Chao Zhang
email: zhangch@isima.fr

Prof Supervised

Prof Emmanuel Farouk Toumani

Gangler

Symmetric and Asymmetric Aggregate Function in Massively Parallel Computing

Applications of aggregation for information summary have great meanings in various fields. In big data era, processing aggregate function in parallel is drawing researchers' attention. The aim of our work is to propose a generic framework enabling to map an arbitrary aggregation into a generic algorithm and identify when it can be efficiently executed on modern large-scale data-processing systems. We describe our preliminary results regarding classes of symmetric and asymmetric aggregation that can be mapped, in a systematic way, into efficient MapReduce-style algorithms.

INTRODUCTION

The ability to summarize information is drawing increasing attention for information analysis [START_REF] Gray | Data cube: A relational aggregation operator generalizing group-by, cross-tab, and sub-totals[END_REF][START_REF] Cuzzocrea | Aggregation and multidimensional analysis of big data for large-scale scientific applications: models, issues, analytics, and beyond[END_REF]. Simultaneously, under the progress of data explosive growth processing aggregate function has to experience a transition to massively distributed and parallel platforms, e.g. Hadoop MapReduce, Spark, Flink etc. Therefore aggregation function requires a decomposition approach in order to execute in parallel due to its inherent property of taking several values as input and generating a single value based on certain criteria. Decomposable aggregation function can be processed in a way that computing partial aggregation and then merging them at last to obtain final results.

Decomposition of aggregation function is a long-standing research problem due to its benefits in various fields. In distributed computing platforms, decomposability of aggregate function can push aggregation before shuffle phase [START_REF] Yu | Distributed aggregation for data-parallel computing: Interfaces and implementations[END_REF][START_REF] Liu | Automating distributed partial aggregation[END_REF]. This is usually called initial reduce, with which the size of data transmission on a network can be substantially reduced. For wireless sensor network, the need to reduce data transmission is more necessary because of limitation of power supply [START_REF] Madden | Tag: a tiny aggregation service for ad-hoc sensor networks[END_REF]. In online analytical processing (OLAP), decomposability of aggregate function enables aggregation across multi-dimensions, such that aggregate queries can be executed on pre-computation results instead of base data to accelerate query answering [START_REF] Franklin | An overview of data warehousing and olap technology[END_REF]. An important point of query optimization in relational databases is to reduce table size for join [START_REF] Garcia-Molina | Database System Implementation[END_REF], and decomposable aggregation brings interests [START_REF] Cohen | User-defined aggregate functions: bridging theory and practice[END_REF].

When an arbitrary aggregation function is decomposable, how to decompose it and when a decomposition is 'efficient' is a hard nut to crack. Previous works identify interesting properties for decomposing aggregation. A very relevant classification of aggregation functions, introduced in [START_REF] Gray | Data cube: A relational aggregation operator generalizing group-by, cross-tab, and sub-totals[END_REF], is based on the size of sub-aggregation (i.e., partial aggregation). This classification distinguishes between distributive and algebraic aggregation having sub-aggregation with fixed sizes, and holistic functions where there is no constant bound on the storage size of sub-aggregation. Some algebraic properties, such as associativity and commutativity, are identified as sufficient conditions for decomposing aggregation [START_REF] Yu | Distributed aggregation for data-parallel computing: Interfaces and implementations[END_REF][START_REF] Liu | Automating distributed partial aggregation[END_REF]. Compared to these works, our work provides a generic framework to identify the decomposability of any symmetric aggregation and generate generic algorithms to process it in parallel. Moreover, all but few researches in the literature consider symmetric functions. Asymmetric aggregation is inherently non-commutative functions and this makes their processing in parallel and distributed environment far from being easy. In [START_REF] Raychev | Parallelizing user-defined aggregaions using symbolic execution[END_REF], a symbolic parallel engine (SYMPLE) is proposed in order to automatically parallelize User Defined Aggregations (UDAs) that are not necessarily commutative. Although interesting, the proposed framework lacks guarantees for efficiency and accuracy in the sense that it is up to users to encode a function as SYMPLE UDA. Moreover, symbolic execution may have path explosion problem.

My research focuses on designing generic framework that enables to map symmetric and asymmetric aggregation functions into efficient massively parallel algorithms. To achieve this goal, we firstly identify a computation model, and an associated cost model to design and evaluate parallel algorithms. We consider MapReduce-style (M R) framework and use the M RC [START_REF] Karloff | A model of computation for mapreduce[END_REF] cost model to define 'efficient' M R algorithms. We rest on the notion of well-formed aggregation [START_REF] Cohen | User-defined aggregate functions: bridging theory and practice[END_REF] as a canonical form to write symmetric aggregation and provide a simple and systematic way to map well-formed aggregation function α into an MR algorithm, noted by M R(α). Moreover, we provide reducible properties to identify when the generated M R(α) is efficient (when M R(α) is a M RC algorithm). Then we extend our framework to a class of asymmetric aggregation function, position-based aggregation, and propose extractable property to have generic M RC algorithms. Our main results are Theorem 1 and Theorem 2 separately for symmetric and asymmetric aggregation.

M RC ALGORITHM

Several research works concentrate on the complexity of parallel algorithms. M U D [START_REF] Feldman | On distributing symmetric streaming computations[END_REF] algorithm was proposed to transform symmetric streaming algorithms to parallel algorithms with nice bounds in terms of communication and space complexity, but without any bound on time complexity. This disqualifies M U D as a possible candidate cost model to be used in our context.

In [START_REF] Karloff | A model of computation for mapreduce[END_REF], a model of efficient computation using the MapReduce paradigm is introduced. The proposed model limits the number of machines and the memory per machine to be sublinear in the size of the input. More precisely, [START_REF] Karloff | A model of computation for mapreduce[END_REF] defines the Map Reduce class, noted MRC, as the class of efficient MapReduce programs. Let P be a MapReduce program. The input of P is a finite sequence of pairs < kj; vj >, for j ∈ [1, l] where kj and vj are binary strings. Hence, P operates on an input of size n = l j=1 (|kj|+|vj|). Let i be a positive integer and fix an > 0. Then P belongs to the class MRC i , we will also write P is an MRC program, if P satisfies the following constraints:

• the total number of machines used by P is in O(n1-) (i.e., sublinear in n),

• each mapper or reducer uses O(n 1-) space and O(n k) time, for some constant k (i.e., sublinear space in n and plynomial time in n),

• the number of total Map-Reduce rounds is O(log i (n)) (i.e., polylogarithmic in n).

We illustrate these constraints besides round number in a simplified MapReduce flowchart in figure 1.

Note that in the MRC class, the total space used by all the outputs of the mappers is O(n 2-2) which gives a bound on the communication cost of MRC algorithms (i.e., the size of the data sent to reducers). As a consequence, the MRC model considers relevant parameters for parallel computing (computation space and time, communication cost and number of rounds), making more realistic assumptions. A MapReduce algorithm satisfying these constraints is considered as an efficient parallel algorithm and will be called hereafter an MRC algorithm.

SYMMETRIC AGGREGATION WITH M RC

Let I be a doamin, a n-ary aggregation α is a function [START_REF] Grabisch | Aggregation function: Means[END_REF]: I n → I. α is symmetric or commutative [START_REF] Grabisch | Aggregation function: Means[END_REF] if α(X) = α(σ(X)) for any X ∈ I and any permutation σ, where σ(X) = (x σ(1) , ..., x σ(n)). Symmetric aggregation result does Table 1: M R(α): a generic MR aggregation algorithm operation mapper ⊕,j F (dj) reducer T (⊕,i oi) not depend on the order of input data, therefore input is considered as a multiset. In this section, we define a generic framework to map symmetric aggregation into a M RC algorithm.

A Generic Form for Symmetric Aggregations

To define our generic aggregation framework, we rest on the notion of well-formed aggregation [START_REF] Cohen | User-defined aggregate functions: bridging theory and practice[END_REF]. A symmetric aggregation α defined on a multiset of values {d1, . . . , dn} can be written in well-formed aggregation as following:

α(d1, . . . , dn) = T (F (d1) ⊕ . . . ⊕ F (dn)),
where F is translating function(tuple at a time), ⊕ is a commutative and associative binary operation, and T is terminating function. For instance, average can be easily transformed into well-formed aggregation:

F (d) = (d, 1), (d, k) ⊕ (d , k) = (d + d , k + k) and T ((d, n)) = d n .
In fact, any symmetric aggregation can be rewritten into well-formed aggregation with a flexible choice of ⊕, e.g ⊕ = ∪.

Well-formed aggregation provides a generic plan for processing aggregate function in distributed architecture based on the associative and commutative property of ⊕: processing F and ⊕ at mapper, ⊕ and T at reducer. Table 1 depicts the corresponding generic MapReduce(MR) algorithm(the case of one key and trivially extending to any number of keys), noted by M R(α), where mapper input is dj and mapper output is oi, and ⊕ is the concatenation of ⊕.

However, the obtained M R(α) are not necessarily an efficient MapReduce algorithm. We identify when M R(α) is a M RC algorithm using reducibility property. Definition 1. (Reducible aggregation function) 1 Let α be a symmetric aggregation function α given in a canonical form (F, ⊕, T). Then (F, ⊕, T) is reducible if it satisfies the following two conditions:

(1) the functions F, ⊕ and T operate in time polynomial in the size n of the input, and

(2) ∀Di ∈ I and ∀ > 0, |Di|= O(n 1-): | ⊕,d j ∈D i F (dj)|= O(n 1-ζ), ζ > max(, 1 -).
With this reducible property, we provide a theorem identifying when M R(α) of a symmetric aggregation is a M RC algorithm.

Theorem 1. Let α be a symmetric aggregation expressed in a canonical form and let M R(α) be the corresponding generic algorithm. Then, we have:

M R(α) is an MRC al- gorithm iff α is reducible. Proof. (Sufficiency) α is reducible ⇒ M R(α) is an MRC.
To see whether M R(α) with reducible aggregation α is an MRC, we analyze the M R(α) in M and P from MRC and verify whether it satisfies the reducer bound of MRC.

In order for M R(α) to be an MRC algorithm, we need to prove Oi < M (maximum mapper output size do not overflow MRC memory bound) and O sublinear in n (total mapper output size do not overflow MRC memory bound). With the bound of |vmax|, we need to prove the two following conditions

1. lim n→+∞ Oi M = 0, 2. lim n→+∞ O n = 0.
(1) We consider the worst case that every value v at mapper i takes the maximum value of |vmax| bits, then the maximum number of vmax at mapper i is |Xi|max= M |vmax| . We use ∆ to denote the size of aggregation result size, such that maximum output size of mapper i is

Oi = |k|+∆(|Xi|max•|vmax|) = ∆(M). From reducible prop- erties of α, we have ∆(M) = O n 1-ζ .
Therefore, the worst case of mapper i output size is

Oi = |k|+c3n 1-ζ . From ζ > max(, 1 -), we have lim n→+∞ Oi M = 0,
which means with a reducible aggregation α, the maximum mapper i output size of M R(α) does not overflow MRC memory bound.

(2) We consider the worst case every maximum mapper output is sent to one reducer, then

O = P • Oi. If O is sublinear in n, then M R(α) satisfies MRC reducer space constraints. Total mapper output O = c1n 1-•(|k|+c3n 1-ζ), therefore, lim n→+∞ O n = lim n→+∞ c1|k|+c1c3n 1-ζ n ∵ζ > max(, 1 -), ∴ 1 -ζ -< 0 ∴ lim n→+∞ O n = 0 Therefore, O is sublinear in n.
Finally, with a reducible aggregation α, we have M R(α) satisfies MRC space constraint.

(Necessity) M R(α) is an MRC ⇒ α is reducible. Now we have the condition that M R(α) is an MRC algorithm, and we want to find the bound of ∆(α is reducible). From MRC, we have following two specific conditions, and we need to use them to analyze ∆ with F, ⊕ of α.

1. lim n→+∞ Oi M = 0, 2. lim n→+∞ O n = 0.
From (1) We take the worst case of MRC that every value v at mapper i takes the maximum value of |vmax| bits, then Oi has the maximum size: Oi = |k|+∆(|Xi|max•|vmax|).

We have lim

lim n→+∞ P • Oi n = lim n→+∞ c1n 1-• (|k|+c3n 1-ζ) n = lim n→+∞ c1c3n 1-ζ-= 0 ∴ ζ > 1 -.
Finally, we have the bound of ∆ for the case that M R(α) is an MRC, ∀ > 0,

∆(n 1-) = O(n 1-ζ), ζ > max(, 1 -).

Deriving MRC Algorithm from Algebraic Properties

In this section, we investigate different algebraic properties of aggregation functions leading to the canonical symmetric aggregation. If an aggregation α is in one of the following classes, and α is reducible, then α has an MRC algorithm that can be constructed as illustrated at Table 1.

Associative functions. An aggregate function α is associative [START_REF] Grabisch | Aggregation function: Means[END_REF] if for any multiset X = X1 ∪ X2, α(X) = α (α(X1), α(X2)) .

Associative and symmetric aggregation function can be transformed in a canonical form (F, ⊕, T) defined as follows:

F = α, , ⊕ = α, T = id (1)
where id denotes identity function. If α is reducible, then M R(α) is an MRC algorithm.

Distributive functions. An aggregation α is distributive [START_REF] Gray | Data cube: A relational aggregation operator generalizing group-by, cross-tab, and sub-totals[END_REF] if there exists a combining function C such that α(X, Y) = C(α(X), α(Y)).

Distributive and symmetric aggregation can be rewritten in the canonical symmetric aggregation framework (F, ⊕, T) as following,

F = α, ⊕ = C, T = id. (2)
Similarly, if C is reducible then the corresponding M R(α) is an MRC algorithm.

Commutative semigroup aggregate function. Another kind of aggregate function having the same behavior as symmetric and distributive aggregation is commutative semigroup aggregate function [START_REF] Cohen | Rewriting queries with arbitrary aggregation functions using views[END_REF]. An aggregation α is in this class if there exists a commutative semigroup (H, ⊗), such that

α(X) = x i ∈X α(xi).
The corresponding canonical aggregation (F, ⊕, T) is illustrated as following,

F = α, ⊕ = ⊗, T = id. (3
)
If ⊗ is reducible then M R(α) is an MRC algorithm.

Preassociative and symmetric A more general property than commutative semi-group aggregation is symmetric and preassociative aggregate function. An aggregation α is preassociative [START_REF] Jean-Luc | Preassociative aggregation functions[END_REF] if it satisfies α(Y) = α(Y) =⇒ α(XY Z) = α(XY Z). According to [START_REF] Jean-Luc | Preassociative aggregation functions[END_REF], some symmetric and preassociative (unarily quasi-range-idempotent and continuous) aggregation functions can be constructed as

α(X) = ψ n i=1 ϕ(xi) , n ≥ 1,
where ψ and ϕ are continuous and strictly monotonic function. For instance, α(X) = n i=1 2 • xi, where ψ = id and ϕ(xi) = 2 • xi. A canonical form (F, ⊕, T) for this kind of preassociative aggregation can be defined as follows:

F = ϕ, ⊕ = +, T = ψ. (4)
The corresponding M R(α) is also an MRC algorithm.

Quasi-arithmetic mean An aggregate function α is barycentrically associative [START_REF] Jean-Luc | Strongly barycentrically associative and preassociative functions[END_REF]

α(X) = f -1 1 n n i=1 f (xi) , n ≥ 1,
where f is an unary function and f -1 is a quasi-inverse of f . With different choices of f , α can correspond to different kinds of mean functions, e.g., arithmetic mean, quadratic mean, harmonic mean etc. An immediate canonical form (F, ⊕, T) of such functions is given by:

F = (f, 1), ⊕ = (+, +), T = f -1 (n i=1 f (xi) n). (5
)
The corresponding M R(α) is an MRC algorithm.

ASYMMETRIC AGGREGATION

Many commonly used aggregation function is symmetric(commutative) such that the order of input data can be ignored, while asymmetric aggregation considers the order. Two common asymmetric cases could be weighted aggregation and cumulative aggregation, where aggregated result will be changed if data order is changed, e.g. WMA(weighted moving average) and EMA(exponential moving average) [START_REF]Moving average[END_REF], which are used to highlight trends.

A Generic Form for Asymmetric Aggregation

In contrast to symmetric aggregation, asymmetric function is impossible to rewrite into well-formed aggregation, because translating function F is a tuple at a time function and ⊕ is commutative and hence both of them are insensitive to the order. For this reason, we propose an extended form based on well-formed aggregation which is more suitable for asymmetric aggregation. Definition 2. An asymmetric aggregation α defined on an ordered sequence X is an asymmetric well-formed aggregation if α can be rewritten as following,

α(X) = T (F o (X, x1) ⊕ ... ⊕ F o (X, xn)), (6)
where F o is order-influenced translating function, ⊕ is a commutative and associative binary operation, and T is terminating function.

For instance, α([START_REF] Jean-Luc | Strongly barycentrically associative and preassociative functions[END_REF] with a constant z can be rewritten as

X) = x i ∈ X (1 -z) i-1 xi
F o (X, xi) = (1 -z) i-1 xi, ⊕ = +, T = id, where i is the position of xi in the sequence X.
Asymmetric well-formed aggregation can rewrite any asymmetric aggregation α, and with the associative property of ⊕, α also has a generic MR algorithm M R(α): processing F o and ⊕ at mapper, ⊕ and T at reducer. Similar to the behavior of symmetric well-formed aggregation, reducible property is needed to ensure M RC constraints. The reducible property for asymmetric well-formed aggregation is

∀xi, xi+1 ∈ X : |F o (X, xi) ⊕ F o (X, xi+1)|= O(1).
However, in order to have a correct generic M RC algorithm for asymmetric aggregation, reducible property is not enough, because asymmetric function considers data order such that operations for combining mapper outputs are more than ⊕. We illustrate this problem and identify properties to have correct MRC algorithm for a class of asymmetric well-formed aggregation in the following.

Position-based Aggregation with M RC

We deal with a kind of asymmetric aggregation α called position-based aggregation, for which

F o is F o (X, xi) = h(i) f (xi)
, where h() and f () are unary functions, and is a binary operation. The corresponding asymmetric well-formed framework is α(

X) = T (⊕,x i ∈ X h(i) f (xi)),
where ⊕ is the concatenation of ⊕.

Let X be an ordered sequence X = S1 •...• Sm, where Sl is a subsequence of X, l ∈ {1, ..., m} and • is the concatenation of subsequence, and i be the holistic position of xi in X and j be the relative position of xj in subsequence Sl . Then

⊕ F o (X, xi) of α on any subsequence S l is ⊕,x i ∈ Sl F o (X, xi) = ⊕,x j ∈ Sl h(j + k) f (xi),
where j + k (j + k = i) is the holistic position of the jth element xj in Sl . In order to process α in parallel on these subsequences, the first requirement is to have l, which means in distributed and parallel computing data set is split into ordered chunks and chunk indexes can be stored. It can be trivial implemented in Hadoop [START_REF] Raychev | Parallelizing user-defined aggregaions using symbolic execution[END_REF]. Secondly, k is needed, the number of elements before Sl . Sequentially distributing subsequence count values then starting aggregation is costly due to too many times of data transferring on network. If k can be extracted out of ⊕,x j ∈ Sl h(j +k) f (xi), then α can be processed without distributing counts because operations relating to count can be pushed to reducer. We identify conditions to extract k which we call extractable property.

Lemma 1. Given an ordered sequence X, a position-based asymmetric well-formed aggregation α defined in (F o , ⊕, T) and F o (X, xi) = h(i) f (xi) for any xi ∈ X, where h() and f () are unary functions, is extractable if there exists a binary operation ⊗ making h() satisfy h(i + k) = h(i) ⊗ h(k + c) with a constant c, and ⊕, ⊗ and satisfy one of the following conditions,

• ⊗, and ⊕ are same,

• ⊗ and are same and they are distributive over ⊕,

• ⊗ is distributive over which is same as ⊕.

Proof. Let X be an ordered sequence X = S1 • ... • Sm, and given a position-based aggregation

α(X) = T ⊕,x i ∈ X h(i) f (xi) with order influenced translating function F o (X, xi) = h(i) f (xi), if h() of F o satisfy h(i + k) = h(i) ⊗ h(k + c), then ⊕,x i ∈ Sl F o (X, xi) = ⊕,x j ∈ Sl h(j + k) f (xj) = ⊕,x j ∈ Sl h(j) ⊗ h(k + c) f (xj).
For the three binary operations, if ⊗, and ⊕ are same then,

⊕,x i ∈ Sl F o (X, xi) = ⊕,x j ∈ Sl h(j) f (xj) ⊕ ⊕,x j ∈ Sl h(k+c); (7
) if ⊗ and are same and they are distributive over ⊕, The behavior of h() is similar to group homomorphism (requiring that h(i + k) = h(i) ⊗ h(k)), however they are not exactly same, and our intention is to extract k instead of preserving exact operations.

⊕,x i ∈ Sl F o (X, xi) = ⊕,x j ∈ Sl h(j) f (xj) h(k + c); (8) if ⊗ is distributive over which is same as ⊕, ⊕,x i ∈ Sl F o (X, xi) = h(k+c)⊗ ⊕,x j ∈ Sl h(j) ⊕ ⊕,x j ∈ Sl f (xj) .
Theorem 2. Let α be a position-based well-formed aggregation and M R(α) be the generic algorithm for α, then M R(α) is a MRC algorithm if α is reducible and extractable.

Proof. Similarly to the symmetric well-formed aggregation function, reducible properties ensure M RC space and time complexity. Moreover, the extractable property of position-based aggregation α allows previous subsequence count value 'k' to be extracted out of mapper operation, then α can be correctly processed by ⊕ F o or ⊕ h(j) and ⊕ f (xj) at mapper phrase. To combine mapper output at reducer phrase, more than ⊕ and T are needed and specific additional operation depends on different extractable condition. We provide below the generic algorithms for all the extractable condition.

Given a position-based aggregation α = T

⊕,x i ∈ X h(i) f (xi) , let X = S1 • ... • Sm be input sequence and S l , l ∈ {1, ..., m} be mapper input, if h(i + k) = h(i) ⊗ h(k + c),
• and if ⊗, and ⊕ are same, then α has a generic M R a algorithm with equation (7),

mapper:

OM l = x j ∈S l h(j) f (xj), OM l = count(S l) ,
reducer:

T OM1 ⊕ m ⊕,l=2 OM l ⊕ OM l i=1 h((l-1 j=1 OM j)+c) ;
• and if ⊗ and are same and they are distributive over ⊕, then α has a generic M R a algorithm with equation (8),

mapper:

OM l = x j ∈S l h(j) f (xj), OM l = count(S l) ,
reducer:

T OM1 ⊕ m ⊕,l=2 OM l h((l-1 j=1 OM j) + c) ;
• and if ⊗ is distributive over which is same as ⊕, then α has a generic M R a algorithm with equation (9), mapper:

OM l = x j ∈S l h(j), OM l = x j ∈S l f (xj), OM l = count(S l) ,
reducer:

T OM1 ⊕OM1 ⊕ m ⊕,l=2 h((l-1 j=1 OM j)+c)⊗OM l ⊕OM l .
EMA example Given an input sequence X = (x1, ..., xn),

then EM A(X) = n i=1 (1 -a) i-1 • xi n i=1 (1 -a) i-1
, where a is a constant between 0 and 1. We give below the asymmetric well-formed aggregation of EM A, where h

(i) = (1 -a) i-1 , F o : F o (X, xi) = h(i) • xi, h(i) , ⊕ : h(i) • xi, h(i) ⊕ h(i + 1) • xi+1, h(i + 1) = h(i) • xi + h(i + 1) • xi+1, h(i) + h(i + 1) , T : T (n i=1 h(i) • xi, n i=1 h(i)) = n i=1 h(i) • xi n i=1 h(i)
.

It is clearly that EMA is a position-based aggregation, and EMA is reducible because ⊕ is a pair of addition. Moreover h() satisfies h(i + k) = h(i) • h(k + 1), and the corresponding three binary operations ⊗ = •, = •, ⊕ = + satisfy the second extractable condition. Therefore EMA has a MRC algorithm(the generic MRC algorithm for the second extractable condition) illustrated as following, where we assume input sequence X = S1 • ... • Sm and mapper input is S l , l ∈ {1, ..., m}, and count(S0) = 0,

• mapper: OM l = x j ∈S l h(j)•xj, OM l = x j ∈S l h(j), OM l = count(S l) ,

• reducer:

CONCLUSION AND FUTURE WORK

In this work, we studied how to map aggregation functions, in a systematic way, into generic M RC algorithms and we identified properties that enable to efficiently execute symmetric and asymmetric aggregations using MapReducestyle platforms. For symmetric aggregation, we proposed the reducible property within well-formed aggregation framework to satisfy space and time complexity of M RC. Several algebraic properties of symmetric aggregation leading to a generic M RC algorithm have been identified. Moreover, we extended the notion of well-formed aggregation to asymmetric aggregation and showed how it can be exploited to deal with position-based asymmetric aggregation. Through identifying the problem for parallelizing it, we proposed extractable property and merged it with the reducible property of asymmetric well-formed aggregation to have M RC algorithms.

Our future work will be devoted to the implementation and experimentation. We will study the extension of our framework to mainstream parallel computing platforms (e.g. Apache Spark). Moreover, we also plan to extend our framework to cover additional classes of asymmetric aggregations. Finally, we plan to investigate how to generalize our approach to nested aggregation functions (i.e., functions defined as a complex composition of aggregation functions).

Figure 1 :

 1 Figure 1: MapReduce flowchart with MRC constraints

From (2)

 2 that ∀ > 0, M = O(n 1-) or M = c2n 1-, and |Xi|max•|vmax|= M then we build the worst case of ∆(|Xi|•|vmax|) as following ∆(n 1-) = O(n 1-ζ), ζ > . Also, we have the maximum Oi as following, Oi = |k|+c3n 1-ζ . We take the worst case of MRC that every mapper output is sent to one reducer, then O should satisfy lim n→+∞ O n = 0 (from MRC memory bound of sublinear in n).

 if it satisfies α(XY Z) = α(Xα(Y) |Y | Z), where |Y | denotes the number of elements contained in multiset Y and α(Y) |Y | denotes |Y | occurrences of α(Y). A well-known class of symmetric and barycentrically associative aggregation is quasi-arithmetic mean:

(9)

 9 With the above conditions, h(k + c) can be extracted out of F o .

This definition has been improved to have precise results. Our previous results considers number of elements as basic unit, while current results are based on the length of input values.