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Abstract—In networks that operate during a long time, the
routing protocol might have to be changed: this is the case
when the network administrator plans a router change. Loop-
free transition algorithms are used to ensure that there is no loop
during the migration from the initial routing protocol to the final
routing protocol. In this paper, we propose a distributed loop-free
transition algorithm, called DLF (distributed loop-free heuristic).
The algorithm is based on the fact that routing loops resulting
from the removal of a node are localized, and can be detected
efficiently. We show through simulations that DLF compares well
with the existing centralized algorithms, and outperforms the
existing distributed algorithm, in terms of migration duration.

I. INTRODUCTION

In computer networks that have a long lifetime, the routing

protocol may have to be changed without service interruption.

This is the case when a security update of a routing protocol

appears [1], when significant modifications of the topology or

link metrics have to be taken into account [2], [3], [4], or

to handle the apparition of urgent traffic in a wireless sensor

network designed for energy efficiency [5]. Another example

is when a change of router is planned: link metrics around

the router can be increased until no route traverses these links

anymore; then, the router can be safely removed [6].

Migrating from an initial routing protocol to a final routing

protocol, without causing any loops is a complex task. Several

heuristics have been proposed for this task. Currently, all

heuristics are centralized. The centralized entity knows the

whole topology and both routing protocols, and computes a

sequence of steps called transition. In each step, some routers

migrate from the initial routing protocol to the final routing

protocol, in arbitrary order. The main goal of these heuristics

is to reduce the number of steps of the transition, in order to

shorten the migration.

In this paper, we propose a distributed heuristic called DLF

(distributed loop-free heuristic) in order to achieve this task.

DLF is specifically designed to handle the change of a single

router. It is based on a mechanism that simultaneously allows

for an efficient loop detection and a mechanism to solve

them. It requires a limited control overhead (approximately

two messages per router and per destination) and allows fast

migrations.

The remainder of the paper is organized as follows. Sec-

tion II describes relevant research works of the literature, and

presents all heuristics exhaustively, to the best of our knowl-

edge. Section III presents in details our proposed heuristic

DLF, first for one destination, and then for several destinations.

Then, we discuss how DLF can be used to cope with router

failures, rather than with a carefully planned router removal.

Section IV compares the performance results of DLF with the

other heuristics. Finally, Section V concludes our work.

II. RELATED WORK ON LOOP-FREE TRANSITION

In this section, we give details about heuristics that are

used to remove transient routing loops from the network.

These heuristics are centralized and we classify them into three

categories.

A. Heuristics based on the final routing protocol

RTH (routing tree heuristic) [7] is the first protocol that

allows a router to be removed without creating transient

routing loops. RTH is centralized. It performs a pre-processing

in which nodes that have the same next-hop on both routing

protocols migrate immediately. Then, RTH states that a node is

allowed to migrate to the new routing protocol when all its suc-

cessors on the path to the destination have already migrated.

RTH builds a constraint graph based on these constraints, and

a topological sort produces the transition order.

Let us consider the example shown on Fig. 1. All nodes

route packets toward the destination node 10, represented

by a double-circle, using the initial routing protocol Ri,

represented by solid lines. Ri is computed based on the

shortest-path algorithm from each node to the destination

by using real link costs. We consider that node 5 fails.

Thus, nodes recompute similarly the final routing proto-

col Rf , represented by dashed lines, without considering

the node 5. Note that if node 1 migrates before node 8,

or if node 7 migrates before node 1, a transient rout-

ing loop occurs. RTH produces the following transition:

({4}, {5}, {10}, {6}, {9}, {8}, {2}, {1}, {3}, {7}, {0}). Note

that in this transition, node 8 migrates before node 1, and

node 1 migrates before node 7.

RTH-p (RTH with parallel changes) [8] is an improvement

of RTH where some nodes can migrate in parallel. More

precisely, nodes are regrouped into steps: nodes of the same

step can migrate in arbitrary order, but all nodes of a given

step have to migrate before that nodes of the next step start

migrating. The main goal of RTH-p is to reduce the length

of the transition (in terms of number of steps), and thus, to

accelerate the migration.

On the example of Figure 1, RTH-p produces a transition

of three steps: ({2, 4, 5, 6, 8, 9, 10}, {1}, {0, 3, 7}).
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Figure 1. Routing entries for the Sprint topology, for destination 10. Solid
lines represent the initial routing protocol Ri, and dashed lines represent the
final routing protocol Rf , where node 5 is removed.

Let us denote by RTH-d (distributed RTH) a modification of

RTH-p which allows the heuristic to be distributed. In RTH-

d, there is no pre-processing (unlike RTH and RTH-p). The

resulting constraints become simple: nodes migrate according

to their depth on the tree of the final routing protocol.

On the example of Fig. 1, RTH-d produces a transition of

five steps: ({5, 6, 9, 10}, {2, 8}, {1}, {0, 3, 7}, {4}).

B. Heuristics based on weight increments

GBA (greedy backward algorithm) [6] computes a sequence

of weight increments to be applied around the node to be

removed. GBA builds a set of constraints for each possible

loop, in order to ensure that one node of the loop migrates

before the other. The overall sequence is built greedily from

the constraints. Authors tested GBA on realistic topologies.

They proved that removing a node from the realistic topologies

computes transient routing loops of size 2 nodes per loop.

On the example of Fig. 1, GBA identifies loops {1, 7} and

{1, 8} for destination 10. It produces a sequence of weight

increments, which we translate into a transition of three steps:

({2, 4, 5, 6, 8, 9, 10}, {1}, {0, 3, 7}). Note that, to remove the

existing transient routing loops, node 8 migrates before node

1, and node 1 migrates before node 7.

AGBA (adjusted GBA) [6] was proposed to avoid interme-

diate forwarding loops, which might occur when applying the

weight increments, if nodes do not migrate temporarily to a

next-hop which is neither on the initial routing protocol Ri,

nor on the final routing protocol Rf . In this paper, we decided

to focus on GBA, since GBA produces smaller sequences of

weight increments than AGBA, and since our algorithm that

transforms sequences of weight increments into transitions

avoids intermediate forwarding loops.

C. Heuristics based on strongly connected components

SCH-p (strongly connected components heuristic with par-

allel changes) [8] and ACH (avoiding cycles heuristic) [9]

are both centralized heuristics based on strongly connected

components. They both identify loops by computing strongly

connected components in the graph having links of the two

routing protocols. In each strongly connected components of

two nodes or more, they determine which nodes can migrate

first. To do so, SCH-p uses a greedy algorithm, and ACH uses

an exhaustive enumeration of all loops.

On the example of Figure 1, SCH-p produces the following

transition: ({0, 2, 3, 4, 5, 6, 8, 9, 10}, {1}, {7}).
The management of multiple destinations is also different in

SCH-p and ACH. In SCH-p, the transition for all destinations

is equal to the concatenation of the transitions of each destina-

tion. In ACH, the transition for all destinations is equal to the

merge of the transitions of each destination: the i-th step of the

transition for all destinations is equal to the union of the i-th

step of each destination. In this paper, we decided to focus on

SCH-p, since the running time of ACH is greatly impacted by

the number of loops. We also decided to implement in SCH-p

the merging of steps proposed in ACH. With this improvement,

SCH-p and ACH yield similar results in terms of number of

steps on realistic topologies.

III. PROPOSITION: DISTRIBUTED LOOP-FREE HEURISTIC

We propose a distributed heuristic, called DLF (distributed

loop-free heuristic), to perform a fast loop-free transition in

the case of the removal of a node (as in GBA and AGBA). In

Subsection III-A and Subsection III-B, we assume that both

initial and final routing protocols, Ri and Rf , are known in

advance, for each node. In Subsection III-C, we explain a

more realistic setting where the final routing protocol Rf is

known only by nodes that have been previously informed of

the topology changes.

A. DLF for one destination

DLF exploits the property that in real topologies, when

a single node is removed, all loops produced between the

initial and the final routing protocols, Ri and Rf , have a

size of 2 [6] (both GBA and AGBA are largely based on

this property too). On each loop, both routing protocols are

necessarily involved (as each routing protocol is loop-free

when considered independently). Detecting all loops starting

from node n becomes simple: a node n is on a loop if and only

if Ri(Rf (n)) = n or if Rf (Ri(n)) = n. Resolving a loop

(x, y) requires the node closest to the destination on Rf to

perform the transition before the other node. In other words,

if Rf (x) = y, it means that y is closer to the destination

than x according to Rf , thus y has to switch to Rf before x.

Otherwise (if Rf (x) 6= y), x has to switch before y.

Algorithm 1 describes the DLF heuristic. Initially, n sends

a control message checkingLoop1 to Rf (n) and waits

for a reply: if Rf (n) detects that Ri(Rf (n)) = n, it sends

a loopDetected1 message to n, otherwise, it sends a

noLoop1 message. If Ri(Rf (n)) 6= n or if the loop was

resolved (see later), n determines whether Rf (Ri(n)) = n

or not by sending a checkingLoop2 control message to

Ri(n) and waiting for either a loopDetected2 message

or a noLoop2 message. If n is on a loop with node Ri(n), n
can migrate directly as it is closest to the destination according

to Rf than Ri(n) (indeed, the next-hop of Ri(n) on Rf is



n). After its migration, node n has to inform Ri(n) with a

loopSolved message. If n is not on a loop with node Ri(n),
n can migrate directly and does not have to inform any node.

The whole process requires four control messages by node,

and one additional control message for each loop.

Algorithm 1: Distributed loop-free heuristic.

Data: n is the current node, Ri and Rf are known a

priori by all nodes

if Ri(Rf (n)) = n then
n waits for Rf (n)

end

if Rf (Ri(n)) = n then
n migrates to Rf

n informs Ri(n) of the migration
else

n migrates to Rf

end

Let us consider the example of Fig. 1, where node 5 is

removed. To simplify the explanation, we consider here that

nodes in DLF migrate in steps. The next step is initiated when

all nodes have either migrated or are waiting for another node.

There are two loops on Fig. 1: one between nodes 1 and 8,

and one between nodes 1 and 7. Ri(Rf (1)) = Ri(8) = 1,

thus node 1 has to wait for node 8 to migrate. Ri(Rf (7)) =
Ri(1) = 7, thus node 7 has to wait for node 1 to migrate.

Ri(Rf (8)) = Ri(9) = 10 6= 8 and Rf (Ri(8)) = Rf (1) = 8,

thus node 8 migrates immediately, and will inform node 1 that

it can migrate with a loopSolved message. Thus, the first

step is equal to {0, 2, 3, 4, 5, 6, 8, 9, 10}. During the second

step, node 1 receives the loopSolved message from 8. Since

Rf (Ri(1)) = Rf (7) = 1, node 1 migrates immediately,

and will inform node 7 that it can migrate with another

loopSolved message. Thus, the second step is equal to {1}.

During the third step, since Rf (Ri(7)) = Rf (5) = 5 6= 7,

node 7 migrates immediately without informing any node.

Thus, the third step is equal to {7}.

The number of control messages can be further re-

duced, as there is no need to send the checkingLoop2,

loopDetected2 and noLoop2 control message. Indeed,

when a loop is detected by Rf (n) due to the reception of a

checkingLoop1 control message, node Rf (n) stores that

it will have to inform node n after its own migration. This

new protocol requires two control messages by node (in order

to detect loops), and one additional control message for each

loop (in order to resolve loops).

B. DLF for multiple destinations

When there are multiple destinations, DLF processes each

destination in parallel. In terms of steps (which allows a sim-

plified explanation for distributed protocols), this corresponds

to merging the steps for all destinations. Let us denote by

step(i, j) the set of nodes of the i-th step of DLF for the single

destination j. Then, the i-th step of DLF for all destinations is

equal to ∪d
j=1

step(i, j), where d is the number of destinations.

C. Discussion on topology change notification

In Subsect. III-A and Subsect. III-B, we considered the

same parameters settings used in [6] in order to perform a fair

comparison: we considered that each node knows in advance

its next-hop according to the initial routing protocol, Ri, and

according to the final routing protocol, Rf .

In this subsection, we discuss how this assumption can

be removed. Thus, we assume that all nodes know only Ri

initially. When a router fails, the neighboring nodes detect

this failure and have to inform all the other nodes of the

network. DLF can be adapted for this setting in the following

manner. When a node n detects the failure of its direct

neighbor, it recomputes the new shortest path to the desti-

nation (that is, Rf (n)). Then, it sends the checkingLoop1

control message to Rf (n). If the new next-hop replies by

a noLoop1 message control, then node n can migrate im-

mediately. Otherwise, node n delays its migration until it

receives a loopSolved control message from Rf (n). In the

meanwhile, n informs its own neighbor of the failure of the

router.

Let us consider the example of Fig. 1 where node 5

fails. Initially, the neighbors of node 5, represented by the

set {3, 6, 7, 9}, notice the link failure with 5. Nodes from

{3, 5, 6, 7, 9} are thus informed of the failure, and know both

Ri and Rf . Fig. 2 shows in gray these nodes. These nodes

execute the DLF heuristic, and nodes 3, 6 and 9 are able to

migrate to Rf . However, node 7 is unable to migrate because

it receives a loopDetected1 message from Rf (7) = 1.

On the figure, it can be seen that among the informed nodes,

only node 7 is still on Ri. Fig. 3 shows the situation when

all nodes are informed about the failure. Only nodes that are

waiting for a loopSolved message are still on Ri. On the

example, this is the case for nodes 1 and 7. As soon as node

8 informs node 1 with the loopSolved message, node 1

will migrate to Rf (its next-hop becoming node 8) and will

inform node 7. Then, node 7 will migrate to Rf (its next-hop

becoming node 1).

IV. SIMULATION RESULTS

In this section, we compare the performance of our propo-

sition DLF with the performance of RTH-d, GBA and SCH-p.

Recall that only DLF and RTH-d are distributed, while GBA

and SCH-p (as well as RTH, RTH-p, AGBA and ACH, which

are not shown here) are centralized.

A. Performance metrics

Our main performance metric is the duration of the migra-

tion. For centralized heuristics, this is defined as the number of

steps of the transition. For distributed heuristics, as mentioned

previously, we consider that all nodes that can migrate without

waiting for other nodes do so during the same step; when a

node n is waiting for a node n′, they migrate in two different

steps.

We also compute the control overhead in terms of number

of messages. For centralized heuristics, we assume that the

centralized entity has to notify independently each node to
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Figure 2. Node neighbors of 5, which are nodes of {3, 6, 7, 9}, notice the
disconnection with node 5 when it fails. They recompute the shortest-path
to the destination without producing routing loops. Thus, the next-hop of 3
becomes 1, the next-hop of 6 becomes 10, and the next-hop of 9 becomes 10.
However, node 7 does not change its next-hop to avoid a routing loop with
7.
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Figure 3. Once all the nodes are informed about the node failure, they
compute the new shortest-path to the destination. Only nodes that do not
yield to routing loop have migrated on this example. The others are waiting
for a loopSolved message.

migrate, for each destination and at the beginning of each

step. Each notification requires a number of control messages

which is equal to the distance between the centralized entity

and the node. Note that the centralized entity is chosen at the

most central location of the network, in order to minimize the

number of control messages. On the example of Figure 1, if

we assume that the centralized entity is node 10 (which is

not the most central, but simplifies the computation of paths,

and thus eases our presentation), the overall number of control

messages for destination 10 is the sum of the number of hops

of all paths from nodes to node 10, which is equal to 29 on

the initial routing protocol of Fig. 1. For distributed heuristics,

we assume that both routing protocols are known in advance.

We take into account the number of messages to identify loops

(for DLF) and to inform that a node has to migrate (for both

RTH-d and DLF), for each destination.

B. Simulation settings

Our simulations are performed on real topologies collected

from the Internet Topology Zoo from University of Ade-

laide [10]. We used topologies of size varying from 9 to 278
nodes. We consider that all nodes, except the one that fails,

are destinations. Simulations results are averaged over 100

repetitions and confidence intervals are of 95%.

For each destination d and for each repetition, we assigned a

random weight chosen uniformly at random within [1; 100] to

each link. The initial routing protocol Rd
i is built as an inverse

shortest-path tree rooted at d. Then, we chose a random node

r 6= d to remove. The final routing protocol Rd
f is built as

an inverse shortest-path tree in the topology where node r is

removed.

C. Results

In the following, we first present the average number of

loops we obtained on the topologies, as it has an impact on the

number of steps for all heuristics. Then, we present our main

performance metrics: the duration of the migration, which is

represented by the number of step needed to switch from Ri

to Rf , and the control overhead.

1) Number of loops: Figure 4 shows the average number of

loops (using a logarithmic scale for the y-axis), as a function

of the network size. The number of loops is computed over

all destinations, and averaged over all repetitions. The number

of loop increases with the topology size, and reaches several

hundreds for larger topologies. Note that each loop has a size

of 2, as expected from [6].
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Figure 4. The number of loops increases with the number of nodes in the
network and with the number of destinations considered.

2) Duration of the migration: Figure 5 shows the duration

of the migration, which is the number of steps of the transition

from Ri to Rf , for all heuristics, as a function of the network

size. For RTH-d, the migration duration is equal to the depth

of the final routing protocol. For large topologies, this yields

to transitions with several steps, and thus RTH-d yields long

migrations. For GBA, the computation of the steps depends on

the overall number of loops computed. When the number of

loops is large, GBA builds transition steps that are not optimal

due to the greedy construction of the steps. SCH-p is able to

yield transitions with a very small number of steps, due to



the fact that the strongly connected component concept allows

small loops to be solved efficiently. DLF is able to achieve the

same performance results as SCH-p due to the fact that the

numerous small loops can be processed independently very

efficiently. For the large network topologies, the gain of DLF

with respect to RTH-d is up to 84%, and the gain of DLF with

respect to GBA is up to 57%.
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Figure 5. The migration duration is much shorter with SCH-p and DLF than
with GBA and RTH-d.

3) Control overhead: Figure 6 shows the control overhead

in terms of number of control messages, as a function of the

number of nodes in the network. RTH-d produces a small

number of control messages, as all nodes are informed by a

single flooding on the (reversed) final routing protocol. GBA

and SCH-p require a similar number of control messages,

which is the cost due to the notification of all steps by the

centralized entity. Since the number of loops is much smaller

than the number of control messages for each node and for

each destination, DLF requires about twice the number of

control messages of RTH-d.
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Figure 6. The number of control messages of the heuristics depend mainly
on the number of nodes and on the number of destinations.

Globally, DLF is able to yield migrations of short duration,

in a distributed way, and with a reasonable number of control

messages (that is, slightly more than two control messages per

node and per destination). When compared to the centralized

heuristics (GBA and SCH-p), DLF shows a gain of about

70% for large network topologies. However, DLF sends a

large number of control messages compared to RTH-d. RTH-d

shows a gain of about 50% compared to DLF.

V. CONCLUSIONS

When there is a significant change in the network topology,

such as when a router change is planned, transient routing

loops might occur in the network. In this paper, we proposed

a distributed loop-free transition algorithm called DLF. DLF

exploits the property that loops caused by the removal of

a node are localized: thus, DLF is able to detect and solve

loops with a limited number of control messages. Simulation

results show that DLF performs as well as the best centralized

heuristics in terms of migration duration. Although DLF

requires about twice more messages than the other distributed

heuristic called RTH-d, DLF is able to perform the migration

in a significantly smaller duration (with a gain of up to 84% in

terms of number of steps of the transition for large networks).
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