GOA: i) Firstly, the set that contains
all GOA for canonical accessions from the UniProt reference proteomes for all species, which provide
one protein per gene; ii) Secondly, the set that contains all GOA for isoforms from the UniProt reference
proteome for the species, which provides one protein per gene.

Table 2: Characteristics of the PPI Networks and Datasets from 5 Species.
Species Proteins Interactions D1 D2 D3 D4
H.sapiens 8777 28 366 × ×
M.musculus 1531 1626 × ×
D.melanogaster 1534 2664 × × × ×
C.elegans 767 915 × × × ×
S.cerevisiae 5739 36 226 × ×

3.2 Experimental Setup
We have implemented our approach in the C++ language using the LEMON Graph Library [34] version
1.3.1. We compared the performance of the proposed multiple network alignment method versus the
pioneering ones of the state-of-the-art algorithms: IsoRankN [29], NetCoffee [28] and SMETANA [24].

For the three multiple network alignment algorithms, we set the Al pha parameter to 0.3. Addition-
ally, for IsoRank-N, we set the parameters: K = 20, T hr = 0.4 and maxveclen = 106. We used default
parameters for NetCoffee (i.e., s = 0.005, K = 100, N = 2000, Tmin = 10, Tmax = 100 and η = 1.0 ) and for
SMETANA. Finally, in the proposed method (MAPPIN), we set T hr = 0.1, and we tuned its SA parameters
(i.e., K = 100, N = 1500, Tmin = 10 and Tmax = 100) for the dataset D4 and for the other datasets we set
T hr = 0.3 and we modify the SA parameters (i.e., K = 50, N = 1000, Tmin = 10 and Tmax = 50). We
applied this two configuration modes, because they gives us the best results in terms of ME and MNE.
All experiments were performed on a personal computer with a 3.40 GHz Intel i7 processor and 16GB
memory. We used eight threads for each testing.
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Table 3: Comparative Consistency on the Five Eukaryotic Net-
works.

Measure MAPPIN NetCoffee IsoRank-N SMETANA
D1 (Pairwise Alignment)

CV(%) 57.1 - 18.6 28.2
ME 0.283 - 1.235 0.88
MNE 0.206 - 0.658 0.275
Time 3mn - 22.5mn 25sec

D2 (Multiple Alignment)
CV(%) 52.4 28.2 16.1 35.2
ME 0.286 1.504 2.927 2.393
MNE 0.223 0.6026 0.9627 0.8374
Time 4mn 3sec 26.5mn 53sec

D3 (Multiple Alignment)
CV(%) 54.4 41.2 31.1 52.6
ME 0.342 2.645 3.927 3.054
MNE 0.243 0.8721 1.173 0.9616
Time 9mn 26sec 33.6mn 3.3mn

D4 (Multiple Alignment)
CV(%) 67.5 49.1 33.8 58.1
ME 0.415 2.288 3.597 2.592
MNE 0.281 0.7988 1.103 0.8656
Time 15mn 51.3sec 3.12h 6.2mn

note: the four algorithms MAPPIN, NetCoffee, IsoRank-N and
SMETANA were tested on the five datasets. Each row lists the cover-
age (CV), mean entropy (ME), mean-normalized entropy (MNE) and
the running time. Sec, mn and h in the row of time represent seconds,
minutes and hours. Best results are indicated in bold with respect to
each row. The symbol (-) indicates that the tool couldn’t align this
particular Dataset.

3.3 Performance Comparison
To assess the quality and the performance of the alignment, we apply the coverage and consistency and
the required running times for aligning k networks as the same metrics used in [28].

To measure the overall accuracy of the proposed methods, we report the following performance met-
rics:

• Coverage (CV): Reflects the amount of protein in the whole set of proteins that are covered by the
alignment. (see Table 3).

• Consistency: To assess the functional coherence of the produced alignments, the Mean Entropy
(ME) and the Mean Normalized Entropy (MNE) of the alignments are computed.

• Running time: The running time required to align the each five Datasets.

MAPPIN aims to produce a global alignment that has a good consistency while covering as many
proteins as possible. As depicts Table 3, the MAPPIN algorithm reaches high CV, ME and MNE across all
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Table 4: MAPPIN - sequence only versus sequence and function alignment for exactly k species
Systems Time CV(%) ME MNE UA MF*BP Cls-1 Cls-2 Cls-3

D2 (3 species) | Alpha = 0.3, Threshold = 0.5
MAPPIN 3.6mn 34.9 0.197 0.189 39 1768*2247 32771/32985 37827577/65177875 262/974
MAPPIN-GO 3.4mn 34.9 0.192 0.184 39 1775*2255 192/33153 39952857/40921178 250/943
MAPPIN-SEQ 4sec 34.6 0.191 0.182 41 -*- 199/33165 95074853/71889052 240/924

note: the three modes of our algorithms were tested on the two datasets. Each row lists the running time, the coverage
(CV), mean entropy (ME), mean-normalized entropy (MNE), unknown alignment (UA), the number of proteins anno-
tated with Molecular Function (MF) and Biological Process (BP) in alignment graph and the number of clusters contains
proteins predicted from exactly k species (Cls-k).

cases, showing that it can accurately align real PPI networks. As the coverage shows, MAPPIN predicts
more clusters with more proteins than do its competitors. In addition our approach provides a lower
entropy than the other methods which reflect more functionally coherent of its GOA. NetCoffee [28] shows
good performance on the all Datasets, with a slightly lower CV and a slightly higher ME. In addition,
IsoRankN [29] gives fair results on real PPI networks compared to MAPPIN, SMETANA and NetCoffee
algorithms. Nevertheless, NetCoffee cannot align the Dataset 1 (Pairwise Alignment), because it is based
on the technique of T-Coffee [28] which can align networks with k≥ 3. SMETANA gives a good coverage
for all the five Datasets, but sacrificing the low value for the mean entropy (ME).

3.4 Evaluations Based on Biological Relevance of Aligned Pairs
MAPPIN provides different options of network alignment in different modes including: A) MAPPIN-
SEQ: aligns two networks using only sequence information provided by the user. B) MAPPIN-GO: aligns
two networks using only functional information provided by the user. C) MAPPIN: aligns two networks
using sequence information and function information provided by the user.

As the Table 4 depicts, MAPPIN and MAPPIN-GO performed consistently better than MAPPIN-
SEQ in most pairs of species. The size of conserved networks by MAPPIN alignments are often larger
than MAPPIN-GO and MAPPIN-SEQ, with more aligned protein pairs that are either homologous or
functionally similar or both. MAPPIN provides additional equivalences that are biologically similar in
function thanks to the use of addition information from the network and GOA. MAPPIN has more protein
pairs with higher functional similarities and fewer pairs with low similarities than MAPPIN-SEQ. There
are a much pairs of proteins with functional similarities larger than 0.5, as compared to aligned pair in
MAPPIN-SEQ. The k− th row contains, for each program, the number of predicted clusters for covering
exactly k species and number of constituent proteins in those clusters. We find that for the k = 3 species,
and for all the other Datasets, MAPPIN predicts more clusters with more proteins (Table 3) than other
methods. Thus, it has higher consistency capable of detecting more distant multiple network homology.
However, it is worthy to conclude, that using only the functional similarities in aligning the 3 species gives
coherent alignment without relying on a sequence similarity.

To sum up, we can say that MAPPIN aligned PPINs with a good balance in different measures includ-
ing sequence, protein function and network topology. Moreover as shown on the Table 5, relying only on
the sequence information do not lead to functional coherent alignment, resulting in mapping of equivalent
proteins having little or no functional similarities and can also result in the missing of many true equiva-
lences. Therefore, the produced alignment between PPI networks using MAPPIN-SEQ can discover a less
accurate conserved functional modules, which influence directly on predicting unknown function protein.
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Table 5: MAPPIN alignment of the D4 Dataset showing the missing of many true equivalences when
relying only on sequence information.

Protein Pairs Sequence
score

Functional
score

P04629: Protein(High affinity nerve growth factor receptor), Gene(NTRK1), Or-
ganism(Homo sapiens)

0.209923 0.806319

P15209: Protein(BDNF/NT-3 growth factors receptor), Gene(Ntrk2), Organ-
ism(Mus musculus)
P46459: Protein(Vesicle-fusing ATPase), Gene(NSF), Organism(Homo sapiens)

0.209923 0.966989
P46460: Protein(Vesicle-fusing ATPase), Gene(NSF), Organism(Mus musculus)
Q9ULB1: Protein(Neurexin-1), Gene(NRXN1), Organism(Homo sapiens)

0.209923 0.942397
Q9CS84: Protein(Neurexin-1), Gene(NRXN1), Organism(Mus musculus)
Q86UR1: Protein(NADPH oxidase activator 1), Gene(NOXA1), Organism(Homo
sapiens)

0.398556 0.133281

O08641: Protein(SH3 domain-containing YSC84-like protein 1), Gene(Sh3yl1),
Organism(Mus musculus)
Q04721: Protein(Neurogenic locus notch homolog protein 2), Gene(NOTCH2), Or-
ganism(Homo sapiens)

0.470259 0.179771

Q8C8R3: Protein(Ankyrin-2), Gene(Ank2), Organism(Mus musculus)
P51159: Protein(Ras-related protein Rab-27A), Gene(RAB27A), Organism(Homo
sapiens)

0.177534 0.982277

Q9ERI2: Protein(Ras-related protein Rab-27A), Gene(Rab27a), Organism(Mus
musculus)

3.5 Running Time Requirements
Another observation we can make in Table 3 is the computation time for aligning the 5 species. SMETANA
and NetCoffee required the least computation time for multiple network alignment, while IsoRank-N is the
slowest tool. Although MAPPIN yielded accurate alignment results for real PPI networks, it also required
the largest amount of computation time for each Dataset. The reason behind the relatively longer running
time is the time required to loading the gene annotation file for each species. The required time of our
approach for charging the annotation for each species is roughly equal to 2 minutes.

4 Conclusion and Future Works
In this paper, we present an efficient method for computing multiple PPI networks alignments. We reveal
the effectiveness of our approach on the five eukaryotic species. Our results prove that MAPPIN has higher
coverage and consistency compared to the others approaches. The results of the method described in this
paper can be used to predict protein complexes in the given species or predict the function of proteins
by inheriting the annotation available of the aligned protein from the other species. The proteins that are
not mapped might result from evolutionary events such as gene deletions and the formation of new genes.
Therefore, another directions for future works, is trying to predict GOA for unannotated proteins which
may lead to transfer the knowledge across PPI networks and potential discoveries in evolutionary biology.
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