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ABSTRACT
Applications of aggregation for information summary have
great meanings in various fields. In big data era, processing
aggregate function in parallel is drawing researchers’ atten-
tion. The aim of our work is to propose a generic frame-
work that enables to map an aggregation function into an
efficient massively parallel algorithm that can be executed
on modern large-scale data-processing systems. We describe
our preliminary results regarding classes of symmetric and
asymmetric aggregation functions that can be mapped, in a
systematic way, into efficient MapReduce algorithms.

1. INTRODUCTION
The ability of summarizing information is drawing in-

creasing attention for information analysis [11, 6]. Simul-
taneously, under the progress of data explosive growth pro-
cessing aggregate function has to experience a transition to
massively distributed and parallel framework, e.g. Hadoop,
Spark, Flink etc. Therefor aggregation function requires a
decomposition approach in order to execute in parallel due
to its inherently property of taking several values as input
and generating a single value based on a certain criteria. De-
composable aggregation function can be processed in a way
that computing partial aggregation and then merge them at
last to obtain final result.

Decomposition of aggregation function is a long standing
research problem that has been addressed in various fields.
In distributed computing frameworks like Hadoop, decom-
posability of aggregate function can push aggregation before
shuffle phase [17, 3]. This is usually called initial reduce,
with which the size of data transmission on network can be
substantially reduced. For wireless sensor network, the need
to reduce data transmission is more necessary because of
limitation of power supply [15]. In online analytical process-
ing (OLAP), decomposability of aggregate function enables
aggregation across multi-dimensions, such that aggregation
queries can be executed on pre-computation results instead
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of base data to accelerate query answering [8]. An impor-
tant point of query optimization in relational database is to
reduce table size for join [10], and decomposable aggregation
brings interests [4].

When an aggregation function is decomposable, how to de-
compose it and when a decomposition is ’efficient’ is a hard
nut to crack. Previous works identify interesting properties
for decomposable aggregation. A very relevant classification
of aggregation functions, introduced in [11], is based on the
size of sub-aggregation (i.e., partial aggregation). This clas-
sification distinguishes between distributive and algebraic
aggregation having sub-aggregate with fixed sizes, and holis-
tic functions where there is no constant bound on the stor-
age size of subaggregate. Some algebraic properties, such
as associativity and commutativity, are identified as suffi-
cient conditions for decomposing aggregation [17, 3]. Com-
pared to these researches, our work provides a generic frame-
work to identify and process any symmetric aggregation in
parallel and generates the corresponding generic algorithm.
Moreover, all but few work in the literature consider sym-
metric functions. Asymmetric aggregation are inherently
non-commutative functions and this makes their processing
in parallel and distributed environment far from being easy.
In [16], a symbolic parallel engine (SYMPLE) is proposed in
order to automatically parallelize User Defined Aggregations
(UDAs) that are not necessarily commutative. Although in-
teresting, the proposed framework lacks of genericity in the
sense that it is up to the user to encode a function as SYM-
PLE UDA. Moreover, symbolic execution may have path
explosion problem.

My research focuses on designing generic framework that
enables to map symmetric and asymmetric aggregation func-
tions into an efficient massively parallel algorithm. To achieve
this goal, we firstly identify a computation model and an
associated cost model to design and evaluate parallel algo-
rithms. We consider MapReduce-like (MR) framework and
use the MRC [12] cost model to define ’efficient’ MR al-
gorithms. We rest on the notion of well-formed aggregation
[4] as a canonical form to write symmetric aggregation and
provide a simple and systematic way to map well-formed ag-
gregation function α into a MR algorithm, noted by MR(α).
Moreover we provide reducible properties to identify when
the generated MR(α) is efficient (when MR(α) is a MRC
algorithm). Then we extend our framework to a class of
asymmetric aggregation functions, position-based aggrega-
tion, and propose extractable property to have genericMRC
algorithm. Our main results are theorem 1 and theorem 2,
proofs for which are illustrated in an extended report[1].
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Figure 1: MapReduce flowchart with MRC con-
straints

2. MRC ALGORITHM
Several research works concentrate on complexity of par-

allel algorithm. MUD [7] algorithm was proposed to trans-
form a symmetric streaming algorithm to a parallel algo-
rithm with nice bounds in terms of communication and space
complexity, but without any bound on the time complexity.
This disqualifies MUD as a possible candidate cost model to
be used in our context. MRC [12] is another popular frame-
work that has been used to evaluate whether a MapeReduce
algorithm is efficient. The constraints enforced by MRC
w.r.t. to total input data size can be summarized as follow-
ing: sublinear number of total computing nodes, sublinear
space for any mapper or reducer, polynomial time for any
mapper or reducer, and logarithm round number. We illus-
trate these constraints besides round number in a simplified
MapReduce flowchart in figure 1 where ε > 0.

Hence, the MRC model considers necessary parameters
for parallel computing, communication time, computation
space and computing time, and makes more realistic as-
sumptions. A MapReduce algorithm satisfying these con-
straints is considered as an efficient parallel algorithm and
will be called hereafter a MRC algorithm.

3. SYMMETRIC AGGREGATION WITHMRC

Definition(Symmetric Aggregation) [9]: An aggregation α
is symmetric if α(X) = α(σ(X)) for any X = {x1, . . . , xn} ⊆
I and any permutation σ, where σ(X) = (xσ(1), ..., xσ(n)).

Symmetric aggregation result does not depend on the or-
der of input data. In this section, we define a generic frame-
work to map symmetric aggregation into a MRC algorithm.

3.1 A Generic Form for Symmetric Aggrega-
tions

To define our generic aggregation framework, we rest on
the notion of well-formed aggregation [4]. A symmetric ag-
gregation α defined on a set of values {d1, . . . , dn} can be
written in well-formed aggregation as following:

α(d1, . . . , dn) = T (F (d1)⊕ . . .⊕ F (dn)),

where F is translating function(tuple at a time), ⊕ is a
commutative and associative binary operation, and T is ter-
minating function. Average can be easily transformed in
well-formed aggregation as follows: F (d) = (d, 1), (d, k) ⊕
(d′, k′) = (d+d′, k+k′) and T ((d, n)) =

d

n
. It is worth noting

that, any aggregate function can be rewritten in well-formed
aggregation due to a flexible choice of ⊕, e.g ⊕ = ∪.

Well-formed aggregation provides a generic plan for pro-
cessing aggregate function in distributed architecture based

Table 1: MR(α): a generic MR aggregation algo-
rithm

operation
mapper

∑
⊕,j F (dj)

reducer T (
∑
⊕,i oi)

on the associative and commutative property of ⊕: pro-
cessing F and ⊕ at mapper, ⊕ and T at reducer. Table
1 depicts the corresponding generic MapReduce(MR) algo-
rithm, noted by MR(α), where mapper input mapper is d
and mapper output is ooutput, and

∑
⊕ as concatenation of

⊕.
However, the obtained MR(α) are not necessarily an effi-

cient MapReduce algorithm. We identify when MR(α) is a
MRC algorithm using reducibility property of well-formed
aggregation.

Definition 1. An aggregation function α is reducible if a
well-formed aggregation (F,⊕, T ) of α satisfies

∀di, dj ∈ I : |F (di)⊕ F (dj)|= O(1).

With this reducible property, we provide a theorem iden-
tifying when a symmetric aggregation can be mapped into
MRC algorithm.

Theorem 1. Let α be a symmetric well-formed aggrega-
tion and MR(α) be the generic algorithm for α, then MR(α)
is a MRC algorithm if and only if α is reducible.

Proof. Firstly we prove reducible condition is equiva-
lent to MRC space constraints. (Necessity) The worst case
is that n copies of the same input, such that all outputs of
mappers are transferred into one reducer, therefor machine
number multiplies mapper output should be no bigger than
reducer memory. Because MRC considers Θ(n1−ε) ma-
chines and O(n1−ε) reducer memory, mapper output should
be no bigger than O(1). MR(α) has operations F and
⊕ at mapper, then α is reducible. (Sufficiency) If α is
reducible, then it is trivial to see that mapper output of
MR(α) is O(1), such that Θ(n1−ε) machines multiplying
O(1) mapper output O(n1−ε) is not bigger than O(n1−ε) re-
ducer memory, then reducibleMR(α) satisfying MRC space
constraints. Time complexity of MR(α) at mapper phrase
is O(n) because translating function F is a tuple-at-a-time
function and ⊕ takes every output of F . At reducer phrase,
⊕ combines results of constant size from sublinear number
of mappers and T terminates aggregating, therefore reducer
time complexity is O(n1−ε). MR(α) satisfies MRC time
complexity constraint which is polynomial in n.

3.2 Deriving MRC Algorithm from Algebraic
Properties

In this section, we investigate several symmetric aggrega-
tion properties satisfying our theorem 1. If an aggregation
α is in one of the following class, then α has a MRC(α)
algorithm illustrated in table 1.

An aggregate function α is associative [9] if for set X =
X1 ∪ X2, α(X) = α (α(X1), α(X2)) . Associative aggrega-
tion function can be transformed in well-formed aggregation
(F,⊕, T ) as following,

F = α, ,⊕ = α, T = id (1)
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where id denotes identity function. α is reducible because it
is an aggregation. Therefore MR(α) of associative aggrega-
tion α is a MRC algorithm.�

An aggregation α is distributive [11] if there exists a
combining function C such that α(X,Y ) = C(α(X), α(Y )).
Distributive aggregation can be rewritten in well-formed ag-
gregation (F,⊕, T ) as following,

F = α, ⊕ = C, T = id. (2)

Similarly, α is reducible and correspondingMR(α) is aMRC
algorithm.�

Another kind of aggregate function having the same be-
havior as distributive aggregation is commutative semi-
group aggregate function [5]. An aggregation α is in this
class if there exists a commutative semi-group (H,⊗), such
that α(X) =

⊗
xi∈X α(xi). The corresponding well-formed

aggregation (F,⊕, T ) is illustrated as following,

F = α, ⊕ = ⊗, T = id. (3)

It is clearly that α is reducible and MR(α) is a MRC
algorithm.�

A more general property than distributive or commutative
semi-group aggregation is preassociative aggregate function.
An aggregate function α is preassociative [13] if it satis-
fies α(Y ) = α(Y ′) =⇒ α(XY Z) = α(XY ′Z). Accord-
ing to a theorem in [13], many of preassociative aggrega-
tion functions(unarily quasi-range-idempotent and contin-
uous and one to one function for the unary and binary
part of the aggregation) can be constructed as following,
α(X) = ψ

(∑n
i=1 ϕ(xi)

)
, n ≥ 1, where ψ and ϕ are con-

tinuous and strictly monotonic function. The well-formed
aggregation (F,⊕, T ) for this kind of preassociative aggre-
gation is illustrated as following

F = ϕ, ⊕ = +, T = ψ. (4)

The corresponding MR(α) is also a MRC algorithm.
�
All the above aggregate functions have a common char-

acteristic that the output of translating function F is one
element, in the following we introduce an aggregation with
F having a pair output.

An aggregate function α is barycentrically associative [14]

if it satisfies α(XY Z) = α(Xα(Y )|Y |Z), where |Y | denotes

the number of elements contained in set Y and α(Y )|Y | de-
notes |Y | occurrences of α(Y ). A well-known class of this
kind of aggregate function is quasi-arithmetic mean hav-

ing the following form α(X) = f−1

(
1

n

∑n
i=1 f(xi)

)
, n ≥ 1,

where f is an unary function and f−1 is a quasi-inverse of f .
With different choices of f , α can be different kinds of mean
functions, e.g arithmetic mean, quadratic mean, harmonic
mean etc. It is trivial to rewrite this kind of aggregation to
well-formed aggregation (F,⊕, T ) and the MR(α) is also a
MRC algorithm,

F = (f, 1), ⊕ = (+,+), T = f−1(

∑n
i=1 f(xi)

n
). (5)

4. ASYMMETRIC AGGREGATION WITH
MRC

Many commonly used aggregation function is symmet-
ric(commutative) such that order of data can be ignored,

while asymmetric aggregation function considers the order.
Two common asymmetric cases could be weighted aggre-
gation and cumulative aggregation, where aggregated re-
sult will be changed if data order is changed. For exam-
ple, WMA(weighted moving average) and EMA(exponential
moving average)[2], which are used to highlight trends, have
different weights such that order of data can not be changed.

4.1 A Generic Form for Asymmetric Aggre-
gation

In contrast to symmetric aggregation, asymmetric func-
tion is impossible to rewrite into well-formed aggregation,
because translating function F is a tuple at a time function
and ⊕ is commutative and hence both functions are insen-
sitive to the order. For this reason, we propose an extended
form based on well-formed aggregation which is more suit-
able for asymmetric aggregation.

Definition 2. An asymmetric aggregation α defined on
an ordered sequence X̄ is an asymmetric well-formed aggre-
gation if α can be rewritten as following,

α(X̄) = T (F o(X̄, x1)⊕ ...⊕ F o(X̄, xn)), (6)

where F o is order-influenced translating function, ⊕ is a
commutative and associative binary operation, and T is ter-
minating function.

For instance, α(X̄) =
∑
xi∈X̄(1− z)i−1xi[14] with a con-

stant z can be rewritten as F o(X̄, xi) = (1 − z)i−1xi, ⊕ =
+, T = id, where i is the position of xi in the sequence X̄.

Asymmetric well-formed aggregation can rewrite any asym-
metric aggregation α, and with the associative property of
⊕, α also has a generic MR algorithm MR(α): processing
F o and ⊕ at mapper, ⊕ and T at reducer. Similar to the
behavior of symmetric well-formed aggregation, reducible
property is needed to ensure MRC constraints. The re-
ducible property for asymmetric well-formed aggregation is

∀xi, xj ∈ X̄ : |F o(X̄, xi)⊕ F o(X̄, xj)|= O(1).

However, in order to have a correct generic MRC algo-
rithm for asymmetric aggregation, reducible property is not
enough, because asymmetric function considers data order
such that operations for combining mapper outputs are more
than ⊕, otherwise the aggregated result will not be cor-
rect. We illustrate this problem and identify properties to
have correct MRC algorithm for a class of asymmetric well-
formed aggregation in the following subsection.

4.2 Position-based Aggregation with MRC

We deal with a kind of asymmetric aggregation α called
position-based aggregation, for which the F o is F o(X̄, xi) =
h(i) � f(xi), where h() is an unary function on i, and �
is a binary operation. The corresponding asymmetric well-
formed framework is α(X̄) = T (

∑
⊕,xi∈X̄ h(i)�f(xi)), where∑

⊕ is the concatenation of ⊕.

Let X̄ be an ordered sequence X̄ = S̄1 ◦ ... ◦ S̄m, where
S̄l is a subsequence of X̄, l ∈ {1, ...,m} and ◦ is concate-
nation of sequence, and i be the holistic position number in
X̄ and j be the relative position in subsequence S̄l. Then∑
⊕ F

o of α on any subsequence Sl is
∑
⊕,xj∈S̄l

F o(xj) =∑
⊕,xj∈S̄l

h(j+k)�f(xi), where j+k (j+k = i) is the holis-

tic position of the jth element xj in S̄l. In order to process α
in parallel on these subsequences, the first requirement is to
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have l, which means in Hadoop data set is split into ordered
chunks and chunk numbers can be remembered. It is trivial
to implement this[16]. Secondly, k is needed, the number
of elements before S̄l. However, sequentially distributing
subsequence count value then starting aggregation is costly
due to too many times of data transferring on network. If
k can be extracted out of

∑
⊕,xj∈S̄l

h(j + k)� f(xi), α can

be processed without distributing counts because operations
relating to counts can be pushed to reducer. We identify
conditions to extract k which we call extractable property.

Lemma 1. Given an ordered sequence X̄, a position-based
asymmetric well-formed aggregation α defined in (F o,⊕, T )
and F o(X̄, (xi)) = h(i) � f(xi) for any xi ∈ X̄, where h()
and f() are unary functions, is extractable if there exists
a binary operation ⊗ making h() satisfy h(i + k) = h(i) ⊗
h(k+ c) where c is a constant, and ⊕, ⊗ and � satisfy one
of the following conditions,

• ⊗, � and ⊕ are same,

• ⊗ and � are same and they are distributive over ⊕,

• ⊗ is distributive over � which is same as ⊕.

The behavior of h() is similar to group homomorphism
however they are not exactly same, and our intention is to
extract k instead of preserving the exact operation.

Theorem 2. Let α be a position-based well-formed ag-
gregation and MR(α) be the generic algorithm for α, then
MR(α) is a MRC algorithm if α is reducible and extractable.

Extractable property of position-based aggregation α al-
lows previous subsequence count value ’k’ to be extracted
out of mapper operation, then α can be correctly processed
by
∑
⊕ F

o at mapper phrase. To combine mapper output
at reducer phrase, more than ⊕ and T are needed and spe-
cific additional operation depends on different extractable
condition.

Proof. Similarly to symmetric well-formed aggregation
function, reducible properties ensures MRC space and time
complexity. Moreover, extractable property of position-based
aggregation α allows previous subsequence count value ’k’
to be extracted out of mapper operation, then α can be cor-
rectly processed by

∑
⊕ F

o at mapper phrase. To combine
mapper output at reducer phrase, more than ⊕ and T are
needed and specific additional operation depends on differ-
ent extractable condition.

We take EMA as an example and illustrate that it is a
position-based aggregation with a MRC algorithm. Given
an input sequence X̄ = {x1, ..., xn} and assuming x1 is the
most recent data, then EMA has the formula, EMA(X̄) =∑n

i=1(1− a)i−1 · xi∑n
i=1(1− a)i−1

, where a is a constant between 0 and 1.

The asymmetric well-formed aggregation of EMA is illus-
trated as following,

F o : F o(X̄, xi) = {h(i) · xi, h(i)},
⊕ : {h(i) · xi, h(i)} ⊕ {h(i+ 1) · xi+1, h(i+ 1)}

= {h(i) · xi + h(i+ 1) · xi+1, h(i) + h(i+ 1)},

T : T (

n∑
i=1

h(i) · xi,
n∑
i=1

h(i)) =

∑n
i=1 h(i) · xi∑n
i=1 h(i)

,

where h(i) = (1−a)i−1. It is clearly that EMA is a position-
based aggregation, and also EMA is reducible because ⊕ is

a pair of addition. Moreover h(i + k) = h(i) · (1 − a)k,
and the three binary operations ⊗ = ·, � = ·, ⊕ = + sat-
isfy the second extractable condition. Therefor EMA has
a MRC algorithm( the generic MRC algorithm for the sec-
ond extractable condition) illustrated as following where we
assume input sequence X̄ = S̄1◦...◦S̄m and one mapper pro-
cesses one subsequence Sl, l ∈ {1, ...,m}, and count(S0) = 0

• mapper: (OM
′
l =

∑
xj∈Sl

h(j)·xj , OM
′′
l =

∑
xj∈Sl

h(j),

OM
′′′
l = count(Sl) ),

• reducer:

∑m
l=1 OMl

′ · (1− a)
∑l−1

j=0 OM
′′′
j∑m

l=1 OM
′′
l · (1− a)

∑l−1
j=0 OMj

′′′
.

5. CONCLUSION AND FUTURE WORK
In this work, we studied how to map aggregation functions

in a systematic way into generic MRC algorithm and we
identified sufficient properties that enable to efficiently exe-
cute symmetric and asymmetric aggregations using MapRe-
duce style framework. For symmetric aggregation, we pro-
posed reducible property of well-formed aggregation to sat-
isfy space and time complexity constraint of MRC. Sev-
eral symmetric aggregation properties leading to an effi-
cient MR(α) have been identified. Moreover, we extended
the notion of well-formed aggregation to asymmetric aggre-
gation and showed how it can be exploited to deal with
position-based asymmetric aggregation. Through identify-
ing the problem for parallelizing it, we proposed extractable
property and merged it with the similar reducible property
to have MRC algorithm for asymmetric aggregation.

Our future work will be devoted to the implementation
and experimentation. We will study the extension of our
framework to mainstream parallel computing paradigm (e.g.,
Apache Spark). Moreover, we also plan to extend our frame-
work to cover additional classes of asymmetric aggregations.
Finally, we plan to investigate how to generalize our ap-
proach to nested aggregation functions (i.e., functions de-
fined as complex composition of aggregation functions).
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