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1 Introduction

1.1 Description

These notes are devoted to a detailed exposition of the proof of the Geometric Satake Equiva-
lence by Mirkovié—Vilonen [MV2]. This celebrated result provides, for G a complex connected
reductive group and k a Noetherian commutative ring of finite global dimension, an equiv-
alence of categories between the category P, (Grg, k) of Go-equivariant perverse sheaves
on the affine Grassmannian Grg of G (where G is the loop group of G) and the category
Repy(GY.) of representations of the Langlands dual split reductive group over k on finitely
generated k-modules. Under this equivalence, the tensor product of Gy/-modules corresponds
to a geometric construction on perverse sheaves called convolution.

This result can be considered on the one hand as giving a geometric description of the category
of representations of Gy, and on the other hand as giving a “concrete” construction of the dual
reductive group G). out of the original (complex) reductive group G.

1.2 History and idea of proof

The first evidence of a close relationship between perverse sheaves on Grg and representations
of GY was found in work of Lusztig [Lu|, where a “combinatorial shadow” of the equivalence
was proved (for k a field of characteristic 0). The equivalence itself was first proved, in the
case when k is a field of characteristic 0, by Ginzburg [Gi]. (In this case, the existence of an
equivalence of abelian categories Pg,, (Grg, k) = Repy (G),) is obvious, since both categories
are semisimple with isomorphism classes of simple objects parametrized by the same set.
The content of the theorem is thus only the description of the tensor product in geometric
terms.) A new proof, valid for general coefficients, was later given by Mirkovi¢—Vilonen [MV2].
This is the proof that we consider here; the main new ingredient of their approach is the
definition of the weight functors, which give a geometric construction of the decomposition
of Gy/-representations into weight spaces for a maximal torus. A later proof in the case
of characteristic-0 fields (which applies for ¢-adic sheaves, when G is defined over a more
general field) was given by Richarz [Rc]. (The main difference with the approaches of [Gi,
MV2] lies in the identification of the group scheme, which relies on work of Kazhdan—Larsen—

Varshavsky |[KLV].)

All proofs are based on ideas from Tannakian formalism. The strategy is to construct enough
structure on the category Pg,, (Grg, k) so as to guarantee that this category is equivalent to
the category of representations of a k-group scheme. In the case when k is a field, one can
apply general results due to Saavedra Rivano [SR| and Deligne-Milne [DM] to prove this;
for general coefficients no such theory is available, and Mirkovi¢—Vilonen construct the group
scheme “by hand” using their weight functors. The next step is to identify this group scheme
with GY/. The case of fields of characteristic 0 is relatively easy. Then, in [MV2], the general
case is deduced from this one using a detailed analysis of the group scheme in the case k is
an algebraic closure of a finite field, and a general result on reductive group schemes due to
Prasad-Yu [PY].



1.3 Applications

The geometric Satake equivalence has found numerous applications in Representation Theory,
Algebraic Geometry and Number Theory. For the latter applications (see in particular |[Lal;
see also [Z4, §5.5] for other examples and references), it is important to have a version of
this equivalence where the affine Grassmannian is defined not over C (as we do here) but
rather over an algebraically closed field of positive characteristic (and where the sheaves for
the classical topology are replaced by étale sheaves). We will not consider this variant, but
will only mention that the analogues in this setting of all results that we use on the geometry
of the affine Grassmannian are known; see [Z4] for details and references.! With these results
at hand, our considerations adapt in a straightforward way to this setting to prove the desired
equivalence of categories. (Here of course the coefficients of sheaves cannot be arbitrary, and
the role played by Z in Section 14 should be played by Z,, where ¢ is a prime number different
from the characteristic of the field of definition of the affine Grassmannian.)

The applications to Number Theory have also motivated a number of generalizations of the
geometric Satake equivalence (so far mainly in the case of characteristic-0 coefficients) which
will not be reviewed here; see in particular [Re, Z2, RZ, Z3].

1.4 Contents

The notes consist of two parts with different purposes. The first one is a gentle introduction
to the proof of Mirkovié—Vilonen in the special case where k is a field of characteristic 0. This
case allows for important simplifications, but at the same time plays a crucial role in the proof
for general coefficients. It is well understood, but (to our knowledge) has not been treated
in detail in the literature from the point of view of Mirkovié—Vilonen (except of course in
their paper). We follow their arguments closely, adding only a few details where their proofs
might be considered a little bit sketchy. We also treat certain prerequisites (e.g. Tannakian
formalism) in detail. On the other hand, most “standard” results on the affine Grassmannian
are stated without proof; for details and references we refer e.g. to [Z4].

Part II is devoted to the proof for general coefficients. Some people have expressed doubts
about the proof in this generality, so we have tried to make all the arguments explicit, and to
clarify the proofs as much as possible. In this process, Geordie Williamson suggested a direct
proof of the fact that the group scheme constructed by Mirkovié—Vilonen is of finite type in
the case of field coefficients. This proof is reproduced in Lemma 14.2, and allows to simplify
the arguments a little bit.

Finally, Appendix A provides proofs of some “well-known” results on equivariant perverse
sheaves.

!There is an additional subtlety in this setting if the characteristic of the base field is “small,” namely that
the neutral connected component of the Grassmannian might not be isomorphic to the affine Grassmannian
of the simply-connected cover of the derived subgroup; see [PR, Remark 6.4] for an example. However, as
was explained to us by X. Zhu, in any case the natural morphism from the latter to the former is a universal
homeomorphism (again, see [PR, Remark 6.4] for a special case) and hence is as good as an isomorphism, as
far as étale sheaves are concerned.
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Part 1

The case of characteristic-0 coefficients

2 Tannakian reconstruction

In this section (where we follow closely [DM, §1I1]), k is an arbitrary field, and we denote by
Vecty the category of finite-dimensional k-vector spaces. All categories are tacitly assumed
to be essentially small. By a commutative diagram of functors we will mean a diagram
commutative up to isomorphism.

Some important ideas of Tannakian reconstruction are already contained in the following easy
exercise.

Exercise 2.1. Let A be a k-algebra, X be an A-module which is finite-dimensional over k, and
a € Endg(X). Show that

o € im(A - Endg(X)) <= Vn >0, VY C X" A-submodule, a®"(Y) C Y.

(Hint : Of course, the implication = is obvious. To prove the reverse direction, assume the
condition in the right-hand side holds. Pick a k-basis (e1,--- ,e,) of X, take for Y the A-
submodule generated by (e1,---,e,) € X" and write that Y contains a®"(eq,--- ,e,) =

(04(61), T 7a(en))')

Tannakian reconstruction actually amounts to veneer this exercise first with the language of
categories and then with the language of Hopf algebras (i.e. affine group schemes).

2.1 A first reconstruction theorem

Let us denote the category of finite-dimensional k-vector spaces by Vecty. Given a k-algebra
A, we denote the category of finite-dimensional left A-modules by Mod 4.

Recall that a category % is called additive if

each set Homy (X,Y) is an abelian group;

the composition of morphisms is a bilinear operation;

e ¢ has a zero object;

finite products and coproducts exist in €.

Such a category is called k-linear if each Homy (X,Y") is a k-vector space, and if the compo-
sition is k-bilinear. An additive category % is called abelian if

e cach morphism has a kernel and a cokernel;



e for any morphism f, the natural morphism from the cokernel of the kernel (a.k.a. the
coimage) of f to the kernel of the cokernel (a.k.a. the image) of f is an isomorphism.

Given an object X in an abelian category %, we will denote by (X) the full subcategory of
¢ formed by all objects that are isomorphic to a subquotient of a direct sum X®" for some
n e ZZO'

Proposition 2.2. Let € be an abelian k-linear category and let w : € — Vecty be a k-linear
exact faithful functor. Fiz an object X in € and introduce the finite-dimensional k-algebra

Ax :={a € Endx(w(X)) | Vn >0, VY C X®" subobject, a®"(w(Y)) C w(Y)}.
Then w|<X> admits a canonical factorization

(X) X~ Moda,

Vecty,

and Wx 1s an equivalence of categories. In addition Ax is the endomorphism algebra of the
functor w{ (x)°

If A is a k-algebra, and if we apply this proposition to the category ¥ = Moda of finite-
dimensional A-modules with w the forgetful functor (which keeps the k-vector space structure
but forgets the structure of A-module), then Exercise 2.1 shows that the algebra Ax is precisely
the image of A in Endg(X). The proposition is thus mainly saying that the exercise can be
stated within the language of abelian categories.

For the proof of Proposition 2.2 we will need the following standard facts from Category
Theory.

Lemma 2.3. 1. An exact additive functor F : of — P between two abelian categories
preserves kernels and cokernels. It thus preserves finite intersections and finite sums (in
an ambient object).

2. A faithful functor F : of — 9B between two abelian categories does not kill any nonzero
object.

3. Let F : of — A be an exact faithful additive functor between two abelian categories
and let u : X — Y be a morphism in of. Then wu is an monomorphism (respectively,
epimorphism) if and only if F(u) is so.

4. Let F: of — % be an exact faithful additive functor between two abelian categories. As-
sume that A is Artinian and Noetherian: any monotone sequence of subobjects becomes
eventually constant. Then arbitrary intersections and arbitrary sums (in an ambient
object) exist in both </ and B, and F preserves intersections and sums.



Proof. (1) Any morphism u : X — Y in &/ gives rise to two short exact sequences

X—2-Y
N N
ker u imuwu coker u

/! /N N
0 0 0 0,

Applying F' to this diagram and using the exactness assumption, we see that this functor
preserves kernels and cokernels. The last assertion comes from the fact that the intersection
(respectively, sum) of two subobjects can be expressed by a pull-back (respectively, push-
forward) diagram, that is, as a kernel (respectively, cokernel).

(2) Assume that X is a nonzero object in . Then idx # 0 in End,/(X). The faithfulness
assumption then implies that idp(x) = F'(idx) # 0 in Endg(F(X)), whence F/(X) # 0.

(3) It suffices to note that
keru=0 <= F(keru) =0 <= ker F(u) =0

and
cokeru =0 <= F(cokeru) =0 <= coker F'(u) = 0.

(4) We first claim that <7 is Artinian and Noetherian. Indeed given a monotone sequence
of subobjects in 7, its image by F' is a monotone sequence of subobjects in %A, so becomes
eventually constant; (3) then implies that the sequence in 27 also becomes eventually constant.
Thus arbitrary intersections and sums exist in &/ as well as in % and are in fact finite
intersections or sums (by the Artinian or Noetherian property, respectively). We conclude
with the help of (1). O

We can now give the proof of Proposition 2.2.

Proof. By definition, for any o € Ay, the endomorphism a®" of w(X)®" leaves stable w(Y’)
for all subobjects Y € X®" and thus induces an endomorphism of w(Z) for all subquotients
Z of X®". In this way, for each object Z in (X), the k-vector space w(Z) becomes an A -
module. If Z is a subquotient of X®" and Z’ is a subquotient of X®™ and if f : Z — Z’
is a morphism in %, then Z & Z’ is a subquotient of X®("+t7) and the image gr(f) of the
morphism (id, f) : Z — Z @& Z' (in other words the graph of f) is a subobject of Z & Z/,
hence also a subquotient of X®(+™)  The fact that Ay stabilizes w(gr(f)) means that w(f)
is a morphism of A x-modules. In summary, we have proved that w‘ (x) factorizes through the

category of finite-dimensional A x-modules, as stated.

By definition, an endomorphism « of the functor w|< x) is the datum of an endomorphism
az € Endg(w(Z)) for each Z € (X), such that the diagram

w(Z) 2z w(Z)

) o

w(Z) —22 (2




commutes for any morphism f : Z — Z’ in (X). This compatibility condition and the
definition of (X) forces a to be determined by ax € Endy(w(X)), and forces ax to belong to
Ax. Conversely, any element in Ay gives rise to an endomorphism of w! (x)° This discussion
shows the last assertion in the proposition.

It remains to show that the functor Wx is an equivalence of categories. We already know that
it is faithful, so we must show that it is full and essentially surjective. We will do that by
constructing an inverse functor.

We will denote by €™ the category opposite to the category of k-linear functors from &
to Vecty. Yoneda’s lemma says that the functor Z — Homy(Z, —) from % to € is fully
faithful, so € is a full subcategory of €. Given an object Y € € and a finite-dimensional
k-vector space V, we define two objects in € by

Hom(V,Y) := Homg (Y, —) @V and Y ® V := Homy(V, Homg (Y, —)).

These functors are representable: if V' = k™, then both functors are represented by Y%". So
we will regard Hom(V,Y) and Y ® V' as being objects in € and forget everything about ¢
Note however that we gained functoriality in V' in the process: given two k-vector spaces V
and W and an object Y € €, there is a linear map

Homy (W, V) — Hom¢ (Hom(V,Y), Hom(W,Y)) (2.1)

that sends an element f € Homy (W, V) to the image of the identity by the map

Endy (Hom(W,Y)) = Homg (Y, Hom(W,Y)) @ W
lid@f
Homy (Y, Hom(W,Y)) @ V =Hom¢ (Hom(V,Y), Hom(W,Y)).

For two k-vector spaces W C V and two objects Z C Y in %, we define the transporter of W
into Z as the subobject

(Z: W) :=ker(Hom(V,Y) — Hom(W,Y/Z))
of Hom(V,Y"), where the morphism Hom(V,Y) — Hom(W,Y/Z) is the obvious one.

Now we define
Py= [ (Hom(w(X),X)n (Y :w(¥)).
n>0
Yycxonr
Here the small intersection is computed in the ambient object Hom (w(X)®", X®™) the space
Hom(w(X), X) being embedded diagonally, and the large intersection, taken over all n > 0 and
all subobjects Y C X%, is computed in the ambient object Hom(w(X), X). The existence of

~

this intersection is guaranteed by Lemma 2.3(4); moreover, as a subobject of Hom(w(X), X) =
X®dim(@(X) "the object Py belongs to (X).

Equation (2.1) provides us with an algebra map

Endy (w(X)) = Endg (Hom(w(X), X)),



which induces an algebra map Ax — Endg(Px). This map can be seen as a morphism
Px ® Ax — Px in ¥, and we can thus define the coequalizer

Px®, V= coeq(PX@(AX @k V) :;PX@V)

for each Ax-module V. (Here, one of the maps is induced by the Ax-action on V' via (2.1),
and the other one by the map Py ® Ax — Px we have just constructed.) We will prove that
the functor

Px ®,, —:Moda, — (X)

is an inverse to wx.

First, we remark that for any k-vector space V' and any object Y € % there exists a canonical
identification

wl eV)=wl)xekV.
Indeed idygy defines an element in
Homg (Y @ V.Y ® V) = Homy (V, Hom¢ (Y, Y ®@ V).
The image of this element under the map

Homy (V,Hom¢ (Y, Y ® V) — Homy (V, Homy (w(Y),w(Y @ V)))

induced by w provides a canonical element in
Homy (V, Homy (w(Y),w(Y @ V))) = Homy (w(Y) @k V,w(Y @ V)),

or in other words a canonical morphism w(Y) @V — w(Y ® V). To check that this morphism
is invertible one can assume that V' = k™, in which case the claim is obvious. Likewise, we
have an identification w(Hom(V,Y")) = Homg(V,w(Y")).

Using these identifications, the exactness of w implies that given two k-vector spaces W C V
and two objects Z C Y in €,

w((Z:W)) = {a € Homk(V,w(Y)) | a(W) Cw(Z)}.

From Lemma 2.3(4), it then follows that w(Px) = Ax (as a right Ax-module), and therefore,
that for each V' € Mod 4, we have

Wx(Px®, V)=wx(Px)®a, V2V
Hence wx (PX@ Ay —) is naturally isomorphic to the identity functor of Mod 4, .
For the other direction, we start by checking that
Homy (V, Endg (V) ®k V) = Homy (V, Home (Hom(V,Y),Y')) = Homg (Hom(V,Y) @ V. Y).

To the canonical element in the left-hand side (defined by v — idy ®v) corresponds a canonical
morphism Hom(V,Y) @ V — Y in €. Considering the latter for V = w(X) and Y = X"
we obtain a canonical map

Hom(w(X), X) ® w(X") — X",

10



whence by restriction
Px ®,, wl)—=Y

for any subobject Y C X®". The latter map is an isomorphism because, as we saw above, its
image by w is an isomorphism (see Lemma 2.3(3)). The right exactness of w and of Px®, —

then imply that Px®, w(Z) = Z for each subquotient Z of X®" and we conclude that
Px® AXEX(—) is naturally isomorphic to the identity functor of (X). O

In the setup of the proposition, if X and X’ are two objects of ¢ such that (X) C (X'} (for
instance if X’ is of the form X @ Y), then we have a restriction morphism
Axr = End(w‘<X,>) — End(w‘oq) = Ax.

One would like to embrace the whole category € by taking larger and larger subcategories
(X) and going to the limit, but the category of finite-dimensional modules over the inverse
limit of a system of algebras is not the union of the categories of finite-dimensional modules
over the algebras. Things work much better if one looks at comodules over coalgebras, mainly
because tensor products commute with direct limits.

2.2 Algebras and coalgebras

Let us recall how the dictionary between finite-dimensional algebras and finite-dimensional
coalgebras works (see for instance [Ka, Chap. III]):

A finite-dimensional k-algebra  <— its k-dual B = AV, a finite-dim. k-coalgebra;

m: A®x A— A multiplication +— A : B — B ®y B comultiplication (coassociative)

(associative) € : B — k counit

n:k — A unit (obtained by transposing m and n);

left A-module structure <— right B-comodule structure on M with

on a space M with action coaction map 6 : M — M Qx B

map p: A®x M — M defined by p(a ® m) = (idy ® evy) o 6(m), where

ev, : B — k is the evaluation at a.

In the context of this dictionary, one can identify the category Mod 4 of finite-dimensional left
A-modules with the category Comodp of finite-dimensional right B-comodules.

2.3 A second reconstruction theorem

Going back to the setting of §2.1, we see that whenever (X) C (X’), we get a morphism of
coalgebras
BX = A}/( — A\)/(/ =: BX/.

Now we can choose X with more and more direct summands, so that (X) grows larger and
larger. Our running assumption that all categories are essentially small allows us to take the
direct limit of the coalgebras Bx over the set of isomorphism classes of objects of &, for the
order determined by the inclusions (X) C (X’). We then obtain the following statement.

11



Theorem 2.4. Let € and w be as in Proposition 2.2. Set
B = ligBX.
X

Then w admits a canonical factorization

Comodp

\ %)rget

Vecty

where W is an equivalence of categories.

Here, the fact that w(X) admits a structure of B-comodule (for X in %) means that there
exists a canonical morphism w(X) — w(X) ®y B satisfying the appropriate axioms. In other
words, we have obtained a canonical morphism of functors w — w ®y B, where the right-hand
side means the functor X — w(X) ®k B (and where we omit the natural functor from Vecty
to the category of all k-vector spaces).

Example 2.5. 1. Let V be a finite-dimensional k-vector space, and take 4 = Vecty and w =
V @k —. Then B = Endk(V)V. Indeed, the category of finite-dimensional left Endy (V)-
modules is semisimple, with just one simple object up to isomorphism, namely V.

2. Let M be a set, let € = Vectx(M) be the category of finite-dimensional M-graded
k-vector spaces, and w : ¥ — Vecty be the functor that forgets the M-grading. Then
B = kM, the k-vector space with basis M, with the coalgebra structure given by

Am)=m®m, e(m)=1
for all m € M. For each X € €, the coaction of B on w(X) = X is the map

X —>X®cB, x+— Z Ty @ M,
meM

where x =)\, ¥y, is the decomposition of x into its homogeneous components.

3. Let C be a coalgebra, and take ¥ = Comod¢, with w the forgetful functor. Then
there exists a canonical isomorphism C =2 B. Indeed, if X € Comodg, there exists
a finite-dimensional subcoalgebra C’ C C such that the C-comodule X is actually a
C’-comodule.? Then the coaction morphism X — X ®i C’ defines an algebra morphism
(C")Y — Ax, hence a coalgebra morphism Bx — C’. Composing with the embedding
C’" < C and passing to the limit we deduce a coalgebra morphism B — C. In the
reverse direction, if C’ C C is a finite-dimensional subcoalgebra, then C’ is an object
in Comod¢, hence it acquires a canonical B-comodule structure, i.e. a coalgebra map
C" — ' @y B. Composing with the map induced by ¢ we deduce a coalgebra morphism
C’" — B. Since C is the direct limit of its finite-dimensional subcoalgebras, we deduce
a coalgebra morphism C' — B. It is easily seen that the morphisms we constructed are
inverse to each other, proving our claim.

2In view of its importance, let us briefly recall the proof of this classical fact. Let § : X — X ® C be the
structure map of the C-comodule X and let (e1,...,en) be a k-basis of X. Write d(e;) = >, €i ® ci ;5. Then
A(cij) = Yoy ik @ ck,y and €(ci ;) = 6i,; (Kronecker’s symbol), so C’ can be chosen as the k-span in C of the
elements c¢; ;.

12



An homomorphism of k-coalgebras f : B — C induces a functor f, : Comodp — Comod¢.
Specifically, given a B-comodule M with structure map § : M — M ®y B, the C-comodule
f«M has the same underlying k-vector space as M and has structure map (idy; ® f)od : M —
M ®y C.

Proposition 2.6. 1. Let € be an abelian k-linear category, let C be a k-coalgebra, and let
F . ¢ — Comodg be a k-linear exact faithful functor. If B is the coalgebra provided
by Theorem 2.4 (for the functor given by the composition of F with the forgetful functor
Comodc — Vecty) and F : € = Comodp the corresponding equivalence, then there
exists a unique morphism of k-coalgebras f : B — C' such that the following diagram

commutes:
Comodp
N
Comodc.

2. Let B and C be two k-coalgebras. Any k-linear functor F' : Comodp — Comod¢ such
that

Comodp . Comod¢

forge?\ %)rget

Vecty

commutes is of the form F = f, for a unique morphism of coalgebras f : B — C.

Proof. (1) Let X be an object in %". As seen in Example 2.5(3), there exists a finite-dimensional
subcoalgebra C” C C' such that the C-comodule F'(X) is actually a C’-comodule. The restric-
tion to the category (X) of the functor F' then factorizes through Comodcr = Mod(cr)v. Let
w : Mod(cryv — Vecty be the forgetful functor and let Ax be the endomorphism algebra of
the functor w o F' ‘

Consider the dlagram

(X) Mod 4
N 2~ -~ -
MOd(C/)\/
Vecty.

Any a € (C")Y can be seen as an endomorphism of the functor w, so induces by restriction an
endomorphism of wo F | (x> OF in other words an element of Ax. Our situation thus gives us a

morphism of algebras (C")Y — Ay, that is, a morphism of coalgebras A% — C’. Further, Fx
is an equivalence of categories, because the k-linear functor w o F ‘ (x) is exact and faithful.
Taking as before the limit over (X) yields the desired coalgebra B = @A&, the morphism
of coalgebras f: B — C, and the equivalence of categories F'.

13



(2) Statement (2) is essentially the special case of (1) in the context of Example 2.5(3). More
concretely, the coalgebra B is a right comodule over itself. The functor F maps it to a C-
comodule with the same underlying vector space. We thus get a structure map § : B — BRC.
Composing with the augmentation € : B — k, we get a map f = (¢ ® id¢) o 6 from B to C.
Abstract nonsense arguments (the functoriality of F' and the axioms of comodules) imply that
f B — C is a coalgebra map and that F = f,. O

2.4 Tannakian reconstruction

As we saw in §2.3, a k-linear abelian category equipped with an exact faithful k-linear functor
to Vecty is equivalent to the category of right comodules over a k-coalgebra B equipped
with the forgetful functor. On the other hand, an affine group scheme G over k is a scheme
represented by a commutative k-Hopf algebra H = k[G], and representations of G are the
same as right H-comodules (see e.g. [Wa, §1.4 and §3.2] or [Ja, §1.2]). A commutative Hopf
algebra is a coalgebra with the extra datum of an associative and commutative multiplication
with unit, plus the existence of the antipode. Striving to translate this setup into the language
of categories, we look for the extra structures on an abelian k-linear category that characterize
categories of representations of affine group schemes.

The adequate notion is called rigid abelian tensor categories. Rather than studying this notion
in the greatest possible generality, which would take too much space for the expected benefit,
we will state a theorem tailored to our goal of understanding the geometric Satake equivalence.
For a more thorough (and formal) treatment, the reader is referred to [SR| and [De], or to [Ka]
for a more leisurely walk.

A last word before stating the main theorem of this subsection: a multiplication map
mult : By B — B

on a coalgebra B which is a coalgebra morphism allows to define a structure of B-comodule
on the tensor product over k of two B-comodules. Specifically, if M and M’ are B-comodules
with structure maps 0y : M — M ®y B and dyr : M’ — M’ @y B, then the structure map
on M ®y M’ is defined by the composition depicted on the diagram

6JVI®]M’

M®kMI M®kMI®kB
O @0 l TidM@)M/(X)mult
M @y B®x M' @ B—— M ®x M' ®x B ®x B

where the bottom arrow is the usual commutativity constraint for tensor products of k-vector
spaces that swaps the second and third factors.

Given an affine group scheme G over k, we denote the category of finite-dimensional repre-
sentations of G (or equivalently finite dimensional right k[G]-comodules) by Repy(G).

Theorem 2.7. Let € be an abelian k-linear category equipped with the following data:
e an exact k-linear faithful functor w : € — Vecty (called the fiber functor);
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a k-bilinear functor @ : € x € — € (the tensor product);
o an object U € € (the tensor unit);

e an isomorphism ¢xyz : X ® (Y ® Z) = (X ®Y) ® Z, natural in X, Y and Z (the
associativity constmmt},

e isomorphisms U ® X M x X x ®@ U, both natural in X (the unit constraints);

e an isomorphism Yxy : X @ Y = Y ® X natural in X and Y (the commutativity
constraint).

We also assume we are given isomorphisms v : k = w(U) and
TX,Y : w(X) Rk w(Y) 1} w(X X Y) (2.2)
in Vecty, with Txy natural in X,Y € €. Finally, we assume the following conditions hold:
1. Taking into account the identifications provided by T and v, the isomorphisms w(dx v, z),

w(Ax), w(px) and w(xy) are the usual associativity, unit and commutativity con-
straints in Vecty.

2. If dimy (w(X)) = 1, then there exists X* € € such that X @ X* = U.

Under these assumptions, there exists an affine group scheme G such that w admits a canonical
factorization

Repi (G

\ %)rget

Vecty

where W is an equivalence of categories that respects the tensor product and the unit in the
sense of the compatibility condition (1).

Remark 2.8. 1. It will be clear from the proof below that the group scheme G is the “au
tomorphism group of the fiber functor.” This sentence means that for any commutative
k-algebra R, an element o € G(R) is a collection of elements ax € Endg(w(X) ®x R),
natural in X € %, and compatible with ® and U via the isomorphisms 7 and v. There
is no need to specifically ask for invertibility: this will automatically follow from the
compatibility condition (2).

2. The datum of isomorphisms (2.2) satisfying condition (1) are usually worded as: “the
functor w is a tensor functor.”

3. The faithfulness of w and the compatibility condition (1) imply that the associativity
constraint ¢ (respectively, the unit constraints A and p, the commutativity constraint 1))
of € satisfies MacLane’s pentagon axiom (respectively, the triangle axiom, the hexagon
axiom). Together, these coherence axioms imply that any diagram built from the con-
straints commutes. This makes multiple tensor products in ¢’ non-ambiguous, see [McL,

§VIL2|.

15



4. Our formulation dropped completely the “rigidity condition” in the usual formulation
of the Tannakian reconstruction theorem. This condition demands that each object X
has a dual XV characterized by an evaluation map XY ® X — U and a coevaluation
map U — X ® XV. Its purpose is to guarantee the existence of inverses in G—without
it, G would only be an affine monoid scheme. In Theorem 2.7, it has been replaced
by condition (2), which is easier to check in the case we have in mind. See [DM,
Proposition 1.20 and Remark 2.18] for a more precise study of the relationship between
these conditions.

5. As in Example 2.5(3), if we start with the category ¥ = Repy(G) for some k-group
scheme G, with w being the natural forgetful functor, then the group scheme recon-
structed in Theorem 2.7 identifies canonically with G.

Proof. We first remark that the bifunctor ® : € x ¥ — % is exact in each variable: this
follows from the analogous fact in the category Vecty together with Lemma 2.3(3).

We reuse the notation (X), Ax and Bx from §§2.1-2.3. The direct limit of the coalgebras
Bx is the coalgebra B, with comultiplication A and counit e.

Let X and X’ two objects in ¢. The isomorphism 7x x : w(X) @k w(X') = w(X @ X')
induces an isomorphism of algebras

Endy (w(X ® X)) & Endy (w(X)) ®x Endy (w(X")). (2.3)

/

The opening remark in this proof implies that given subobjects Y € X®" and Y’ C (X')®"
the tensor products ¥ ® X’ and X ® Y’ are subobjects of respectively (X @ X")®" and
(X ® X")®"' Tt follows that the isomorphism (2.3) takes Axgxs into Ax @y Axs. Taking the
duals, we get a morphism of coalgebras Bx' ®x Bx — Bxgx’, and taking the direct limit
over (X) and (X'), we obtain a morphism of coalgebras m : B ®, B — B.

On the other hand, the k-vector space w(U) has dimension 1, so the algebra A is reduced
to Endk(w(U)) = k. Thus By is the trivial one-dimensional k-coalgebra, and the definition
of B as a direct limit of the By (including By ) leads to a morphism of coalgebras  : k — B.

Our coalgebra B is thus equipped with a multiplication m : B&B — B and aunit n : k — B.
The compatibility condition (1) implies that (B,m,n) is an associative and commutative k-
algebra with unit.

Let us call G the spectrum of the commutative k-algebra (B,m,n); this is an affine scheme
over k. The commutative diagrams that express the fact that m and 1 are morphisms of
coalgebras also say that A and ¢ are morphisms of algebras. The latter thus define morphisms
of schemes

A1 G Xgpee(s) G = G and  €* : Spec(k) — G.

The coassociativity of A and the counit property then imply that (G, A* e*) is an affine
monoid scheme. It thus only remains to show that the elements of G are invertible.

Unwinding the construction that led to the definition of G, we see that for any commutative
k-algebra R, an element o € G(R) is a collection of elements ax € Endg(w(X)®k R), natural
in X, and compatible with ® and U. We want to show that ax is invertible for all objects X.
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First, if X is such that dimw(X) = 1, then by condition (2) there exists X™* such that
X®@X* = U, and therefore ax ®ax is conjugate to ay = idy1r)g, Ry SO 0x (an endomorphism
of a free R-module of rank 1) is invertible.

To deal with the general case, one constructs the exterior power /\d X as the quotient of the d-
th tensor power of X by the appropriate relations (defined with the help of the commutativity
constraint of €), for d = dimw(X). Since w is compatible with the commutativity constraint,
w(/\d X ) = /\dw(X ) is 1-dimensional. As we saw in our particular case, this implies that
Qpd x is invertible. But this is /\d ax (in other words the determinant of ax ), so we eventually
obtain that ax (an endomorphism of a free R-module of rank d) is invertible. O

Example 2.9. 1. Continue with Example 2.5(2), and suppose now that our category € of
finite-dimensional M-graded k-vector spaces is endowed with a tensor product ®. There
is then a law % on M such that

k[m] @ k[n] = k[m * n]

for all m,n € M (where k[p] means k placed in degree p). The constraints (1) in the
theorem impose that M is a commutative monoid, and then B = kM is the associated
monoid algebra. The condition (2), if verified, implies that M is indeed a group. The
affine group scheme G = Spec(B) given by the theorem is then the Cartier dual of M
(see [Wa, §2.4]).

2. Let X be a connected topological manifold, let € be the category of local systems on
X with coefficients in k, let z € X, and let w be the functor £ +— L, the fiber at point
x. Then G is the constant group scheme equal to the fundamental group m (X, z). On
this example, we see how the choice of a fiber functor subtly changes the group.

3. We define the category SVecty of supersymmetric k-vector spaces as the category of
Z/2Z-graded vector spaces, equipped with the usual tensor product, with the usual as-
sociativity and unit constraints, but with the supersymmetric commutativity constraint:
for V.= V5@ Vi and W = W5 @ Wy, the isomorphism ¢y : V@ W — W @y V is
defined as

wR v itveVyorwe W,

® g
¢V,W(v w) {_(w®v) ifveviandwéwi.

Then the forgetful functor from SVecty to Vecty does not respect the commutativity
constraints, so one cannot apply the theorem to this situation.

Proposition 2.6 also has a tensor analog. We state without proof the assertion that is needed
in the proof of the geometric Satake equivalence. Observe that a homomorphism of k-group
schemes f : H — G induces a restriction functor f*: Repy(G) — Repy(H).

Proposition 2.10. 1. Let € be an abelian k-linear category with tensor product, tensor
unit, and associativity, commutativity and unit constraints. Let H be an affine group
scheme over k. Let F' : € — Repy(H) be a k-linear exact faithful functor, compat-
ible with the monoidal structure and the various constraints (in the same sense as in
Theorem 2.7). Let G be the affine k-group scheme provided by Theorem 2.7 (for the
composition of F' with the forgetful functor Repy(H) — Vecty) and F : € = Repy(G)
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be the corresponding equivalence. Then there exists a unique morphism of group schemes
[ H — G such that the following diagram commutes:

Repy (G

\/*

Repy (H

2. If G and H are affine k-group schemes, any k-linear functor F : Repy(G) — Repy(H)
compatible with tensor products, the forgetful functors, and the various constraints is of
the form f* for a unique k-group scheme morphism f: H — G.

2.5 Properties of G visible on Rep, (G)

Recall that an affine k-group scheme G is called algebraic if the k-algebra of regular functions
on G is finitely generated. In this case, the construction of the group of connected components
mo(G) of G is recalled in [Mi, §XIIL.3] or [Wa, §6.7]; this is an affine étale k-group scheme
endowed with a canonical morphism G — my(G), and G is connected iff mo(G) is trivial.

Recall also that an affine algebraic group scheme G over k is called reductive® if it is smooth?
(hence in particular algebraic) and connected and, for an algebraic closure k of k, the group
Spec(k) X gpec(k) G 18 reductive in the usual sense, i.e. does not contain any nontrivial smooth
connected normal unipotent subgroup; see [Mi, Definition XVII.2.1].

Proposition 2.11. 1. Let G be an affine group scheme over k. Then G 1is algebraic if and
only if there exists X € Repy(G) such that X generates Repy (G) by taking direct sums,
tensor products, duals, and subquotients.

2. Let G be an algebraic affine group scheme over k. If G is not connected, then there
exists a nontrivial representation X € Repy(G) such that the subcategory (X) (with the
notation of §2.1) is stable under ®.

3. Let G be a connected algebraic affine group scheme over k. Assume that k has charac-
teristic 0, and that Repi (Gy) is semisimple, where k is an algebraic closure of k and
Gy = Spec(k) Xgpec) G- Then G is reductive.

Proof. (1) Suppose G is algebraic. Then G admits a faithful representation (see [Wa, §3.4]),
i.e. G can be viewed as a closed subgroup of some GL,. It is then a classical result that
any finite dimensional representation of GG can be obtained from the representation on k™ by
the processes of forming tensor products, direct sums, subrepresentations, quotients and duals

(see [Wa, §3.5]).

3Sometimes, the definition of reductive groups allows disconnected groups. All the reductive groups we will
consider in these notes will be (sometimes tacitly) assumed to be connected. Note that connectedness can be
checked after base change to an algebraic closure of the base field; see [Mi, Proposition XIII.3.8|.

“Recall that this condition is automatic if G is algebraic and char(k) = 0; see [Mi, Theorem VI.9.3].
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Conversely, suppose the existence of a representation X that generates Repy (G) in the sense
explained in the statement of the proposition. Then X is necessarily a faithful representation
of G, so G embeds as a closed subgroup in GL(X) (see [Wa, §15.3|), and is therefore algebraic.

(2) The quotient G — m(G) induces a fully faithful functor Repy (mo(G)) — Repy (G). Taking
for X the image of the regular representation of my(G), we see that (X) (which coincides with
the essential image of Repy(mo(G))) is stable under tensor products. If G is not connected,
then X is not trivial.

(3) As explained in Footnote 4, G is automatically smooth since char(k) = 0. Hence the
only thing we have to check is that the unipotent radical R,(Gy) is trivial. In a simple
representation X of G, R,(Gy) acts trivially; indeed the subspace of points fixed by R, (Gy)
is nontrivial by Kolchin’s fixed point theorem (see [Wa, §8.2]) and is Gi_-stable because R, (Gy)
is a normal subgroup. This result immediately extends to semisimple representations of Gy.
Now if Repy(Gy) is semisimple, then Gy admits a semisimple faithful representation. On this
representation, R, (Gy) acts trivially and faithfully. Therefore R, (Gy) is trivial. O

Remark 2.12. 1. An object which satisfies the conditions in Proposition 2.11(1) will be
called a tensor generator of the category Repy(G).

2. An algebraic affine group scheme is called strongly connected if it admits no nontrivial
finite quotient. (This property is in general stronger than being connected—which is
equivalent to having no nontrivial finite étale quotient—but these notions are equivalent
if char(k) = 0.) If G is an algebraic affine group scheme over k, the condition appearing
in Proposition 2.11(2) is equivalent to G being strongly connected, see [Mi, §XVIL.7].

3. A more precise version of Proposition 2.11(3) is proved in [DM, Proposition 2.23|. (But
the simpler version we stated will be sufficient for our purposes.)

3 The affine Grassmannian

In this section we provide a brief introduction to the affine Grassmannian of a complex con-
nected reductive algebraic group. For more details, examples and references, the reader can
e.g. consult [Go, §2| or [Z4]. (All of these properties are often considered as “well known,”
and we have not tried to give the original references for them, but rather the most convenient
one.)

3.1 Definition

We set O := C[[t] and K := C((t)), where t is an indeterminate. If H is a linear complex
algebraic group, we denote by Hp, resp. Hy, the functor from C-algebras to groups defined
by

R H(R[t]), resp. R~ H(R((t))).

It is not difficult to check that Hp is represented by a C-group scheme (not of finite type
in most cases), and that Hy is represented by an ind-group scheme (i.e. an inductive limit
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of schemes parametrized by Zx>(, with closed embeddings as transition maps). We will still
denote these (ind-)group schemes by Hp and H.

We now fix a standard triple G D B D T of a connected complex reductive algebraic group, a
Borel subgroup, and a maximal torus. We will denote by N the unipotent radical of B. We
will denote by A(G,T) the root system of (G,T), by A4 (G,B,T) C A(G,T) the subset of
positive roots (consisting of the T-weights in the Lie algebra of B), and by A4(G, B,T) the
corresponding subset of simple roots. For a a root, we will denote the corresponding coroot
by V.

Let X,.(T) be the lattice of cocharacters of T'; it contains the coroot lattice @Y and is en-
dowed with the standard order < (such that nonnegative elements are nonnegative integral
combinations of positive coroots). We will denote by X, (7)™ C X.(T) the cone of dominant

cocharacters. We define p as the halfsum of the positive roots and regard it as a linear form
X.(T) — 3Z.

If L<°G denotes the ind-group scheme which represents the functor
R~ G(R[t™])

and if L<°G is the kernel of the natural morphism L<°G — G (sending t~! to 0), then L<°G
is a subgroup of Gx in a natural way, and the multiplication morphism

L<OG X Go — G}C

is an open embedding by [Fa, Lemma 3] (see also [NP, Lemme 2.1] or [Z4, Lemma 2.3.5]). In
view of this property, the quotient

Grg = Gr/Go

has a natural structure of ind-scheme. In fact, one can check that this ind-scheme is ind-proper,
and of ind-finite type.

Remark 3.1. 1. In many references (but not [Fal), Grg is rather defined as the object
representing a certain presheaf on the category of affine C-schemes (see e.g. |Z4, Theo-
rem 1.2.2]) and then identified with a fpqc quotient Gx./Go, see [Z4, Proposition 1.3.6].
Finally, it is realized that the quotient map Gx — a}g is Zariski locally trivial. In these
notes the “moduli interpretation” of GEG will be introduced in Section 7 below.

2. Consider the group scheme & := G Xgpec(c) Spec(O) over Spec(O). Then Go is the
arc space of &, and Gy is the loop space of & Xgpec(0) Spec(K) in the sense of |Z4,
Definition 1.3.1]. From this point of view one can consider the “affine Grassmannian”
of more general (smooth, affine) group schemes over Spec(©). In particular, replacing
® by the Iwahori group scheme constructed in Bruhat-Tits theory, then we obtain an
ind-scheme Flg which is often called the affine flag variety of G.

3. See also |Z4, §1.6] for a description of éer in terms of the loop group of a maximal
compact subgroup (which only makes sense for the case of complexr reductive groups,
unlike the other descriptions considered above). This approach is crucial in the proof of
Ginzburg |Gil; it also shows that the torsor G — éer is topologically trivial.
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In general, the quotient Gx/Go is not reduced. (This can already be seen when G is the
multiplicative group Gy,.) Since we will only consider constructible sheaves on this quotient,
this non-reduced structure can be forgotten, and we will denote by Grg the (reduced) ind-

variety associated with the ind-scheme Grg.

Any cocharacter v € X,(T) defines a morphism K* — Ti. The image of ¢ under this
morphism will be denoted by t¥. The coset t*Gp is a point in Grg, which will be denoted by
L,.

The Cartan decomposition describes the Gp-orbits in Grg, in the following way (see [Z4, §2.1]
for more details and references).

Proposition 3.2. We have a decomposition

Grg = |_| Gry, where  Gry:= Go - Ly. (3.1)
AEX,(T)t

Moreover, this decomposition is a stratification of Grg and, for any A € X.(T), Grg 18
an affine bundle over the partial flag variety G/Py\ where Py is the parabolic subgroup of G
containing B and associated with the subset of simple roots {a € Ag(G, B, T) | (A, a) = 0}.
We also have

dim(Gr) = (2p, \)

and

The stratification of Grg by Go-orbits will be denoted by .7 .
Finally, we will need a description of the connected components of Grg. For any ¢ €
X.(T)/QV, let us set

Grg = |_| Grpy.
XX (T)T
MQY=c

Then the connected components of Grg are exactly the subvarieties Grf, for ¢ € X,(T)/QY
(see |Z4, Comments after Theorem 1.3.11] for references). In particular, since (p,\) € Z
for any A € QV, the parity of the dimensions of the Schubert varieties Gr)(‘; is constant on
each connected component. A connected component will be called even, resp. odd, if these
dimensions are even, resp. odd.

3.2 Semi-infinite orbits

The Iwasawa decomposition describes (set-theoretically) the Ni-orbits in Grg as follows:

Grg = |_| Sy, where S, := Nx - L,. (3.3)
neX(T)

Each orbit S, is “infinite dimensional,” i.e. not contained in any finite type subscheme of Grg.
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Pé/ _ t2av P, t—2a\/

Figure 1: A small part of the Serre tree

The closure of these orbits for the inductive limit topology on Grg can be described in the

following way:
Se= || S

veX.(T)
v<p

We will soon sketch a formal proof of this equality (see Proposition 3.4 below), but let us first
try to make this result intuitive, at least in the case G = SLs. For that, we denote by a the
unique positive root, and consider the standard Iwahori subgroup

I={(%}) €SLox|a,bt 'c,de O}
and the two maximal parahoric subgroups
Py=SLyo, Pi={(%})€SLyx|a,tbt 'c,de O}
that contain I.

A parahoric subgroup of SLgx is a subgroup conjugated to one of these three standard
subgroups I, Py or P;. Parahoric subgroups form a poset for the inclusion. The Serre tree
is the simplicial realization of the opposite poset. Figure 1 shows a small part of this tree;
namely we just pictured the parahoric sugroups that are conjugated to the standard ones by
elements of the affine Weyl group (see §4.2). Note here that the inclusions P, D I C Py
translate to the fact that the vertices corresponding to P; and P, are incident to the edge
corresponding to I.

Since Iwahori subgroups are conjugated in SLg x and since I is its own normalizer, the set of
edges in the tree incident to a given edge is in bijection with the so-called affine flag variety
SLy /1 = ]P’E. Likewise, the set of parahoric subgroups conjugated to Py, depicted as black
dots on the tree, is in bijection with the affine Grassmannian Grgsy, = SLox/FPy. One can
rephrase this by saying that the group SLg x acts on the tree (transitively on the edges, on
the black vertices, and on the white vertices) and that the stabilizer of the simplex associated
to a parahoric subgroup is the subgroup itself. (The white dots form the second connected
component in the affine Grassmannian Grpgr,.) A slightly more accurate picture of the Serre
tree is given in Figure 2. (But here again we only draw a finite number of edges incident to
each vertex, while as explained above such edges are in fact in bijection with ]P’E)

Likewise, the Iwahori subgroups contained in Fy can be obtained by letting the normalizer
of Py act on I; in other words, the set of edges incident to the vertex Py is in bijection with
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Figure 2: Intuitive picture for Grgg,

L o0y L_ov Lo Loy Loy

Figure 3: More points in Grsy,

Py/I. This is a complex projective line. So the set of edges incident to a given black vertex is
a complex projective line. (The same thing holds also for white vertices.) Our drawings are
thus quite incomplete, because a lot of edges were omitted.

Again, our affine Grassmannian is the set of all black vertices. Here it is worth noting that
the tree metric is related to the description of the ind-structure of Grgy,,: one can take for the
n-th finite-dimensional piece of Grgy,, the set Gr, of all vertices at distance < 2n from Fj.
Further, the analytic (respectively, Zariski) topology of the variety Gr, can also be seen on
the tree: it comes from the analytic (respectively, Zariski) topology on all the projective lines
mentioned in the previous paragraph. Thus, we can for instance see that Gr, is dominated
by a tower of 2n projective lines, because each point at distance < 2n from the origin can
be reached by choosing first an edge around the origin, then another edge around the white
vertex at the end of this edge, and so on 2n times.’

Now let us see how our orbits Grg and S, are depicted in this model. The point L, corresponds
to the Iwahori subgroup t¥ Pyt™", see Figure 3.

The Schubert cell Grg is the orbit of Ly under the stabilizer of the base point Lg; it therefore
looks like the sphere with center Lg going through L. On Figure 4, the diamonds are points
in Gro‘Gv.

5From the algebro-geometric point of view, this process is a particular case of a Bott-Samelson resolution,
as explained in [GL].
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Figure 4: Illustration of a Schubert cell in Grgy,,

Now look at the white vertex between the origin and L,v: edges starting from this vertex form
a projective line, and the other vertices of these edges belong to Gr%v, with one exception,
namely Lg. This point Ly appears thus as a limit (on the projective line) of points in Gr%v,
that is, belongs to the closure of Grro‘Gv . This provides an intuitive interpretation of the inclusion

Grd C Gry’.

In the same line of ideas, the semi-infinite orbit S, can be depicted as the sphere centered
at —oo (also called “horosphere”) and going through L. In Figure 5, the diamonds are points
in Syv.

For the same reason as before, we see that Lg belongs to the closure of S,v. The reader can
however feel cheated here, since we relied on geometrical intuition. For a more formal proof,

one Compu‘ces6
1 at™! t=1 0 t a y
(3% D D) s
1 at™! t=1 0
(om0 e

—1 -1
<(1) atl ) Go — (to 3) Go when a — 0.

€So =L__v

[e3

that is

and therefore

Multiplying on the left by ¢ leads to L,_v € S_ﬂ, whence S, _,v C S_u This justifies (at least

6In fact, this computation is precisely our observation on the tree.
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Figure 5: Illustration of a semi-infinite orbit in Grsi,,

in the case of SLy, but the general case can be deduced from this special case) the inclusion

S.o [ s (3.4)

The proof of the reverse inclusion requires another tool, which is the subject of the next
section.

3.3 Projective embeddings

We now want to embed the affine Grassmannian Grg in an (infinite dimensional) projective
space P(V') in order to get more control over its geometry. Replacing G by a simply connected
cover of its derived subgroup may kill connected components, but has the advantage that the
resulting group is a product of simple groups. Therefore in this subsection we assume that
G is quasi-simple (i.e. that it is semisimple and that the quotient by its center is simple) and
simply connected. (For the applications we consider, the general case will be reduced to this
one.)

The character lattice X*(7T") of T' is the Z-dual of X.(T). Let W be the Weyl group of (G,T),
and let 7 : X, (T') — Z be the W-invariant quadratic form that takes the value 1 at each short
coroot. The polar form of 7 defines a map ¢ : X, (T') — X*(T); from the W-invariance of 7,
one deduces that

t(a¥) = 71(a")a for each coroot . (3.5)

Let g be the Lie algebra of G. The Lie algebra of T' is a Cartan subalgebra h of g. Then 7
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can be seen as the restriction to h of the Killing form of g (suitably rescaled), and X*(T) is a
lattice in the dual space V.

With the help of the Killing form of g, one defines a 2-cocycle of the Lie algebra g®c Clt, 1],
and thus a central extension

0—+CK—g3gecClt,t™!] =0

of this algebra by a one-dimensional Lie algebra CK (see [Kac, pp. 97-98|). The affine Kac—
Moody Lie algebra is then obtained by taking a semidirect product

g=gxCd
with a one-dimensional Lie algebra Cd, where d acts as t% on g ®c Clt,t71].
Further, h C g®c C[t,t~!] can be canonically lifted in §. Then h=hadCK @ Cd is a Cartan
subalgebra of g. Let Ay € (h)" be the linear form that vanishes on h & Cd and that maps K
to 1. Let V(Ap) be the irreducible integrable highest weight representation of g with highest

weight Ag. It is generated by a highest weight vector vy, and the stabilizer of the line [va,]
in P(V(Ag)) is the parabolic subalgebra p~!(g[t]) x Cd.

Thanks to Garland’s work [Gar|, we know that the representation V(Ag) can be integrated to
the Kac-Moody group G that corresponds to the Lie algebra g. This group is the semi-direct
product of a central extension

1-C*X =G —=GICtt ) =1

by another copy of C*, acting by loop rotations. The central C* in G acts by scalar multi-
plication on V' (Ag), so G(CJ[t,t71]) acts on P(V(Ag)). Since the stabilizer of the line [vy,] for
this action is the subgroup G(CJt]), the map g — g - [vp,] defines an embedding

W : G(CItt)/G(CI) < P(V(Ao)).

Further, using for instance the Iwasawa decomposition, one can show that on the level of
C-points, the obvious map

G(C[t,t7'])/G(C[t]) = Gx/Go = Grg
is bijective. We eventually obtain a closed embedding
U: Grg — P(V),
where (here and below) we write V' instead of V(Ag) to shorten the notation.

Certainly, P(V') has the structure of an ind-variety: the finite-dimensional pieces are all the
finite-dimensional projective subspaces P(W) inside P(V). Then ¥ is a morphism of ind-
varieties. Even better: thanks to the work of Kumar (see [Ku, Chap. 7]), we know that the
ind-variety structure of Grg is induced via ¥ by that of P(V).

Lastly, [Kac, (6.5.4)] implies that
\II(LV) € P(V*L(l/))? (36)
where V_,(,y is the subspace of V' of weight —:(v) for the action of h C g.

Remark 3.3. See |[PR, Remark 10.2(ii)] for a comparison between the group G considered
above and a central extension of G considered by Faltings in [Fal.
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3.4 Consequences

After these lengthy preliminaries, we can go back to our problem. We drop our assumption
that G is quasi-simple and simply connected.

Proposition 3.4. Let yu € X, (T'). Then

Su=1]5

v<p

Moreover, there exists a C-vector space V' and a closed embedding VU : Gr“+Q — P(V) such
that the boundary of S, is the set-theoretic intersection ofS with a hyperpl(me H, of P(V):

98, =S, Nu1(H,).
Proof. First we assume that G is quasi-simple and simply-connected, and choose V' and W as
in §3.3.

Let A € X.(T). Writing W(Ly) = Cuv, the vector v belongs to the weight subspace Voo
of V by (3.6). The action on v of an element u € Nx can only increase weights,” hence
uv — v € Zx> (o) Y (The order > on h" used here is the dominance order: nonnegative
elements in h" are nonnegative integral combinations of positive roots.) It follows that

V(u-Ly)eP | Y W |~P| Y 7

x>—t(N) x>—t(N)

Letting u run over Nx, we deduce

U(Sy) c P Z Vi | \P Z Vy

X=>— x> =

Writing these inclusions for all possible A, we conclude that®

LS. =v (P > W

v<p x=—u(p)

This implies that | |, ., Sy is closed in Gre, whence (in view of (3.4)) the first equality in the
statement. For the second one, one chooses a linear form h € V" that vanishes on ) Vx
but does not vanish on W(L,) and takes H,, = P(ker h).

xX>—u(p

"Certainly, above we have described V only as a projective representation of G(C[t,t™']), so it seems
hazardous to let Nx act on V. To be more precise, we observe that the action of § on V' can be extended to its
completion considered e.g. in [Ku, §13.1] (because the part one needs to complete acts in a locally nilpotent
way). Then, using [Ku, Theorem 6.2.3 & Theorem 13.2.8] one sees that this action integrates to an action of
a central extension of Gx. Finally, one observes that the cocycle that defines the central extension is trivial
on N, so that this subgroup can be lifted to the central extension.

8Specifically, one must here observe that v < p in X.(T) implies —¢(v) > —u(p) in h¥. This follows from
the equality (3.5).
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The case of simply connected semisimple (but not necessarily quasi-simple) groups reduces to
the preceding case since such a group is a product of simply connected quasi-simple groups.
Finally, for G general, the action of ¢t identifies GréJer with Grgv (which itself identifies
with the affine Grassmannian of a simply connected cover of the derived subgroup of G) and
sends S, to Sp; this reduces the proof to the case of simply connected semisimple groups, and
allows to conclude. O

Remark 3.5. See |Z4, Corollary 5.3.8] for a different proof of Proposition 3.4, which avoids the
use of Kac—Moody groups.

For symmetry reasons, one should also consider the Borel subgroup B~ opposite to B with
respect to 1" and its unipotent radical N~. One then has an Iwasawa decomposition

Grg = |_| T, where T, = Ny - Ly,
neX(T)

and the closure of these orbits is given by

- || © (37)
veX«(T)
v>p

On the Serre tree (see §3.2), T), is seen as the horosphere centered at +o0o going through L.
This makes the following lemma quite intuitive.

Lemma 3.6. Let u,v € X.(T). Then S, NT, = @ except if v < p, and S, NT, = {L,}.
(For a formal proof in the general case, one uses the projective embedding and weights argu-

ments, as in the proof of Proposition 3.4.)

4 Semisimplicity of the Satake category

From now on in this part, we fix a field k of characteristic 0. Our goal in this section is to
show that the category P o (Grg, k) of perverse sheaves on Grg with coefficients in k and with
#-constructible cohomology is semisimple. Since every object of this abelian category has
finite length, this result means that there are no non-trivial extensions between simple objects.

4.1 The Satake category

Recall the notion of t-structure introduced in [BBD].

Definition 4.1. Let D be a triangulated category. A t-structure on D is a pair (D=0, D=0)
of strictly full subcategories of D which satisfy the following properties:

1. If X € D=0 and Y € D20, then Homp(X,Y[-1]) = 0.

2. We have D=0 C D=0[—1] and D= > D=9[-1].
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3. For all X € D, there exists a distinguished triangle

A—>X—>Bﬂ>

in D with A € D=0 and B € D=°[-1].

We will say that an object in D=0 (respectively, D=?) is concentrated in nonpositive (respec-
tively, nonnegative) degrees with respect to the t-structure. By axiom (2) in Definition 4.1,
these notions are compatible with the cohomological shift, so we may as well consider for
instance the subcategory D=! = (D=%)[—1] of objects concentrated in positive degrees. We
also recall that the heart of the t-structure is the full subcategory A := D=0 N D20 of D; this
is an abelian category, whose exact sequences are the distinguished triangles
1
X=>Y—=Z u>

in D where X, Y and Z belong to A. In particular, this means that for any X,Y in A we
have a canonical identification

Ext4(X,Y) = Homp (X, Y[1]). (4.1)

For instance, the bounded derived category DP(A) of an abelian category A has a natural
t-structure, called the ordinary t-structure, whose heart is A.

Let now X be a topological space and . be a stratification which satisfies certain technical
conditions; see [BBD, §2.1.3]. (These conditions will always tacitly be assumed to be satisfied
when we consider perverse sheaves. They are obvious in the concrete cases we study.) Given
S € ., we denote by ig : S < X the inclusion map. We denote by DE,(X ,k) the bounded
derived category of sheaves of k-vector spaces on X which are constructible with respect to
. Thus, a complex % of k-sheaves on X belongs to DP (X, k) if the cohomology sheaves
" F vanish for [n| > 0 and if each restriction 7§ #" .F is a local system (i.e. a locally free
sheaf of finite rank).

In this setting, we define
PP = {7 € D%(X,k) |VS € &, ¥n > —dim S, #"((is)*F) = 0},
PD=0 = {F € D%(X,k) | VS € &, ¥n < —dim S, #"((is)' F) = 0}.

It is known (see [BBD, §2.1.13]) that (?D=°,?D=%) is a t-structure on D;(X, k), called the
perverse t-structure. The simplest example is the case where . contains only one stratum
(which requires that X is smooth); then the perverse t-structure is just the ordinary t-structure
(restricted to D% (X, k)), shifted to the left by dim X. Objects in the heart Py (X, k) :=
PD=0 N PD20 of this t-structure are called perverse sheaves. The truncation functors for this
t-structure will we denoted P7<; and P7>;, and the corresponding cohomology functors will be
denoted P = Pr<; 0 Prs; = P>y 0 Pre.

It is known that every object in Py (X,k) has finite length, see [BBD, Théoréme 4.3.1].
Moreover, the simple objects in this category are classified by pairs (S,.%), with S € . and &
a simple local system on S. Specifically, to (S,.%) corresponds a unique object % € DE/(X, k)
characterized by the conditions

Ty =0, Flg=L[dimS], *F ePDSH S\ S k), i'F ePDZ1(S\ S k), (42)
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where i : S .S < X is the inclusion map. This .% is a simple perverse sheaf and is usually
called the intersection cohomology sheaf on S with coefficients in .#, and denoted IC(S,.%).
Then the assignment (S5,.Z) — IC(S,.Z) induces a bijection between equivalence classes of
pairs (5,.Z) as above (where (5,.Z) ~ (5,2") it £ = ¥') and isomorphism classes of simple
objects in P (X, k).

We can finally define the main object of study of these notes. Consider the affine Grassmannian
Grg, and its stratification . by Gp-orbits, see §3.1. Then we can consider the constructible
derived category D}(Grg, k), and its full subcategory P o (Grg, k) of perverse sheaves. The
main result of this section is the following.

Theorem 4.2. The category P.o(Grg, k) is semisimple.

Remark 4.3. Note that the assumption that char(k) = 0 is crucial here. The category
P #(Grg, k) with k a field of positive characteristic is not semisimple.

The strata Gr)(‘; of & are simply connected, because they are affine bundles over partial flag
varieties (see Proposition 3.2). Thus, the only simple local system on Gr)(‘; is the trivial local
system k. We denote by IC) the corresponding intersection cohomology sheaf. Then, the
simple objects in P & (Grg, k) are (up to isomorphism) these complexes ICy, for A € X, (T)*.
Since every object in P »(Grg, k) has finite length, and in view of (4.1), Theorem 4.2 follows
from the following claim.

Proposition 4.4. For any X\, € X.(T)", we have

The main ingredients in the proof of Proposition 4.4 are the following facts:

e the cohomology sheaves /% (IC)) vanish unless k and dim(Gr) have the same parity
(see Lemma 4.5 below);

o if Grl, C Grp, then codim x(Gr") is even (see §3.1).
G

4.2 Parity vanishing

As explained above, a key point in the proof of Proposition 4.4 is the following result.

Lemma 4.5. For any A € X.(T)*", we have

HA™ICy) =0 unless n = dim(Gry) (mod 2).

A similar property in fact holds for Iwahori-constructible perverse sheaves on the affine flag
variety. In this section, we argue that this property can be deduced from the existence of reso-
lutions of closures of Iwahori orbits whose fibers are paved by affine spaces. (These arguments
are sketched in [Ga, §A.7]. A different proof of this property can be given by imitating the
case of the finite flag variety treated in [Sp].)
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As in Section 3, let W be the Weyl group of (G,T) and let Q¥ C X.(T') be the coroot lattice.
The affine Weyl group and the extended affine Weyl group are defined as

Wag =W x Q¥ and Wag = W x X, (T)

respectively. As is well known, W,g is generated by a set S,z of simple reflections, and
(Wagt, Sagt) is a Coxeter system with length function ¢ which satisfies

l(w-A) = > [N @)l + > 1+ (A a)l
a€AL(G,BT) a€AL(G,BT)
w(a)eAL(G,B,T) w(—a)eAL(G,B,T)
for w € W and A € QV. This formula makes sense more generally for A € X,(T), which
allows to extend ¢ to Wyg. Then if Q = {w € Weg | £(w) = 0}, the conjugation action of the
subgroup €2 on W preserves S,g, hence also Wy, and we have Wog = Wag % Q.

As in §3.3, let B~ C G be the Borel subgroup opposite to B with respect to 7', and let
I C Gp be the corresponding Iwahori subgroup, defined as the preimage of B~ under the
evaluation map Gp — G given by t — 0 (i.e. the arc space of the group scheme considered
in Remark 3.1(2), for the Borel subgroup B~ instead of B). The Bruhat decomposition then
yields

wEWaﬁ/W
and IwGp/Goe is an affine space of dimension ¢(w) if w is of minimal length in the coset
wW. (Here, if w=wv-A with v € W and A € X,.(T), by IwGo/Go we mean the I-orbit of
t*Go/Go, where v is any lift of v in Ng(T) C G.)
Let A € X.(T)*. Then

Gry= || IwGo/Go
WEWt\W/W

is a union of Schubert cells. One of these cells is open dense in Grg; we denote by w) the
unique element in W¢,\W which is minimal in w)W and such that Jw)Gp/Ge is open in Gré;.
Certainly then we have

IC, = IC(Iw)\Gov/Go, k).

Hence Lemma 4.5 follows from the claim that for any w € Waﬂ‘ which is minimal in wW we
have
A" (ICIwGo/Go,k)) #0 = n=/{(w) (mod 2). (4.3)

To prove (4.3) we introduce the affine flag variety
Flg := G/I

(see also Remark 3.1(2)). As for Grg, this variety has a natural complex ind-variety structure,
and a Bruhat decomposition

Flg= || Iwl/I,

wEWag
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see [GO| for details and references. This decomposition provides a stratification of Flg, which
we denote by 7. Then we can consider the constructible derived category Dbg(Flg,k) and
the corresponding category P #(Flg, k) of perverse sheaves.

Let m : Flg — Grg be the natural projection. This morphism is smooth; in fact it is a
locally trivial fibration® with fiber G/B~. From this property and the characterization of
the intersection cohomology complex given in (4.2), it is not difficult to check that for any
w e Wag which is minimal in wW, we have

T IC(TwGo/Go, k) [l(wy)] = IC(Twwol /1, k),

where wy € W is the longest element (so that ¢(wy) = dim(G/B~)). This shows that (4.3)
(hence also Lemma 4.5) follows from the following claim.

Lemma 4.6. For any w € Wag we have

A" (IC(IwI/I,k)) #0 = n=/L(w) (mod 2).

Proof. For any s € S, denote by Js = IsI U I the minimal parahoric subgroup of Gx
associated with s. Fix w € W,g, and choose a reduced expression w = (s, , S, w) for w
(with s; € Sy and £(w) = 0). We can then consider the Bott-Samelson resolution

Tw : Jsy xT oo xD g ! (IwI/I) — TwI/I
N——
(a point)

induced by multiplication in G. It is known that m, is proper and is an isomorphism over
TwI/I. Tt is known also that each fiber 7! () is paved by affine spaces. (For this claim in the
case of finite flag varieties, see [Gau]. See also [Ha] for a different proof, which works mutatis
mutandis in the affine setting.) Therefore

HZH—f(w) (ﬂ-il (CE), k)

is nonzero only if n + ¢(w) is even. By proper base change, this cohomology group is the stalk
at x of the cohomology sheaf ™ ((my )i k[¢(w)]), so that

A" (mu) K[l(w)]) #0 = n={(w) (mod 2).

Our desired parity vanishing property then follows from the celebrated Decomposition Theo-
rem (see [BBD, Theorem 6.2.5]), which here implies that IC(Iwl/I;k) is a direct summand
of the complex (my )1 k[¢(w)]. O

4.3 Proof of Proposition 4.4

We follow the arguments in [Ga, Proof of Proposition 1| (but adding more details). We
distinguish 3 cases (of which only the third one will use Lemma 4.5).

9This fibration is in fact topologically trivial, as follows from the realization of Grg as a topological group,
see [Gi, §1.2].
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First case: A = pu.

Consider the diagram

i = 3 =
Gry, Crp <—— Gr ~ Crp,

Grg

where all maps are the obvious embeddings. Set .# = (iy:1)*ICy; by (4.2), this complex
of sheaves is concentrated in negative perverse degrees. Likewise, the complex of sheaves
(ixi)'IC} is concentrated in positive perverse degrees. It follows that

N .
HomD;(@\Grévk) (Z, (ixi) IC,[1]) = 0. (4.4)
Applying the cohomological functor Hom%,, . ((z A 2, IC )\[1]) to the distinguished trian-
| k;ﬂ( ra, )
gle

3° (10 gg) = (1) = " (IC[g5) =

we get an exact sequence

HomD};(Grg,k) ((Z)\Z)l ﬁ, ICA[lD — HOHID}; (Grg,k) (IC)\, IC)\[lD
— Hompy, (qrg 10 ()1 Kgpa [dim Grgg], ICA[1]). - (4.5)

The first space in (4.5) is zero, thanks to (4.4) and because by adjunction we have

Homp (e a0 (001 7, ICA[1]) = Hom ), (Z, (ixi) ICy[1]).

(G—ré;\Gl)G‘,k)
By adjunction again, the third space in (4.5) is
Hom i (Gire; 1) (01 Ky [dim Grg], IC,[1]) = Hompy 1) (kgyy [dim Grgl, (jx) TCA[1])
= Homey (Gré‘;,k) (kGréﬂ kGré‘; [1])
= HY(Gr; k).

This last space is again zero since Gré, is an affine bundle over a partial flag variety (see
Proposition 3.2), so has only cohomology in even degrees.

We conclude that Homey(Gerk)(IC)\, IC,\[1]) =0.

Second case: Neither Grg C Gré nor Gr’("; C Grg.

Consider the inclusion i, : Gré — Grg. Since IC, is supported on Gré, we have IC,, =
(4u)+(i,)*IC,, and therefore by adjunction

Homey(Gr&k)(IC)\,ICM[l]) =~ Hom “ICy, (i,)"IC,[1]).

Dby (@71() ((ZM)
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Now set Z = GréﬂGré and consider the inclusion f : Z — G—ré Since (7,,)*IC, is supported
on Z, it is of the form f.% for some complex of sheaves % € D;(Z, k). Arguing as in the
first case, we see that .# is concentrated in negative perverse degrees and that f'(i,)*IC,, =
(tuf ) IC,, is concentrated in positive perverse degrees. Therefore

as desired.

Third case: \ # p and either Gy C Gr}, or Grf, C Grp\.

Since Verdier duality is an anti-autoequivalence of D}(Grg,k) which fixes IC) and IC,,

we can assume that Grév - Gré;. Let 7, : Grév — Grg be the inclusion, and let ¥ €
D" (Grg, k) be the cone of the adjunction map IC, — (ji,)«(ju)*IC, = (Ju)+Kgpe, [dim Grl).
It follows from the definition of the perverse t-structure that (ju)*k(}rg [dim Gr{.] is concen-
trated in nonnegative perverse degrees, and it is a classical fact that the morphism IC, —
P 0((]@)*&@% [dim Grf4]) induced by the adjunction map considered above (where P.727°(?)
means the degree-0 perverse cohomology) is injective, see e.g. [BBD, (1.4.22.1)]. Therefore, ¢
is concentrated in nonnegative perverse degrees.
From the triangle
. . 1]
IC, = (Ju)kap [dim Grgg] = & —

we get an exact sequence

HomD;(Gm,k) (ICx.9) — Hong’p(GrG,k) (ICx, IC,[1])
- HomD};(Grg,k) (ICx; (J)s ke [dim Grg; +1]). (4.6)

As in the second case (but now using the ((—)*, (—).) adjunction), using the fact that ¢ is

concentrated in nonnegative perverse degrees and supported on Gré, which is included in

Grg N Gr)(‘;, one checks that the left Hom space is zero.

By (4.2), (ju)*IC, is concentrated in degrees < — dim Grf,. On the other hand, by Lemma 4.5,
this complex has cohomology only in degrees of the same parity as dim(Grg). Noting that
dim(Grgy) = dim(Gr¥,) (mod 2) (because these orbits belong to the same connected compo-
nent of Grg), this implies that in fact (j,)*IC) is concentrated in degrees < — dim Grf, — 2.
It follows that

vanishes.

Our exact sequence (4.6) then yields the desired equality Home;,(Grg,k)(ICAa IC,[1]) = 0.

Remark 4.7. One can give a slightly shorter proof of Proposition 4.4 as follows. Lemma 4.5
and the Verdier self-duality of the objects IC) show that these objects are parity complexes
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in the sense of [JMW, Definition 2.4| (for the constant pariversity). More precisely, IC) is
even if dim(Gry) is even, and odd if dim(Grp) is odd. Now Proposition 4.4 is obvious if
dim(Grgy) and dim(Gr¥,) do not have the same parity (because then ICy and IC, live on
different connected components of Grg) and follows from [JMW, Corollary 2.8] if they do
have the same parity.

4.4 Consequence on equivariance

Consider the category
Pac, (Grg, k)

of Go-equivariant perverse sheaves on Grg; see §A.1. (Here the stratification we consider is
#.) We have a forgetful functor

PGO (Gr(;, k) — Py(Grg, k)7

which is fully faithful by construction. As a consequence of Theorem 4.2, each object in
P #(Grg, k) is isomorphic to a direct sum of the simple objects ICy, hence belongs to the
essential image of this functor. We deduce the following.

Corollary 4.8. The forgetful functor
PG’@ (Grg, k) — Py(Grg, k)
s an equivalence of categories.

Remark 4.9. See §10.2 below for a different proof of Corollary 4.8 which does not use the
semisimplicity of P o (Grg, k) (but requires much more sophisticated tools).

5 Dimension estimates and the weight functors

5.1 Overview

Recall that if F is a field, the split'? reductive groups over F are classified, up to isomorphism,
by their root datum?!! (see e.g. [SGA3, Exposé¢ XXIII, Corollaire 5.4 and Exposé XXII, Propo-
sition 2.2|). In particular, we can consider the reductive k-group G}/ which is Langlands dual
to G, i.e. whose root datum is dual to that of G (which means that it is obtained from that
of G by exchanging weights and coweights and roots and coroots); this group is defined up to
isomorphism.

10A reductive group is called split if it admits a maximal torus which is split, i.e. isomorphic to a product of
copies of the multiplicative group over F. Here a maximal torus of a reductive group H is a closed subgroup
which is a torus and whose base change to an algebraic closure F of F is a maximal torus of Spec(F) X spec(F) H
in the “traditional” sense, see e.g. [Hul.

NIf H is a split reductive group and K C H is a maximal torus, then the root datum of H with respect
to K is the quadruple (X*(K%), X+ (K5), A(Hy, K5), AV (Hy, K5)) where F is an algebraic closure of F,
Hg := Spec(F) Xspec(F) H, K§ = Spec(F) Xspec(F) K, A(Hg, Kg), resp. AY (Hy, K§), is the root system,
resp. coroot system, of He with respect to K, together with the bijection A(Hs, K) — AV (Hy, K¥) given
by a — aV.
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The geometric Satake equivalence is the statement that the category Pg, (Grg, k) is equiva-
lent to the category of finite-dimensional representations of G|/, in such a way that the tensor
product of representations corresponds to a natural operation in Pg, (Grg, k) called convolu-
tion.'? In fact, we will even explain how to construct a canonical group scheme G\, which is
split reductive (with a canonical maximal torus) and whose root datum is dual to that of G,
and a canonical equivalence of monoidal categories Pg, (Grg, k) = Repy(GY).

To achieve this goal, the method is to define a convolution product on the abelian category
P, (Grg, k) so that this category satisfies the conditions of Theorem 2.7 with respect to the
functor

H*(Grg,?) : Py (Grg, k) — Vecty.

We will then need to identify the affine group scheme provided by Theorem 2.7. The construc-
tion of a (split) maximal torus in this group scheme, which is the first step in this direction,
is based on Mirkovi¢ and Vilonen’s weight functors, which we introduce in this section.

Recall that we have chosen a maximal torus and a Borel subgroup T'C B C G. Then T' C G
acts on Grg = Gy /G with fixed points

(Gre)" = {L,: pe X.(T)}.

The choice of a dominant regular cocharacter n € X, (T') provides a one-parameter subgroup
Gm C T, whence a C*-action on Grg with fixed points (Grg)”. The attractive and repulsive
varieties relative to the fixed point L, coincide with the semi-infinite orbits S, and T}, defined
in Section 3:

Su:{xGGrg|77(a)-x—>L“ when a — 0}

and
TM:{xeGr(;My(a)-x%Lu when a — oo}

(see §5.2 for details). With these notations, the weight functor F, is defined either as the
cohomology with compact support of the restriction to S, or as the cohomology with sup-
port in 7),. These two definitions are equivalent, thanks to Braden’s theorem on hyperbolic
localization.

Remark 5.1. In Ginzburg’s approach to the geometric Satake equivalence |Gi|, the maximal
torus in G}/ is instead constructed using equivariant cohomology and the functors of co-
restriction to points Ly. For a comparison between these points of view, the reader may
consult [GR].

5.2 Dimension estimates

Recall from §3.1 that p denotes the halfsum of the positive roots, considered as a linear form
X.(T) — 1Z, and that Q¥ C X.(T) denotes the coroot lattice.

Theorem 5.2. Let A\, € X (T) with A\ dominant.

12Note that if we drop this requirement, the statement becomes vacuous, because the categories P, (Gra, k)
and Rep, (Gy) are both semisimple with simple objects parametrized by X, (T)". This weaker statement might
be already nontrivial, however, for more general coefficients (see Part IT).
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1. We have

GraNS,#@ <= L,€CGry <= pcConv(WA)N(A+QY),

where Conv denotes the convexr hull.

2. If u satisfies the condition in (1), the intersection Gr)c‘;ﬂSH has pure dimension'> {p, \+
1)-

3. If u satisfies the condition in (1), then Gré;ﬂSH s open dense in Grgﬂsﬂ; in particular,

the irreducible components of Gre; NS, and Gr, NS, are in a canonical bijection.

Proof. (1) Let n € X, (T) be regular dominant. If g € Ni, then n(a)gn(a)~! — 1 when a — 0.
Therefore, looking at the induced action of C* on Grg, we obtain that for any p € X, (7)),

S, C {xz € Grg | n(a) - * = L, when a — 0}.

In view of the Iwasawa decomposition (3.3), this inclusion is in fact an equality. Then the
stability of Gr)c‘; by the action of T" implies the first equivalence.

On the other hand, we have
WA C {u€XT)| L, € G},

and using the Cartan decomposition (3.1), we see that this inclusion is in fact an equality. The

description of Grp, recalled in (3.2) then implies that L, e Crp if and only if the dominant
W-conjugate u™ of u satisfies u* < A, that is, if and only if

WpC{ve X T)|v <AL
Using [Bou, chap. VIII, §7, exerc. 1], we see that this condition is equivalent to

p € Conv(WA) N (A+QY).

(2) We start with the following remarks. From (1), we deduce that Gr, meets only those S,

such that p < A, therefore Gr)(‘; C S_)\.M If wg € W is the longest element (so that wgA is
the unique antidominant element in W), then conjugating by a lift of wy we deduce that

GI“)C\; C Two)\-

Note that if p satisfies the condition in (1), then woA < p < A. We will now prove, by
induction on (p, u — woA), that

dim (G—%HS_“> < (o, A+ ). (5.1)

If 4 = wpA, then from the remarks above we have Grg N Swor € Swor N Twox = {Luwgr} (see
Lemma 3.6), so that the claim holds in this case.

3By this, we mean that all the irreducible components of this variety have dimension {p, A + ).

1To prove the inclusion Gry C S_M one can also argue as follows. The open cell No B, is dense in Go and
B, stabilizes Ly, therefore Gré; = Go - L) contains No - L as a dense subset, whence Gré; CNo Ly CS,.
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Assume now that ;> wgA, and choose a hyperplane H,, as in Proposition 3.4. Let C be an

irreducible component of Gr)(‘; N S_u and let D be an irreducible component of C N V~1(H,).
Then dim(D) > dim(C') — 1, and D contained in

U (H,) NGry NS, =05, NGy = | J S, NG,
v<p

so by induction dim D < max,<,(p, A +v) = (p,A + pu) — 1. We deduce that dimC <
dim D + 1 < {(p, A + ), which finishes the proof of (5.1).

The inequality (5.1) implies that each irreducible component C' of Grgy NS, has dimension at
most (p, A + ). We will now prove that this dimension is always exactly (p, A + u). First,

if 4 = A then as observed above we have Gr)(‘; N S_A = Grg. Since this variety is irreducible
of dimension (2p,\) = (p, A + A) by Proposition 3.2, this implies that its (nonempty) open
subset Gr)(‘; N Sy has the same properties. Now, assume that p < A, and fix an irreducible

component C' of Grgy N S,,. Set d := (p,2)\) — dim(C), and let H, be as in Proposition 3.4.
Then we have

C C Grhn s, = Gy N T~ (H,).

Hence there exists an irreducible component D; of the right-hand side containing C. Then
dim(D1) = (p,2A) — 1, and D is the disjoint union of its locally closed intersections with the
orbits S, with woA < v < A; hence there exists such a v; such that C; := D; NS, is open

dense in Dy. We necessarily have v; > u since otherwise C' would be contained in Grg NoS,,

which is not the case. Now (' is an irreducible component of Gré;ﬂS,,l of dimension (p, 2)) —1
such that C; contains C. If d > 1 we must have u < vq; in fact, otherwise from the facts that
C C C7 and that e N

Ci=CNS,, and C=CNSY,

we would deduce that C' C C1, so that C' = Cy (which is impossible for reasons of dimension)

since both of these varieties are irreducible components of Grg nsS,.

Repeating this argument we find coweights vy, - -+ , vy which satisfy
Py <vg1<---<v <A (5.2)

and irreducible components C; of Gr} N S, such that C C C; and dim(C;) = (p,2)\) — i.
Then (5.2) implies that (p, ) < (p,\) — d, or in other words that d < (p,\) — (p, u); this
implies that

dim(C) > (p, A+ ),

as expected.
(3) Let Z be an irreducible component of Grjx N S,. Then Z must meet Gryy, otherwise by

3.2) it would be contained in some Gr}., with n < X, and the inequality dim Z = (p, X + pu) >
G
.1+ p) would contradict (2). Therefore Z N Gry is open dense in Z. U
Py T M €

Remark 5.3. The irreducible components of the intersections Grg NSy, or sometimes those of
the intersections GréﬂS 1, are called Mirkovié—Vilonen cycles; they have been studied and used
extensively in various fields since their introduction in [MV2], see e.g. [BrG, GL, BaG, Kam]|.
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The following corollary will prove to be useful.

Corollary 5.4. Let A € X, (T)", and let X C Gré, be a closed T-invariant subvariety. Then

dim(X) < A+ 1)
im( )_“gg@)m + 1)
LueX

Proof. Let n € X,(T) be regular dominant. We saw during the proof of Theorem 5.2(1) that
S, ={z € Grg | n(a) - — L, when a — 0}.

Therefore X meets S, if and only if L, € X, whence

and therefore

The corollary now follows from Theorem 5.2(2). O

The following theorem is the analogue of Theorem 5.2 for the Borel subgroup B~ in place
of B.

Theorem 5.5. Let A\, u € X,.(T') with A\ dominant.

1. We have

GrayNT, #9 <= L,€Gry <= pc Conv(WA)N(A+QY).

2. If u satisfies the condition in (1), the intersection Gry:NT), has pure dimension {p, \— pu).

3. If u satisfies the condition in (1), then GrgﬂTﬂ is open dense in GrgﬂTH; in particular,

the irreducible components of Gr, N'T), and Grey N'T), are in a canonical bijection.

5.3 Weight functors
Recall that if X is a topological space, i : Y — X is the inclusion of a locally closed subspace
and .# € DP(X, k), then the local cohomology groups H¥ (X, %) are defined as H*(Y,4'.%).

Proposition 5.6. For each o € Pg,(Grg, k), u € X (T) and k € Z, there exists a canonical
isomorphism

HY, (Gra, o) = HE(S), &),
and both terms vanish if k # (2p, ).
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Proof. For all A € X, (T)*, we have ”Q{‘Grge D§_<2p7>‘>(Gré‘;, k) by the perversity conditions

(see §4.1). Further, the dimension estimates from Theorem 5.2(2) imply that H*(GraNS,; k) =
0 for k > (2p, A+ ), see [Iv, Proposition X.1.4]. Using an easy dévissage argument, we deduce
that

HE(Gry N Sy, o) =0 for k > (2p, p).

Filtering the support of & by the closed subsets Grg, we deduce that
HE (S, o) =0 for k> (2p, ).

(To prove this formally, one can either use a spectral sequence or write down distinguished
triangles associated to inclusions of an open subset and its closed complement. With both
methods, in order to deal with a sequence of closed subsets, it is convenient to enumerate the
dominant weights as (A, ),>0 in such a way that (A\; < A;) = (i < j).)

An analogous (dual) argument, using [Iv, Theorem X.2.1], shows that
H%L (Grg, o) =0 for k < (2p, ).

Lastly, Braden’s hyperbolic localization theorem [Br, Theorem 1] provides a canonical isomor-
phism
HY, (Grg, o) 2 HE(Sy, )

for any k € Z. The claim follows. O

Remark 5.7. 1. See [Xu, §1.8.1] for a discussion of the validity of the normality assumption
needed to apply Braden’s theorem, and for an alternative proof using [DrG| instead
on [Br| (and which therefore avoids this normality question).

2. Explicity, the isomorphism in Proposition 5.6 is constructed as follows. Let
p:1,— Grg and s,:S5, — Grg

be the embeddings, and consider also the natural maps

m Ty = {Ly}, mh Sy = (L}, il {Ly} = T if : {Ly} — S

By adjunction and the base change theorem, there exist canonical isomorphisms

Hom (i) (t,)' (=), (i)' (s) (=) = Hom((t,)' (=), (i)« (i)' (54)" (=)
2 Hom ((t,)' (=), (£)' (50 (5) ()3

hence the adjunction morphism id — (s,)«(s,)* induces a morphism of functors

(i) (t)" = (62) (5)"

Finally, one identifies the functors (zg)* and (7‘(‘5)*, resp. (zﬁ )' and (775 )1, when applied
to “weakly equivariant” objects; see |Br, Equation (1)].
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In view of this proposition, for any p € X,(T') we consider the functor
FM : Pa, (Gr(;, k) — Vecty
defined by
Fules) = HEP (Gra, of) = HEP (S, ).

Since the category Pg,, (Grg, k) is sermslmple (see Theorem 4.2 and Corollary 4.8), this functor
is automatically exact.

Remark 5.8. 1. The Gp-invariance is not used in the proof of Proposition 5.6 (only the
constructibility with respect to Gp-orbits matters).

2. The same arguments show more generally that if .% is in P (Z, k), where Z C Grg
is a locally closed union of Gp-orbits (and where by abuse we still denote by . the
restriction of this stratification to Z), then for any A € X, (T)* such that L) € Z and
any k € Z there exists a canonical isomorphism

Hf,2(Z, F) = HE (SN Z,.F),

and that these spaces vanish unless k& = (2p,A\). (Note that if Z is not closed, the
condition Ly € Z is not equivalent to the condition Sy N Z # @. In particular, Z might
not be covered by the intersections Z N Sy where A € X, (T) is such that Ly € Z.)

5.4 Total cohomology and weight functors

We now consider the functor
F:Pg,(Grg, k) — Vecty

defined by
F(«7) = H*(Grg, o).

Theorem 5.9. 1. There exists a canonical isomorphism of functors

F @ F PGO Grg, )—)Vectk.
neX(T)

2. The functor F is exact and faithful.

Proof. (1) Let o/ € Pg,(Grg, k). Our aim is to construct a canonical isomorphism
H*(Grg, o) = D Fu(«),
neX(T)

and more precisely to construct a canonical isomorphism

H*(Grg, o @ Fu(

HEXA(T)
(2p,u)=k

for each k € Z.
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Without loss of generality, we may assume that o7 is indecomposable, and in particular that
the support of o is connected.

For n € %Z, set

Z, = |_| T,,.

neX«(T)
(p,)=n
Then both
U Z, and U Zn,
neZ nEi+Z

are unions of connected components of Grg. As supp &/ was assumed to be connected, it is
contained in one of these subsets. Let us assume that it is contained in the first one, the
reasoning in the other case being entirely similar.

We endow Z,, with the topology induced from that of Grg. Then Z, is the topological disjoint
union of the 7T}, contained in it, and it follows that

0 if k # 2n;
MY (Gro. ) =0 @y B () itk =20 (5-3)
{(psp)=n
By (3.7), the closure of Z,, is
Ty = Zpy U Zpi1 U Zyio oo = Zp U Zpi 1,

so there is a diagram of complementary open and closed inclusions
Toi1 — Zn & 7.

Applying the cohomological functor H*(Z,,?) to the distinguished triangle

1
ini = oy — jug oty s
where o7, is the corestriction of &/ to Z,, we obtain a long exact sequence

e H—’;Hl(Grg,M) — HY, (Grg, o) = Hy, (Grg, o) — Hil;:il((}rg,d) —

For n large enough, supp & is disjoint from Z,,, because supp </ is compact and Z, is far
away from the origin of Grg.'® Consequently H’Z—(Grg, /) = 0 for n large enough. Using the
long exact sequence above and (5.3), a decreasing induction on n leads to

H%(GI‘G,M) =0 if k is odd or if n >

)

TS

k ~ . HE P
HT/Q(GYG’ ) HZ—n(Gr(;, ) if k£ is even and n <

lz
H:  (Grg, o)

Zk )2

5The reader may here have in mind the Serre tree considered in §3.2: Z, is a union of horospheres centered
at +oo and going through L,,v; for n large enough, this is located far away on the right.
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One concludes by taking n small enough so that supp .« C Z,,.

(2) The exactness is automatic since the category Pg, (Grg, k) is semisimple (see the com-
ments before the theorem). Given the exactness, the faithfulness means that F does not kill
any nonzero object in Pg,(Grg, k). So let us take a nonzero perverse sheaf </ in our cate-
gory. Then supp &/ is a finite union of Schubert cells Gr)c‘;. Let us choose A maximal for this
property. Then /| o = k[dim Gr}] and as in the proof of Theorem 5.2(2) we have

((supp &) ~ Grg) NTy=2 and GriNTy={L,},
and therefore Fy () # 0, which implies that F(2) # 0. O

Remark 5.10. The proof of Theorem 5.9 has broken the symmetry between the two sides of
hyperbolic localization, so let us try to restore it. Given p € X, (T'), let us define the inclusion
maps

/ 11 / S//

TM—“>T_M—“>G1“G and SMLS_M—“>G1"(;.
v v
ty Sp

Then for each &/ € Pg, (Grg, k), we have

Hi—(Grg, o) = H* (Gra, (t))(1))' ),
HY (S}, o) = H*(Gra, (s)s ()" ),
HY, (Grg, o) = H(Grg, (t0)1(8,) ()" (1)) ),
= fyt),
HE (S0, /) = HE(Grg, (57)s(5))1(57,)' (57,)" )
i suls;

One can check that the adjunction maps and hyperbolic localization give rise to a commutative
diagram

H*(Grg, )
(tZ);(tZ)’—)id id%(sﬂ)*(sz{‘ B
H%(Grg, o) Hk(SM, o).
N
id—)(t:t)*(tL)* (sL);(sL)’—)id
Hk (GI‘ M) hyperbolic loc. Hk(S M)
T, Gy ~ = MO

If k = (2p, ), then the three bottom arrows are isomorphisms, so the four bottom spaces can
be identified: they define the functor F,. At this point, let us write

Fu(e) 2 HE (Grg, o) 25 F (o)
for the two top arrows of the diagram above. Theorem 5.9 shows that for each k € Z,

H*(Gra, o) = @D im(i,), (5.4)
neX(T)
(2p,u)=k
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and likewise
H* (Grg, o) = GB coim(p, ), (5.5)
veX.(T)
(2p,v)=k
where coim(p,) = H*(Grg, )/ ker(p,) is the coimage of p,. Further, if u # v and (2p, u) =
(2p,v), then u £ v, so S, N T_u = @ by Lemma 3.6, and therefore p, o i, = 0. This implies
that the decompositions (5.4) and (5.5) of H¥(Grg, &) coincide. The decomposition

H*(Gra, o) = @ Fu(«)
neX(T)
(2p,u)=k

is therefore defined without ambiguity.

5.5 Independence of the choice of Torel

To define the functors F, we started by choosing a Torel (or Borus) 7" C B. In this subsection
we show that these functors are in fact independent of this choice, in the following way. If we
fix a Torel T' C B, then any other Torel will be of the form ¢T¢~* C gBg~! for some g € G,
whose class ¢T" € G/T is uniquely determined. Then there exists a canonical isomorphism
X.(T) = X.(gTg™ ") sending A : C* — T to the cocharacter z — gA(z)g~'. We use this
operation to identify X,(T) and X.(gT¢g~1).! Then for A € X.(T) we can consider both
the A-weight functor F) constructed out of the Torel T" C B, and the A-weight functor Fg\T
constructed out of the Torel ¢T'¢g~' C gBg~".

Lemma 5.11. In the setting considered above, for any gT € G/T there exists a canonical
isomorphism of functor Fy = F?\T.

Proof. Set Xy := {(z,¢gT) € Grg x G/T | x € g- S\}, and consider the diagram

Gr(;<a—Grg><G/T = X\

where a, b, d are the natural projections, and c¢ is the embedding. Let .% in P o (Grg, k), and
consider the complex of sheaves b.cic*a*# = di(ac)*.%. By the base change theorem, the fiber
of this complex over g7 is R['.(g - Sy, #). Applying Proposition 5.6 for the choice of Torel
gTg~! C gBg™!, we see that this fiber is concentrated in degree (),2p). Hence the complex
b.ac*a*.F itself is concentrated in degree (A, 2p).

Next, the proof of Theorem 5.9 (and the comments in Remark 5.10) can also be written “in
family” over G /T’; this shows that #(2/N (b*c!c*a*ﬁ) is a direct factor of

2N (bea* F) = HeA (Grg, F) @k ka1

1Note that this construction depends on the choice of Borel subgroup: for two general maximal tori in G,
there is no canonical identification of their cocharacter lattices!
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(where the isomorphism follows from the projection formula). Since this sheaf is a constant
local system, we deduce that (2N (b*c!c*a*ﬁ) is also a constant local system. Hence its
fibers over any two points can be identified canonically (because they both identify with global
sections); in particular we deduce a canonical isomorphism Fy — Fﬁ’\T for any ¢T' € G/T. O

Remark 5.12. Note that the proof of Lemma 5.11 only relies on the .#-constructibility of %,
and not on its Gp-equivariance; in particular, this proof is independent of Corollary 4.8. (This
fact does not play any role in the present case when k is a field of characteristic 0, but will be
important in the case of general coefficients considered in Part II.)

5.6 Weight spaces of simple objects

Proposition 5.13. Let A\, n € X, (T') with A dominant. Then dimF,(IC)) is the number of
wrreducible components of GrgﬂSﬂ. In particular, it is nonzero if and only if p € Conv(WA)N

(A+QY).
Proof. For each n € X,(T)™", one of the following three possibilities hold:
° GrnG does not meet supp IC,, and IC)\|Gr’C’; = 0;
e 7=\ and IC>\|Grg € D==Cr) (Grg, k);
o 1) < A and ICy|gyn, € D=~®01=1(Grl, k)
(see (4.2)). In the last case, we can in fact replace —(2p,n7) — 1 by —(2p,n) — 2 because of
Lemma 4.5 (and the fact that n < A = (2p,\) = (2p,n) (mod 2)).

When we gather these facts to reconstruct ng o >(S;u IC,) using the same method as in the
proof of Proposition 5.6, only the stratum Gré, contributes, and we obtain an isomorphism

(2p,1) o H(20,1) A
Hc (SN’IC)\) = Hc (GerSH’ICA|Gr>C‘;)'
Therefore

F(IC) = HZP (Gry 1 5, IC) 0 ) = HEPAH (G 1 5, K).

The right-hand side is the top cohomology group with compact support of Gré, NS, by
Theorem 5.2; it therefore has a natural basis indexed by the irreducible components of top
dimension of this intersection.!”

The last claim then follows from Theorem 5.2. O

Remark 5.14. 1. See Proposition 11.1 below for a proof, based on slightly different ideas,
of a statement which reduces to Proposition 5.13 in the case k is a field of characteristic

0.

7 This property is a classical fact about the top cohomology with compact supports of algebraic varieties,
which follows e.g. from the considerations in [Iv, §X.1].
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2. In a similar vein, one can describe the multiplicity space of a simple object IC, as a
direct summand of a product ICy «IC,, (where * is the convolution product introduced
in §6.2 below) in terms of cohomology of a certain variety, see [Z4, Corollary 5.1.5] for
details.

6 Convolution product: “classical” point of view

Our goal in Sections 6-7 is to endow the category Pg,(Grg, k) of Go-equivariant perverse
sheaves on Grg with the structure of a symmetric monoidal category. We first define the
convolution product of two equivariant perverse sheaves, and with the help of the notion of
stratified semismall map, we show that the result of the operation is a perverse sheaf. We also
define an associativity constraint. To proceed further, we will need a different point of view on
convolution, which uses an important auxiliary construction, known as the Beilinson—Drinfeld
Grassmannian. This is considered in Section 7.

6.1 Stratified semismall maps

We first consider a general result, which guarantees that the direct image of a perverse sheaf
under a stratified semismall morphism!® is a perverse sheaf.

Let (X,.7) and (Y, %) be two stratified algebraic varieties, and let f : Y — X be a proper
map such that for each U € %, the set f(U) is a union of strata. We say that f is stratified
semismall if for any stratum 7' C f(U) and any x € T, we have

1
dim(f~ () NU) < 5 (dim U — dim T).

We say that f is locally trivial if for any (T,U) € 7 x % such that T C f(U), the map

UN f~YT) — T induced by f is a Zariski locally trivial fibration.

Proposition 6.1. If f is stratified semismall and locally trivial and if % is a perverse sheaf
on'Y constructible with respect to % , then f.F is a perverse sheaf on X constructible with
respect to 7 .

Proof. For any stratum T € .7, we can consider the restriction

fr

Y1) T.

[
U = (mnu

Ucw

We denote by fru : f~HT)NU — T the restriction of f (which is a Zariski locally trivial
fibration by assumption if 7' C f(U)). Note here that since f(U) is a union of strata in .7,
the assertions that T C f(U) and that f~%(T) N U # @ are equivalent.

18 This notion is a refinement of the more familiar notion of semismall morphism (see e.g. [GM, BM]) which
takes into account the stratifications on the varieties under consideration.
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First, let us prove that for any .% in the % -constructible derived category DE}/ (Y, k), the
complex f,.# = fi.% belongs to the 7 -constructible derived category D% (X, k). We proceed
by induction on the smallest number of strata whose union is a closed subvariety Z of Y such
that Z|y.z = 0. So, let us consider such a closed union of strata, and choose some U € %
which is open in Z. We can consider .# as a complex in D%(Z7 k). Then, if we denote by
j:U— Zand i: Z U — Z the embeddings, we have a standard distinguished triangle

T = F—ig D

Applying fi, we deduce a distinguished triangle

(fonj*F — F = (foi)i'F L.
By induction, the third term in this triangle belongs to D% (X,k). Since D%(X,k) is a
triangulated subcategory of the derived category of k-sheaves on X, we are reduced to prove
that (f o j)17*.Z belongs to Dby(X ,k). Using truncation triangles, for this it suffices to prove
that for each n € Z, (f 0 j)1.2™(j*.F) belongs to D% (X, k). Let T € 7 such that T C f(U),
and let g : T'— X be the embedding. By the base change theorem, we have

g (fognA"(§*F) = (frund"(F) g (1)nu- (6.1)

Now since # is %-constructible, " (F)|s-1(r)ny is a local system; since fry is a locally
trivial fibration we deduce that the cohomology sheaves of g*(foj), " (5*.%) are local systems
on 7T, and finally that .# belongs to D% (X, k).1?

Next, we prove that if .% is in nonpositive perverse degrees, then fi.% is in nonpositive perverse
degrees. Let as above T € .7 be a stratum, and consider the Cartesian diagram

U)LY
le Lf
T—% X,

where g and h are the embeddings. Then we need to prove that
g (T = (frhh*F

is concentrated in degrees < —dim 7. By the same arguments as above, it suffices to prove
that for any U € % such that U N f~1(T) # @, the complex (f7,u)1-Z |ynp-1(7) satisfies this
property. This follows from a classical vanishing result for cohomology with compact supports
already used in the proof of Proposition 5.6, see [Iv, Proposition X.1.4].

Finally, we need to prove that if .# is in nonnegative perverse degrees, then f,.% is in non-
negative perverse degrees. This can be deduced from what we proved above using Verdier
duality, or alternatively by an argument “dual” to the preceding one: for T', h, g as above we
need to prove that

917 = (fr)oh' 7

19T this argument we use the compatibility of external products with !-pushforwards; see [Ly, Proposi-
tion 2.9.I1] for a precise statement.
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is concentrated in degrees > —dim7T. Again, this can be reduced to proving that for any
U € % the complex
(fro)k'F

is concentrated in degrees > —dim7, where k : f~Y(T)NU — Y is the embedding. If
x € T is any point and i, : {x} — T is the embedding, for this it suffices to prove that
(i) (frv)«k'F is concentrated in degrees > dim(T). In turn, this follows from a classical
result for cohomology with support, see e.g. [AHR, Lemma 4.12].2° O

6.2 Definition of convolution on Grg

To define the convolution operation on Pg, (Grg, k), we will identify this category with the
heart of the perverse t-structure on the constructible equivariant derived category

D!, (Grg, k)

in the sense of Bernstein—Lunts [BL], see §A.1. (See also §§A.3-A 4 for details on the definition
of D}:),GO(Ger k) and of convolution in a more general context.)

We denote by [h] € Grg the coset hGo of an element h € Gx. Likewise, letting the group
Go act on Gk x Grg by k- (g, [h]) = (gk~*, [kh]), we denote by [g, h] the orbit of (g, [h]). We
form the diagram

Grg x Grg ¢ Gk x Grg 5 G x%° Grg & Grg, (6.2)

where p is the map (g, [h]) — ([g],[h]), ¢ is the map (g,[h]) — [g,h], and m is the map
g, h] = [gh].

Let .# and ¢ be two complexes of sheaves in the equivariant derived category DE Go (Grg, k).
Since the Gp-action on Gx x Grg considered above is free, the functor ¢* induces an equiva-
lence of categories

DZGO (G’C XGO GTG’k) 1> DE,G@XGO (G’C X GI'G, k)a

see [BL, Theorem 2.6.2]. (Here, Go acts on Gx x%© Grg via multiplication on the left on
Gyc; for the action of Gp X Gp on G x Grg, the first copy of Go acts via left multiplication
on Gx and the second copy acts as above.) The complex p*(# K ¥) defines an object of
DE,GoxGo (G x Grg). Therefore, we can consider the unique object # XY e D};GO (G;C xGo
Grg, k) such that
¢ (FRY) =p*(FRY).
We then set
F«9 =m(FRY) €Dy, (Crg k).

Remark 6.2. When stating this construction in these terms we cheat a little bit; see §A.4.

20Tn the cases of interest to us here, the local system appearing in [AHR, Lemma 4.12] will be constant; then
the claim we need is the statement [Iv, Theorem X.2.1] already used in the proof of Proposition 5.6.
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6.3 Exactness of convolution

The first important property of the convolution product x on DE Go (Grg, k) is the following.

Proposition 6.3. Assume that % and ¢4 belong to Pa,(Grg, k). Then F x4 also belongs
to Pg, (Grg, k).

To prove this result we will need an auxiliary lemma. Here, for A, u € X, (T)" we set
A _
Grg = q(p~H(Grp x Grfh)).
Lemma 6.4. For any A\, € X.(T)" and v € —X,.(T)", we have
’\/)\7 —
dim(Grg" Nnm™Y(Ly,)) < (p, A+ p+ v).

Proof. We consider the T-action on Gx x“© Grg induced by left multiplication on Gy, and
the diagonal T-action on Grg X Grg. Then the map

(b : GIC XGO GI“G — GI“G X GI‘G

that sends [g,h] to ([g], [gh]) is a T-equivariant isomorphism. We deduce that the T-fixed
points in Gx x%© Grg are of the form [t%,¢%], with o, 8 € X.(T); indeed ¢([t*,t7]) =
(La, Lo+g). Further, [, %] belongs to

Xy i= Grg! = q(p (Grly x Gr))

if and only if the dominant W-conjugate a™ of a € X,(T) is < A and the dominant W-
conjugate A1 of B is < pu with respect to the dominance order.

The morphism ¢ maps m~'(L,) to Grg x {L,}. This allows (by projecting onto the first

factor) to regard X ,, Nm~1(L,) as a closed subvariety of Grg. Now by Corollary 5.4 we have

di <X Am~Y(L, ) < A+a)
X Nm = (Le)) < . BEXAT) (o, A+ a)
[t tP1e Xy ,Am ™1 (Ly)

The pairs («, ) occurring here satisfy a 4+ 5 = v and

(ps e+ B) = (py p — wo(B)) >0

since wo(B) < B+ < p; hence they satisfy
(P A+a) < (pA+a)+{p,p+B)=(p, A+ pu+v),

which entails the desired result. O

We can now give the proof of Proposition 6.3.
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Proof. We consider the situation

GIC XGO GI"G —r Grg.

U Grg" U ar

AEXL(T)+ veX(T)*

Here certainly m is ind-proper. It is locally trivial, because the whole situation is Go-
equivariant. Also, it follows from the definitions that the complex . X ¥ € DE Go (G xGo
Grg, k) defined in §6.2 is perverse and is constructible with respect to the stratification given

NA7 . . o, . .
by the subsets GrGH. To show that F x G is perverse, using Proposition 6.1 it thus suffices
to prove that m is stratified semismall. This is exactly the content of Lemma 6.4 (since

dim(Grgo(y)) = (2p,wo(v)) = —(2p,v) if v € =X, (T)). O

Remark 6.5. A different proof of Proposition 6.3 is due to Gaitsgory. In fact, the convolution
F * 9 makes sense for any .# in DP(Grg,k) and 4 in DE,G@(Gr&k)- It follows from [Ga,
Proposition 6] that, in this generality, .# x¥ is perverse as soon as .# and ¢ are perverse. This
approach uses an interpretation of convolution in terms of nearby cycles. (See also [Z4, §5.4]
for an exposition of closely related ideas, based on the notion of universal local acyclicity.)

6.4 Associativity of convolution

For 71, %3, F#3 in Pg,(Grg, k), one can define
COHVg(ﬁl, 92, ﬁg) = (mg)* (ﬁl @ 92 @ ﬁg),

where mg : Gx x%° G x%° Grg — Grg is the map [g1, 92, g3] = [919293], With an obvious
notation, and the twisted product .#; X .%, K .3 is defined in the obvious way. Then base
change yields natural isomorphisms

(ﬁl * cgsg) * 93 g COHV3(91, 92, cg},) 1) ﬁl * (92 * cg},)

The composition of these isomorphisms provides an associativity constraint that turns the
pair (Pg,(Grg, k), *) into a monoidal category.

7 Convolution and fusion

In this section we describe a different construction of the convolution product on Pg,, (Grg, k).
This construction uses the Beilinson-Drinfeld Grassmannian, hence ultimately the moduli
interpretation of Grg. It plays a crucial role in the definition of the commutativity constraint
for x. (The ideas behind all of this go back to work of Beilinson—Drinfeld [BD]. For more
details and references on this point of view, the reader might consult [Z4].)
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7.1 A moduli interpretation of the affine Grassmannian

In this section, we adopt the following setup. We consider a smooth curve X over C, and for
any point x € X, we denote by O, the completion of the local ring of X at x and by I, the
fraction field of O,; the choice of a local coordinate t on X around zx leads to isomorphisms
O, = CJ[t]] and Ky = C((t)). Using these data we can define a “local” version of Grg at = by
Grg g = (G;Cx /Go, )red, Wwhere Gx, and Go, are defined in the obvious way.

Remark 7.1. Below, to lighten notation (and since this does not play any role for us) we will
not distinguish between the ind-scheme G, /Gp, and the associated ind-variety Grg . We
leave it to the attentive (and interested) reader to check which version is more appropriate in
each statement.

We define
D, = Spec(0,) and D = Spec(Ky).

For a C-algebra R, we consider the completed tensor products R® O, and R® K, so that
R®0O, = R[t] and R®K, = R((t)).
We set R R
Dy = Spec(R®0O,;) and D, = Spec(R®Ky).
For a C-algebra R, we set
Xr =X Xgpec(c) Spec(R) and X5 =(X~A{z}) X pec(C) SPec(R).

Remark 7.2. Note that the subscript “R” does not have the same meaning in the notation
“Dy,r” and “XRg,” in that it is not true that D, r = Dy ®gpec(c) SPec(R).

The following proposition gives a first description of Grg,; in terms of moduli of bundles on

X.
Proposition 7.3. 1. The ind-scheme G, represents the functor
F G-bundle on Xg
R (Foup)|v:GxXp = f\X; trivialization on X /isomorphism.

t: G X Dyr— Flp, , trivialization on Dy g

2. The ind-scheme Grg, , represents the functor

F G-bundle on Xg

X ~ o % /isomorphism.
v:Gx X5 — Flyx trivialization on X
R e R

R~ {(.7:,1/)

Here, a G-bundle on a scheme Z is a scheme F — Z equipped with a right G-action and
which, locally in the fpqc topology, is isomorphic to the product G x Z as a G-scheme. (In
fact, since G is smooth here, a G-bundle will also be locally trivial in the étale tolopology;
see [So, Remark 2.1.2| for more comments and references.) The proof of this proposition is
given in [LS, Propositions 3.8 and 3.10]. The main ingredients are:
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1. The Beauville-Laszlo theorem [BL], which says that the datum of a G-bundle on Xp, is
equivalent to the datum of a G-bundle on X7, of a G-bundle on D, g, and of a gluing
datum on D p = D, r N X ;.

2. The fact that any G-bundle on D, r becomes trivial when pulled back to D, g/ for some
faithfully flat extension R — R'.?!

The Beauville-Laszlo theorem also shows that restriction induces an isomorphism
F G-bundle on Xp ) ~
(F,v /1som. — < (F,v)

v trivialization on X/
In particular, we deduce that Grg . also represents the functor

F G-bundle on D, g } _
/ isom.

v trivialization on D R
b

F G-bundle on D, g

. X ~ . . . X
v:GxDpp— f]D;R trivialization on D p

R~ {(.7:,1/)

} / isomorphism. (7.1)

Remark 7.4. The description of Grg (or in fact more precisely (A}I"G) in terms of G-bundles on
Spec(CJt]]) as in (7.1) is in fact often taken as the definition of this ind-scheme, see e.g. [Z4,
§1.2]. The identification with the quotient Gx/Gp is “purely local” and does not require the
Beauville-Laszlo theorem.

7.2 Moduli interpretation of the convolution diagram

We now give a similar geometric interpretation of the diagram
P q Go m
Grl“G7m X GI“G,;B — GICI X GI‘G7m — GICI Xz GI“G,;B — GI‘G71, (72)

which is the “local version at 2" of the diagram (6.2). We first remark that G, x“ Grg .
represents the functor
F1, F G-bundles on Xpg
R (Fi, F,v,n) | 1 trivialization of F; on XE /isom.
n: ]:1|X}§ — ]:|X§ isomorphism

To check this, one observes that the datum of (Fy,F,v1,n) is equivalent to the datum of
((]:1,1/1), (F,mo 1/1)), and one notes that this transformation is completely similar to the

isomorphism Gx x%° Grg = Grg x Grg used in the proof of Lemma 6.4.
Likewise, Gx, x Grg,, represents the functor
F1, Fo G-bundles on Xp

R — ¢ (F1,Fa,v1,v2, 1) | v1, Vo trivializations of Fy, Fp on Xp /isom.

p1 trivialization of F1 on Dy g

#See also [Z4, Lemma 1.3.7] for a slightly different statement in the same vein.
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With these identifications, the maps m and p in diagram (7.2) are given by

m(]:hf,ylan) = (-7:’770’/1),
p(]:la]:Q,VIaVQaiul) - ((]:1)7/1),(]:257/2))’

and the map ¢ associates to (Fi,Fa,v1, e, pu1) the quadruple (Fi, F,v1,n), where F is ob-

tained by gluing F | X% and Fp|p, ,, along the isomorphism

N L~
Filpx - GxXDyp > Falpx

and 7 is the natural isomorphism obtained in the process. (This gluing datum indeed defines
a G-bundle on Xp thanks to the Beauville-Laszlo theorem, see §7.1.)

7.3 The Beilinson—Drinfeld Grassmannian
The idea behind the fusion procedure is to regard the geometric situation described in §§7.1-7.2
as the degeneration of a simpler situation. This involves the Beilinson—Drinfeld Grassmannian.
Specifically, we define Grg x as the ind-scheme over X that represents the functor
z € X(R)
R { (F,v,2)| F G-bundle on Xp / isom.,

v trivialization of F on Xgr \ =

where the symbol Xg \ z indicates the complement in Xp of the graph of x : Spec(R) — X
(a closed subscheme of Xp = X x Spec(R)).

In the same way, we define Gr¢ y2 as the ind-scheme over X 2 that represents the functor
(.%'1,.%'2) S XQ(R)
Rw— ( (F,v,z1,22) | F G-bundle on Xg /isom.

v trivialization of F on Xpg \ (z1 U x2)

By definition there is an obvious morphism Grg y2 — X 2. Plainly, the restriction of Grg x2
to the diagonal Ax of X2, namely Grg x2 X y2 Ay, is isomorphic to Grg,x. Away from the
diagonal, we have an isomorphism

GrG,XQ |X2\Axg (GI‘G7X X GI‘G7)() |X2\AX (7.3)
given by (F,v,x1,x2) — ((.7-"1, vi,21), (Fa, 1/2,1'2)), with F; obtained by gluing the trivial G-
bundle on Xg\z; and the bundle F|x .., along the map v (where {7, j} = {1,2}). Under the

converse isomorphism ((.7-"1, vi, 1), (Fa, ug,xg)) — (F,v,x1,x2), the G-bundle F is obtained
by gluing F1|x <z, and Fa|x,z, along the isomorphism

Tl X g (@1Uz2) % G x (Xr\ (21U 1)) % Fal X (21Us)
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Remark 7.5. 1. Of course one can define more generally Beilinson—Drinfeld Grassmannians
over arbitrary powers of X, which satisfy appropriate analogues of the isomorphism (7.3).
More formally this collection satisfies the “factorization” properties spelled out e.g. in [Z4,
Theorem 3.2.1]; see also [BD, §§5.3.10-16] and |Rc, §3].

2. One can also consider Beilinson—Drinfeld Grassmannians associated with more general
affine smooth group schemes over X; see [Z1] for references and applications.

7.4 Global version of the convolution diagram

We can also define global analogues of Gx, x Grg, and G, xGos Grg .. For that, we define

Grg,x x Grg, x as the ind-scheme that represents the functor

(561, 562) S X2(R)
F1, Fo G-bundles on Xpg ) )
R— (]:1,7/1,,11/1,.7:2,1/2,(E1,"E2) C 1. . /ISOIHOI'phISHl.
v; trivialization of F; on Xg ~\ z;
p1 trivialization of Fi on Dy, g
(Here and below, D, r means the formal neighborhood of the graph of x2 in Xp, considered
as a scheme.) We also define Grg, XQGrG, x as the ind-scheme that represents the functor

(.%'1,.%'2) S XZ(R)
Fi, F G-bundles on Xp

Rw— q (F1, Fovi,n, a1, . /isomor hism.
(F1 1T 2) vy trivialization of Fj on Xp \ 21 P
n: Filxpws — F|Xp-a, isomorphism
We then get a diagram
GI"G7X X GI"G7X (ﬁ GI"G,X X GI"G,X q—> GTG,X;GTG,X ﬁ) GTG,XQ (74)

over X2 by setting
m(fl,f,Vl,U,$1a$2) = (}—,7707/1,331@2),
p(fl,yl,ﬂl,.FQ,VQ,Q?l,CCQ) — ((]:Iaylaxl),(]:QaVQ,xQ))a

and by defining ¢ as the map (Fi,v1, 1, Fo, V2, 21, 22) — (F1,F,v1,1,21,22), where F is
obtained by gluing Fi|x -z, and Fa|p,. , along the isomorphism

z9,

~ o~
]:1’1);273 ? G x DIQ’R Z) fQ’D;bR

Remark 7.6. To justify the gluing procedure used here, one cannot simply quote the Beauville—

Laszlo theorem, since the point xo might not be constant. The more general result that we

need is discussed in [BD, Remark 2.3.7 and §2.12].

We now explain that p and g are principal bundles for a group scheme over X?2. For that, we
define Gx o as the group scheme over X that represents the functor

z € X(R) }

 trivialization of G x Xg on Dy g

R {(ﬂw)
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In the description of the functor that Grg, x represents, as in §7.1 one can replace (F,v) by
a pair (F',v') where F is a G-bundle on D, g and v/ is a trivialization of ' on D j; thus
Gx,0 acts on Grg x by twisting the trivialization; specifically, v/ gets replaced by v/ o pt
(See also [Z4, §3.1] for more details about these groups schemes—over arbitrary powers of

X—and their relation with the Beilinson-Drinfeld Grassmannians.)

We consider the second projection X? — X, and the pullback G x,0 Xx X 2 of the group

scheme G x 0. The result acts on Grg x x Grg,x by twisting p1, which defines p as a bundle.

In the definition of Grg x x Grg, x, as above one can replace (Fa,v2) by a pair (F3, /) where

% is a G-bundle on D,, p and v} is a trivialization of F} on D;Q r- The group scheme

Gx,0 Xx X? then acts on Grg,x x Grg x by simultaneously twisting both ;1 and v4. This
action defines g as a principal bundle.

7.5 Convolution product and fusion

We go back to our convolution problem, starting this time with diagram (7.4). Since p and ¢
are principal bundles, we can define a convolution product xx on Pgy ,(Grg,x, k) by setting

Morx N =m(MRN),
where again .# X .4 is defined by the condition that
C(MRN) =p" (MRN).

Here .# and .4 are perverse sheaves on Grg x, and the result .# xx ./ is in DP(Grg x2,k).

Remark 7.7. 1. To define the category Pay ,(Grg,x, k) we use a slight variant of the con-
structions of Appendix A, where algebraic groups are replaced by group schemes over
X. This does not require any new ingredient: one simply replaces products by fiber
products over X everywhere. The same remarks as in §A.4 are also in order here: we
must consider perverse sheaves supported on a closed finite union of G x e-orbits, and
equivariant under some quotient (G/Hj,)x 0. (A more sensible definition of a category
of perverse sheaves on Grg, x is due to Reich; see [Z4, §5.4]. These more sophisticated
considerations will not be needed here.)

2. It will follows from Lemma 7.10 below that in fact .#Z xx .4 is a perverse sheaf. This
perverse sheaf is clearly G x o-equivariant, so that this operation indeed defines a functor
from Pgy o (Grg,x, k) x Pnyo(GI"G,X, k) to Pexo (Grg,x, k).

For the sake of simplicity,?? from now on we restrict to the special case X = Al. We can
then use a global coordinate on X, which yields a local coordinate at any point x € X, and
therefore allows to identify Grg, with the affine Grassmannian Grg as we originally defined
it. This also leads to an identification Grg x = Grg x X. We let 7 : Grg,x — Grg be the
projection and define 7° := 7*[1] 2 7'[—1]; the shift is introduced so that 7° takes a perverse
sheaf on Grg to a perverse sheaf on Grg, x.

22The general situation can be dealt with by putting the torsor of change of coordinates into the picture;
see e.g. [Ga, §2.1.2| or [Z4, Discussion surrounding (3.1.10)] for details.
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We explained in §7.3 that the restriction of Grg x2 to the diagonal Ax in X 2 is isomorphic
to Grg,x; we may then denote by i : Grg x = GTG,XQ{AX‘% Grg x2 the closed embedding,

and consider the functors i° := i*[—1] and 7* := 4'[1].
Lemma 7.8. For % and %3 in Pg, (Grg, k), we have canonical isomorphisms

i©(1°(F1) *x T°(F2)) = 7°(F1 % Fo) 2i® (1°(F1) xx T°(F)).

Proof. Since the map m in (7.4) is proper, and restricts over the diagonal Ax to the product
of the map denoted m in (6.2) by ida ,, using the base change theorem it suffices to provide
canonical isomorphisms

(V' (P FLRT°.F) = () (FLR S, () (T°F1IRTF) = (7)°(F1 K% [—1]

where i’ : (G x%0 Grg) x Ax — Grg x xGrg x is the embedding, 7/ : (G x90 Grg) x Ay —
Gx x%0 Grg is the projection, and (7/)° = (7/)*[1] = (7')'[~1]. The first isomorphism is
immediate from the definitions. The proof of the second one is similar, using Remark A.4. [

Remark 7.9. The isomorphism i°(7°(.F1) xx 7°(%2)) = i*(7°(F1) xx 7°(F2)) observed in
Lemma 7.8 can also be deduced from more general considerations related to universal local
acyclicity; see [Z4, Theorem A.2.6 and proof of Proposition 5.4.2].

We now analyze the convolution diagram over U = X? \ Ax:

; GrG,X2|U

S| (75)

(Grgﬁx X GI"G,X)|U-

(GI‘G7X X GrG,X)|U _(p_ (GI‘G,X X GrG,X)‘U i> (GrG,X;GrG,X)lU

Here 7 is the isomorphism of (7.3), defined by
(F,v,z1,22) = ((Fi,v1,21), (Fa, 12, 22)),

where F; is obtained by gluing the trivial bundle on Xg \ z; and the bundle 7 on D,, r
using v. We note that there exists an isomorphism

(GI‘G7X X GI‘G7x) ‘U:> ((GI‘G,X X GI“G,X) X x2 (X X GX,(Q)> ‘U

defined by

(F1,v1, 1, Fo,v2, 21, T2) = (((fl,V1,$1), (F2,v2,22)), (21, (332,,ufl © V1|Dx2,3)))-

Under this identification, the maps p and m o m o ¢q identify with

(GI‘G7X X GI“G7)()‘U <L [(GrG,X X GrG',)() ))((2 (X X GX7(9)] |U L (GI‘G7X X GI‘G7)()‘U,

where py is the projection on the first factor and a is the action of G x o on the second copy
of GI‘G X
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It follows that if we identify the three spaces on the right-hand side of the convolution di-
agram (7.5), then for any .#, .#> in Pervg, ,(Grg,x,k), the equivariant structure of ./
leads to canonical identifications

(MR M)y == (M *x Mo |0
\ H (7.6)
(A R o) |

(7.3)
Consider now the open embedding j : (Grg,x x Grg x)|lv = Grg x2|lv — Grg x2.

Lemma 7.10. For any %1, %> € P, (Grg, k), we have
G (TP FLR T F)|y) = (7°.F1) *x (7°F).

Proof. We will use the characterization of the left-hand side given by [BBD, Corollaire 1.4.24].
In fact, in (7.6) we have already obtained the desired description of (7°.%1) xx (7°.%3) over U.
Hence to conclude it suffices to prove that

*((7°F1) xx (T°F)) € Pp="1 and i!((Toﬁl) xx (T°F2)) € Pp=1t, (7.7)
However, it follows from Lemma 7.8 that
i ((Toﬁl) *X (Toﬁg)) = 7%(F * Fo)[1].

By Proposition 6.3 the right-hand side is concentrated in perverse degree —1, proving the
first condition in (7.7). The second condition can be checked similarly, using the second
isomorphism in Lemma 7.8. U

Remark 7.11. Once again, Lemma 7.10 can also be deduced from more general considerations
related to universal local acyclicity; see [Z4, Theorem A.2.6 and proof of Proposition 5.4.2].

7.6 Construction of the commutativity constraint

Combining Lemma 7.8 and Lemma 7.10, we obtain a canonical isomorphism
To(yl *92) = iojl* ((Toﬁl &7-092)‘[])7 (7.8)

valid for any %1, % € Pg,(Grg, k). In other words, the convolution product .#; x %3 can
also be obtained by a procedure based on the Beilinson-Drinfeld Grassmannians Grg x and
Grg x2, called the fusion product.

Let swap : Grg x2 — Grg x2 be the automorphism that swaps 1 and xa. Then we have
(swap o i) = i. Moreover, swap stabilizes Grg x2|y, and under the identification (7.3) the
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induced automorphism of (Grg x x Grg x)|y (which we will denote swapy;) swaps the two
factors Grg, x. Therefore we obtain canonical isomorphisms
TO(F * Fa) 2 i1 (°F1 R m°.F) )
= ®swap*ji. ((7°.71 K 7°F)|v)
= % (swapy)* ((7°.71 K 7°.%)|v)
i (T° F2 R 7°.71)|v)
TPy % F1).

12

Restricting to a point of X, we deduce a canonical isomorphism
91 *yg :) 92*?1,

which provides a commutativity constraint for the category Pg,, (Grg, k).

Remark 7.12. 1. Later we will modify this commutativity constraint by a sign to make sure
that the functor F sends it to the standard commutativity constraint on vector spaces;
see §8.2.

2. One may note here that the twisted product Grg, XiGrQ x, while playing a key role
in the proof, is not involved in the definition of the fusion product, since the maps @
and j only deal with the Beilinson-Drinfeld Grassmannians Grg, x and Grg y2. The
two points 1 and x, which are not interchangeable in the definition of Grg, XiGrQ X,
play the same role in Grg x2. This property is the basis for the construction of the
commutativity constraint.

3. One can describe the associativity constraint considered in §6.4 also in terms of the
fusion procedure, using the Beilinson-Drinfeld Grassmannian Grg ys over X 3,

8 Further study of the fiber functor

8.1 Compatibility of F with the convolution product

In Sections 6-7 we have endowed our category P, (Grg, k) with a convolution product =,
defined either in the “easy” way with the convolution diagram (6.2) or with the fusion pro-
cedure. The latter even allows to define a commutativity constraint. We now want to show
that the functor

F=H*(Grg,?) : Pg, (Grg, k) — Vecty

is a fiber functor in the sense of Remark 2.8(2); in other words that this is an exact and
faithful functor that maps the convolution product of sheaves to the tensor product of vector
spaces while respecting the associativity, the unit, and the commutativity constraints of these
categories.

The exactness and the faithfulness of F have already been proved in Theorem 5.9(2). The goal
of this subsection is to prove the following.
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Proposition 8.1. For any @/, o in Pg,(Grg, k), there exists a canonical identification

F(t) * o) = F(ehy) @ F(a).

Proof. The proof will use the fusion procedure. Recall the setup of Section 7 (in the special
case X = A!), and in particular diagram (7.4).

Let <, in Pg,, (Grg, k), and set B := (7°a) xx (°4%). Then if f : Grg x2 — X? is the
natural map, Lemma 7.8 and (7.6) translate to the following properties: for each k € Z,

e the k-th cohomology sheaf of the complex (f«%)|a,[—2] is locally constant on Ax, with
stalk H*(Grg, o * a);

e the k-th cohomology sheaf of the complex (f.%)|u[—2] is locally constant on U, with
stalk H*(Grg x Grg, o M .of), which identifies with Dy HY(Grg, o) @ H (Grg, o)
by the Kiinneth formula.

From there, we will be able to deduce the desired identification

H* (Grg, o1« wh) = P H'(Grg, o) ® H (Grg, )
i+j=k

as soon as we know that #7%~2(f,48) is locally constant on the whole space X2. (Indeed,
then this sheaf will be constant, so that we will be able to identify any of its fibers with its
global sections canonically.)

We now prove this fact. Set PB = (t°9%) X (1°4%), so that B = meB. If we set f=fom,
we have f. BB = fuB. For A\, € X.(T)", set

A - A —
Grgx =7 L(Grp), Grgxy =7 L(Grh),
and define Gr)éX X Gré y C Grg, x X Grg,x by the requirement
- AT — A
q 1(GrG’X X GréX) =p 1(G1”G7X X Grég{)-
(This definition makes sense, since Grf, y is stable under the left action of Gx ). Then
S ={Grg x % Grlh y | A, p € X(T)*}

is a stratification of Grg x X Grg,x, and P is S -constructible. To show that the cohomology

sheaves of f*%? are locally constant, it suffices by dévissage®? to check that for each k € Z and
each stratum S € .7, the sheaf s f kg is locally constant.

ZMore precisely, one uses the following claim: the complexes .# such that the cohomology sheaves /" f;///
are local systems form a full triangulated subcategory of Df(GrG,X; Grg,x, k). To prove this claim, consider
a distinguished triangle .#' — .# — 4" W, With .2 and .#" in the subcategory. The long exact sequence
in cohomology expresses J* f../# as an extension of ker(J* futt" — AH*fo ") by coker(H L fo " —
,%"kf*////L hence as an extension of two local systems. Therefore jfkf*/// is a local system for each k, which
means that .# belongs to our subcategory.
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Let é\rG, x2 be the ind-scheme representing the functor

(561,562) € XQ(R)
F1 G-bundle on Xp ' _

R ¢ (F1,v1, 11,71, T2) L /1somorph1sm.
v1 trivialization of 71 on Xp \ x1

p1 trivialization of F1 on Dy, g

There is a natural map ¢’ : (/ﬁa x2 — Grg,x x X, that simply forgets p;. The group scheme

X x Gx,0 acts on Grg x, by twisting p1, and ¢’ is a bundle for this action. (To justify this,
we need to check that a trivialization p exists for any (Fi,vi,21) in Grg, x (R), possibly after
base change associated with a faithfully flat extension R — R’. This fact is clear if xo # w1,
and follows from the results recalled in §7.1 when z; = x2.)

On the other hand, Grg x classifies data (Fa,v2,22) with 75 a G-bundle on D,, and v, a
trivialization on Dy, (see §7.1), so the group scheme Gx o acts on Grg, x by twisting vo. We
claim that we have an identification

GrG,X ; GrG,X = GrG,X2 X(XXGX’O) (X X GI‘G7)()

such that the map induced by ¢’ identifies with the map Grg, x X Grg,x — Grg,x x X induced
by the projection Grg,x — X in the second factor. In fact, this identification sends an element
(F1, F,v1,m, @1, 22) in (Grax X Grax)(R) to the class of the pair

(Fr,v1, 1, 21, 22), (Fo, v2, 22))
where pi1 is a choice of trivialization of 7 on Dy, g, F2 is the restriction of F to D,, gr, and vy
is the composition of the isomorphism F |5 B 5 F | px . induced by n with the trivialization
T9, T,
of Fi|px R induced by 1. The inverse map sends the class of ((]:1, Vi, 1,21, 22), (Fa, vo, xg))
z9,
to (F1, F,v1,1m,21,x2), where F is the G-bundle obtained by gluing Fi|x.», and F» using the

gluing datum provided by the trivializations p; and ve.

These considerations show that the morphism Grg x X Grg,x — Grgx x X is a locally
trivial fibration. Now, take A, € X, (T)", and set S = Gr)éX x Grfy y. The base change

corresponding to the inclusion Gré;, x < Grg,x and the fiber change corresponding to the
inclusion Grf, v < Grg, x show that the natural map

S = Gr)éX x Grfy  — Gr)éX x X

is a locally trivial fibration with fiber Gré. It follows that the cohomology sheaves of the
pushforward of kg along this map are locally constant on Gré x X X. Further, the projection

Grg, y — X is also a locally trivial fibration, and by a last dévissage argument, we conclude

that f*ks has locally constant cohomology sheaves, as desired. O

Remark 8.2. See [Z4, §5.2| for a sketch of a different proof of Proposition 8.1, based on the use
of equivariant cohomology. (This proof does not extend to more general coefficients, since |74,
Theorem A.1.10] has no analogue for general coefficients.)
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8.2 Compatibility with the commutativity constraint

It should be clear (see in particular Remark 7.12(3)) that the identification provided by Propo-
sition 8.1 sends the associativity constraint on Pg,(Grg, k) to the natural associativity con-
straint on Vecty. The situation is slightly more subtle for the commutativity constraint.

By construction, the fiber functor F factors through a functor from Pg,, (Grg, k) to the cate-
gory Vecty(Z) of Z-graded k-vector spaces. We can endow the latter with the usual structure
of tensor category or with the supersymmetric structure; the difference between the two struc-
tures is the definition of the commutativity constraint, which involves a sign in the super case
(see in particular Example 2.9(3)).

Recall the notion of even and odd components of Grg from §3.1. It follows in particular
from Theorem 5.9(1) that if o7 is supported on an even (resp. odd) component of Grg then
H*(Grg, o) is concentrated in even (resp. odd) degrees. Looking closely at the constructions
in §8.1, one can check that the functor F maps the commutativity constraint on Pg, (Grg, k)
defined in §7.6 to the supersymmetric commutativity constraint on Vecty(Z). (This is related
to the fact that the canonical isomorphism (swapy)* ((7°.%1 K 7°%)|v) = (7°.%, K 7°.%) |y
involves some signs, since it requires to swap the order in a tensor product of complexes.)

However, to be in a position to apply the Tannakian reconstruction theorem from Section 2,
we need to make sure that F maps the commutativity constraint on Pg,(Grg, k) to the
usual (unsigned) commutativity constraint on Vecty(Z). One solution consists in altering the
commutativity constraint on Pg,, (Grg, k) by an appropriate sign. In fact, due to the change
of parity introduced in the functor 7°, one must multiply the isomorphism of §7.6 by —1 for
the summands of the perverse sheaves %7 and %5 supported on even components of Grg.
This is the commutativity constraint that we will consider below.

8.3 Compatibility with the weight functors

We have noticed in §8.2 that the fiber functor F : Pg,(Grg,k) — Vectk in fact factors
through the category Vecty(Z) of Z-graded k-vector spaces. We can enhance this result using
the weight functors of §5.3. In fact by Theorem 5.9(1) we have a commutative diagram

where Vecty (X, (T)) is the category of X, (T)-graded k-vector spaces. Recall from Exam-
ple 2.9(1) that the category Vecty (X, (7)) admits a natural tensor product, with commuta-
tivity and associativity constraints.

Proposition 8.3. The functor ®u F. sends the convolution product x to the tensor product
of X.(T)-graded k-vector spaces, in a way compatible with the associativity and commutativity
constraints.
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Proof. We need to provide an identification
Fuloh b)) = @D Fu, () @ Fu, () (8.1)
H1tp2=p

for each p € X, (T) and all @, 9% € Pg, (Grg, k).

Recall how the weight functors F,, are defined (see Remark 5.10). We have chosen a maximal
torus and a Borel subgroup T C B C G. Then T C Gk acts on Grg = Gx/Gp with fixed
points

(Gre)T = {L,: pe X.(])}.

We picked a dominant regular cocharacter n € X, (7), which provides a one-parameter sub-
group Gy, C T and a C*-action on Grg with fixed points (Grg)?. For p € X.(T), the
attractive variety relative to the fixed point L, is

SM:{xGGr(;My(a)-x%LM when a — 0}
(see the proof of Theorem 5.2), and for each & € Pg,(Grg, k),

HE(Su, ) #0 = k= (2p, ).

For p € X, (T) and & € Pg,(Grg, k), we have F (o) := H{ZeH) (S, ). We get adjunction
maps (see Remark 5.10)

HéQP,M) (Slh ‘Q{)
l

H@en) (Grg, o) —= HEPM (S, );

moreover for each k € Z, there is a decomposition

H*(Grg, o @ Fu

peX(T)
(2p,u)=k

We need to insert this construction in the reasoning in §8.1. The various spaces considered
in §7.4 carry an action of T'. Specifically, this action twists v in Grg x and Grg x2, and

e~

twists v1 on Grg, x x Grg, x and GrG7X§ Grg x. The maps ¢ and m in diagram (7.4) and the
isomorphism 7 in diagram (7.5) are T-equivariant.

To each pair (u1,u2) € X.(T)? corresponds a connected component 5( y of the set of

1,52
T-fixed points in Grg x x Grg,x, namely

Clur i) = L Lyo) 2, @) | 0 € X} U{(Lpsy, Ly, w1, 72) | (21, 22) € U}
where [tM1, L,,,] is seen as a point in Gx, x G0z Grg y, identified with the fiber of the twisted

product Grg x x Grg,x over a point (z,z) € Ay, and (L, L,,) is likewise seen as a point
in Grg s, X Grg,z,, identified with the fiber of Grg, x X Grg, x over (z1,22) € U thanks to the
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map momoq in (7.5). Moreover the projection CN'MM2 — X2 is an isomorphism. (Recall that
we have chosen X = A!, so that we have a canonical identification Grg, = Grg for any z.)

The map m : Grg x X Grg,x — Grg x2 glues together along the diagonal Ax the various

connected components CN'(MM) for which pq + peo is the same. Therefore, to each p € X, (T)
corresponds a connected component

CM = |_| m (6@1 #2))
H1tp2=p

of the set of T-fixed points in Grg x2.

Our dominant regular cocharacter € X,(7T') defines a C*-action on Grg y2. Denote the
attractive variety?* around C,, by S,(X?); one can check® that S,(X?) is a locally closed
subscheme of Grg x2. Over a point (z,z) € Ay, the fiber of the map S,(X?) — X? is the
semi-infinite orbit S, viewed as a subvariety of Grg,; thanks to the isomorphism Grg x2

Grg,x; over a point (z1,z2) € U, the fiber of S,(X?) — X? is the union

{AX:

|| Su % Sus € Graa, x Gra s,
M1 Fp2=p

where we use the isomorphism 7 : GIIG,XQ‘UL (GrG,X X Grgx) ‘U of §7.5 (see |[DrG, Lem-
ma 1.4.9]).

Consider again & := (1°4 )*xx (7°%4) and consider the natural maps depicted in the following
diagram:
N —
Su(X2) 1 S (X7) o Grg e
\_/
5. lf
X2

The stalks of the complex of sheaves (f5,)(5,)*% can be computed by base change. Using
Lemma 7.8 and (7.6), and taking into account the shift in the definition of 7°, we obtain:

e The sheaf #%2(£5,)(3,)*% is locally constant on A, with stalk H¥(S,,, @4 x %), so
is Fu (et x o) if k = (2p, p) and is zero otherwise.

e The sheaf % 2(f5,)1(5,)*% is locally constant on U, with stalk isomorphic to

@ chg(sﬂl X Sﬂwgfl I 52/2),
H1tp2=p

so is isomorphic to

P Fulen)@Fu, ()
H1tp2=p

if k = (2p, p) and is zero otherwise.

24See [DrG, Definition 1.4.2 and Corollary 1.5.3] for the general construction of the attractor for a C*-action
on a scheme.

#5This fact is not automatic (i.e. it does not follow from the general result [DrG, Theorem 1.6.8]) because
the finite-dimensional pieces of Grg x2 might not be normal. One way to prove this is to first check that
U<, S,(X?) is closed in Grg x2; then S, (X?) is the complement of | |, _ S, (X?) in ||, ., S (X?).

v<p v<p
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In particular,

AF2(FENGE) B A0 = k= (2p,1).

Given p € X,(T), denote the sheaf #(201=2( S8 # by £,(%). Adjunction yields
maps
%(2/&#)*2(}05#)!(5“)*%

|

A2 f 7B Zu(B).

Since this is true over any point of X2, the vertical arrow is an isomorphism and the horizontal
arrow is an epimorphism; moreover for each k € Z the projections provide an isomorphism

Al BE D ZU(B).
HEXH(T)
(20,1)=k

We see here that .%,(2) is a direct summand of the local system J#%~2 f, 2 (see §8.1), so it is
a local system itself. As we saw, its stalk over a point in Ax is F, (2 « .o%) and its stalk over
apoint in U is @, 1, Fu (1) ®F i, (#4). We thus obtain the desired identification (8.1),
as in the proof of Proposition 8.1. U

Remark 8.4. 1. See Proposition 15.2 below for a different proof of the compatibility of
) u F, with convolution, in a more general context.

2. Once again, Proposition 8.3 can be proved in a more elementary way using equivariant
cohomology, see [Z4, Proposition 5.3.14] (but this proof is specific to the characteristic-0
setting).

9 Identification of the dual group

At this point, we have constructed the convolution product * on Pg,(Grg, k), a k-linear
faithful exact functor F : Pg, (Grg, k) — Vecty, an associativity constraint, a commutativity
constraint, and a unit object U = ICy such that:

1. Fox=®o (F®F) and F(U) = k;

2. F maps the associativity constraint, the commutativity constraint and the unit con-
straints of Pg,, (Grg, k) to the corresponding constraints of Vecty;

3. If F(L) has dimension 1, then there exists L™! such that Lx L™t > U.

(For (3), one observes that for L = IC, to satisfy dim F(L) = 1, by Proposition 5.13 A must
be orthogonal to each root o € A(G,T), so Gryy = {Ly}, and we can take L™! = IC_, since
—\ is dominant.)
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Tannakian reconstruction (see Theorem 2.7) then gives us an affine group scheme Gy over k
and an equivalence S which fits in the following commutative diagram:

Pg, (Grg, k) ; Repy (G

T A

Vecty,
where w is the forgetful functor. We now need to identify Gk.
Remark 9.1. The group Gy considered here should not be confused with the group G of §3.3.
9.1 First step: Gy is a split connected reductive algebraic group over k

Lemma 9.2. The affine group scheme ék 1s algebraic.

Proof. Choose a finite set of generators Ay, -+ , A, of the monoid X,(T")* of dominant cochar-
acters. Then for any nonnegative integral linear combination A = k1 A1 + - - - 4+ kp A, the sheaf
IC, appears as a direct summand of the convolution product

IC,, % - xICy, % xIC,, *---xIC, .

~
k1 copies ky, copies

(In fact, this convolution product is a semisimple perverse sheaf by Proposition 4.2. Moreover

it is easily seen to be supported on Grg, with restriction to Gr)c‘; isomorphic to kGrg [dim(Gré;)].
Hence it must admit IC) as a direct summand.) Therefore 2™ := IC,, & --- ®IC, is a
tensor generator of the category Pg,(Grg, k); namely, any object of Pg, (Grg, k) appears
as a subquotient of a direct sum of tensor powers of Z°. Thus Repy(Gx) admits a tensor

generator, which implies that Gy is algebraic by Proposition 2.11(1). U

Lemma 9.3. The affine algebraic group scheme C~¥k s connected.

Proof. If A is a nonzero dominany cocharacter of 7', then the objects IC,,,) are pairwise non
isomorphic for m € Z>q (since they have different supports). It follows that for any nontrivial
object 2" in Pg, (Grg, k), the full subcategory formed by subquotients of direct sums 2 "
cannot be stable under . The same property then also holds for the tensor category Repk(ék).
This in turn implies that Gy is connected by Proposition 2.11(2). U

Lemma 9.4. The connected affine algebraic group scheme Gy is reductive.
Proof. 1f k is an algebraic closure of k, it is clear that CNJE := Spec(k) X Spec(k) Gy is the group

scheme provided by Tannakian formalism out of the category Pg, (Grg, k). This category is
semisimple by Theorem 4.2. We conclude using Proposition 2.11(3). U
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We now explain the construction of a split maximal torus in Gk (see §5.1).

As in §8.3, we denote by Vecty (X, (7)) the category of finite dimensional X, (7')-graded k-
vector spaces. This is a monoidal category, and the weight functors provide us with a factor-

ization of F as
forget

Peo (Gra, k) o Veeti (X, (1)) 255 Vecty,,

see §8.3. Let T}/ be the unique split k-torus such that X*(T}) = X, (T); then Vecty (X, (T)) =

Repy(T}) canonically (see e.g. [Ja, §1.2.11]), and F’ induces a functor Frv Repy (Gx) —
Repy (7}) compatible with the monoidal structures. There is then a commutative diagram

!

PGO (Gr(;, k) Vectk(X* (T)) ,
I |
~ FTI\(/ v
Repy (Gk) Repy (T})

and the functor FTkv commutes with the forgetful functors to Vecty and satisfies the conditions

of Proposition 2.10. Hence this functor is induced by a unique morphism ¢ : T,/ — Gy of
algebraic groups.

Each character A € X*(T}) appears in at least one FTkv (IC,). (One can here e.g. choose y as
the dominant W-conjugate of A and use Theorem 5.2 and Proposition 5.13.) It follows that ¢
is an embedding of a closed subgroup, see [DM, Proposition 2.21(b)]; so 7)Y can be considered

as a split torus in G.

Now, for any reductive group H over a field F, if F is an algebraic closure of F and if we set
Hy := Spec(F) Xgpec(r) H, then

rk(H) = dim Spec(Q ®z KO(Repf(Hf))). (9.1

In fact, the right-hand side admits a basis consisting of classes of induced modules (i.e. the
modules denoted H°()) in [Ja, Chap. I1.2]), whose characters are given by the Weyl character
formula, see e.g. [Ja, Corollary I1.5.11|. Therefore it identifies with Kq/Wp, where Kq is the
split Q-torus with character lattice the character lattice of any chosen maximal torus K in
Hg and Wy is the Weyl group of H with respect to this torus. There is a finite morphism
Kq — Kq/Wq, so that this scheme has the same dimension as Kgq, i.e. has dimension the
rank of Hy, which by definition is the rank of H.

In our case, the functor FTkV provides a morphism of schemes
Ty — S K°(Repp(Gy
q — Spec(Q ®z K (Repg(Gy))),

where k and éi are as in the proof of Lemma 9.4, and Té is the Q-torus with characters
X, (T). In view of the description of the simple objects in Pg,, (Grg, k) (see Section 4), this
morphism identifies the right-hand side with T(S /W. We deduce that the rank of Gy is the

dimension of 7}/, i.e. that T}/ is a maximal torus of Gr.
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9.2 Second step: identification of the root datum of (Gy,T})

In view of the general results recalled in §5.1, to finish our determination of the group scheme
ék, it only remains to identify the root datum of (ék,Tﬁ/). By the remarks in the proof of
Lemma 9.4 and the definitions recalled above, for this we can (and shall) assume that k is
algebraically closed.

We first determine a “canonical” Borel subgroup in Gx. Consider the sum 2p € X*(T) of the
positive roots of G. Then there exists a (possibly non unique) Borel subgroup B C Gy that
contains 7} and such that 2p is a dominant coweight for the choice of positive roots of Gy

given by the T}Y-weights in the Lie algebra of B.

Lemma 9.5. For such a choice of Borel subgroup E, hence of positive roots, the dominant
weights for T, are exactly the dominant coweights X.(T)* of T (for the choice of the positive
roots as the T-weights in the Lie algebra of B).

Proof. Given A € X,(T)* (that is, dominant for T'C B C G), let V = S(IC}) be the simple
Gx-module corresponding to the simple object ICy of Pg,, (Grg, k). By Proposition 5.13 the
maximal value of (2p, ) for p a weight of V' is obtained for ;1 = A, and only for this weight.
Therefore A is dominant for 7Y C BcC ék, and is the highest weight of V.

Conversely, let € X*(7})) be dominant for T,/ C B C Gx. Let V be the simple Gi-module
of highest weight p. Then V' = S(IC,) for a unique A € X,(T)", and by the first step A\ = p.
Thus p is dominant for T'C B C G. O

This claim implies in particular that B is uniquely determined; that is, no root of (ék,Tﬁ/ )
is orthogonal to 2p. From now on we fix this choice of Borel subgroup in ék, and hence
of positive roots of Gy with respect to 7). We will denote by A(ék,T V) the root system
of Gy with respect to 7Y, by AJr(ék, E,Tﬁ/) the subset of positive roots determined by E,
and by As(ék,é ,T,) the corresponding set of simple roots. We use similar notation (with
a superscript “V”) for coroots, and also for the roots and coroots of G. (This is of course
consistent with the notation introduced in §3.1.)

Remark 9.6. 1. Recall (see §5.5) that the maximal torus 7! C G/ does not depend on
any choice. Viewed as a coweight of T}, the element 2p does not depend on any choice
either: it is the only coweight such that the weights of restriction of the action of Gy, on
H*(Grg, k) to k* are given by the cohomological grading. Therefore, B is also canonical
in the sense that it does not depend on any choice.

2. In various sources (e.g. [MV2, End of §7] or [Z4, Discussion after Lemma 5.3.17] the
“canonical” Borel subgroup in Gy is constructed using a “Pliicker formalism.” We were
not able to find references supporting this construction, hence decided to use a more
elementary approach. In any case the two constructions have to produce the same
subgroup, see e.g. [Z4, Corollary 5.3.20].

3. Using a construction involving the action of the first Chern class of line bundles on
Grg, viewed as elements of H®*(Grg, k) (following ideas of Ginzburg [Gi]) one can “com-
plete” the datum of B and 7}/ to a canonical pinning on Gy; see in particular [Va, [Ba,
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§3.4|, [YZ, §5.3] or [Z4, Theorem 5.3.23]. More precisely, this construction provides a
group morphism from the Picard group Pic(Grg) to the Lie algebra Lie(GY).), which
sends ample line bundles to regular nilpotent elements belonging to Lie(é). (This prop-
erty provides another canonical description of B , as the unique Borel subgroup of GY/
containing 7Y and whose Lie algebra contains these regular nilpotent elements.) In
particular, if the derived subgroup of G is quasi-simple then there exists a canonical
ample line bundle on Gr characterized by the fact that its restriction to each connected
component is a generator of the corresponding Picard group; decomposing the regular
nilpotent element obtained from this line bundle on root spaces we obtain the desired
pinning.

Lemma 9.5 implies that the simple root directions of 77 C B C G are the simple coroot
directions of 7)Y C B C G:

{Qi - a:aeAY(G, B,TY)) ={Q4-8: € AG,B,T)}. (9.2)

(In fact, these sets are the extreme rays of the rational convex polyhedral cone determined by
INeQ®z X*(T) |Vp € Xu(T)", (A, u) >0})

Lemma 9.7. We have Ay(Gy, B,TyY) = AY(G, B,T) as subsets of X.(T) = X*(T}Y).

Proof. Let G}, be the (connected, split) reductive k-group which is Langlands dual to G,
i.e. whose root datum is dual to that of (G,T). Then T}/ is also a maximal torus in GY.
Choose the positive roots of (G, T}/) as the positive coroots of T C B C G, so that the
dominant weights of (GY/,T})) are X, (T)*.

Given A € X, (T)", we can consider the simple G-module V) (G),) with highest weight A,
and the simple Gy-module Vx(ék) = S(IC,) with highest weight A. The crucial observation
is that these two 7}-modules have the same weights; specifically, the set of weights of both of
these modules is

{M € X.(T)

p — A is in the coroot lattice of (G,T)
and p is in the convex hull of WA ’

see again Proposition 5.13. (Note however that we do not yet know that these two 7}-modules
have the same character.)

We now observe that
{IN—pu| A€ X (T)Y, pa weight of Vy(GY)}

is the N-span of the positive roots of (GY/,T})). The argument just above shows that this is
also the N-span of the positive roots of (ék, T))). Looking at the indecomposable elements of
this monoid, we deduce that the simple roots of ék are the simple roots of G/, i.e. the simple
coroots of G. ]

We can finally conclude.

Theorem 9.8. The group Gy is Langlands dual to G; more precisely the root datum of G
with respect to Ty, is dual to the root datum of G with respect to T.
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Proof. By construction X*(7)/) is dual to X*(T"). What remains to be proved is that the roots
and coroots of Gy, together with the canonical bijection between these two sets, coincide with
the coroots and roots of G, together with their canonical bijection.

Let a € Ay(G, B,T). By Lemma 9.7, the corresponding coroot ¥ belongs to As(ék, g, ).
The coroot a of Gy associated with this root is Q. -proportional to a simple root of T C B C G
by (9.2). The conditions

(@,a") =2,
{(a,m <0 for B € Ay(Gy, B, TY) ~ {a¥}
then give a = a.
We thus have an identification
Ay(G, B, T) = AY(Gy, B, TY).
By Lemma 9.7 we also have
AJ(Gy, B, TY) = AJ(G, B,T),

and the bijections between simple roots and simple coroots are the same. We may thus identify
the Weyl groups of G and Gy and extend the above equalities between simple roots/coroots
of Gy and coroots /roots of G to equalities between all roots and coroots. It is clear from this
proof that the bijections between roots and coroots are the same for the two groups, and thus
our proof is complete. ]

9.3 Conclusion

We have finally constructed our canonical equivalence of monoidal categories S which fits in
the commutative diagram

Péo (Gre, k) - Repy(GY)

I;‘(Grg,?)
N

Vecty.

forget
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Part II

The case of arbitrary coefficients

In this part, k is an arbitrary commutative Noetherian ring of finite global dimension,?® and

we denote by Mody the abelian category of finitely generated k-modules. We continue with
the geometric setting of Part I: G is a (connected) complex reductive algebraic group, and we
consider the affine Grassmannian Grg of G. Our main object of study is now the category
Pc,(Grg, k) of Gp-equivariant k-perverse sheaves?” on Grg. We will see in §10.2 that this
category is equivalent to the category P o (Grg, k) of .#-constructible perverse sheaves (as
for fields of characteristic 0, see Corollary 4.8), but at first we need to distinguish these two
categories.

10 Convolution and weight functors for general coefficients

In this section we explain how to modify the definition of the convolution bifunctor, and the
proof of its main properties, to treat the case of general coefficients.

10.1 Weight functors

Proposition 5.6 still holds in this generality, with the same proof.

Proposition 10.1. For o/ € Py (Grg, k), p € Xi(T) and k € Z, there exists a canonical
isomorphism
HE,, (Gra, ) = HE(Sy, ),

and both terms vanish if k # (2p, p).

Remark 10.2. The same comments as in Remark 5.8 apply here also.
In view of this fact, as in Section 5, for any pu € X,.(T') we denote by
Fu: Py (Grg, k) — Modyk
the functor defined by
Fu(e/) = HEPY (Grg, o) 22 HEPH) (S, o7 ).

Lemma 10.3. For any p € X, (T'), the functor F, is exact.

26T hese assumptions on k are needed to have a “good” six-functors formalism for derived categories of sheaves
of k-modules, hence to apply the theory of perverse sheaves; see [KS].

2TThe definition of perverse sheaves in this generality is literally the same as that recalled in §4.1. The main
difference with the case of fields is that now this subcategory is not stable under Verdier duality in general.

70



Proof. Any exact sequence % — Fy — F3in P »(Gr, k) is defined by a distinguished triangle
T Ty - T D
in D}(Gr(;, k). Such a triangle induces a long exact sequence
= HYL(S,, F3) — HE(S,, F1) — HE(S,,, F) — HE(S,, Z3) — HEFL(S,,, 71) — -

in Mody. Using the vanishing claim in Proposition 10.1 we deduce an exact sequence of
k-modules

[

HéQp,,u,)(s}“yl) sy Hézp,m(gmyz) — H(%M)(Swyg)’

which finishes the proof. O

Then we define the functor
F: Py(Grg,k) — Modg

by
F(e/) = H*(Grg, o).

The same proof as that of Theorem 5.9, together with Lemma 10.3, gives the following result.

Theorem 10.4. There exists a canonical isomorphism of functors

F o @ F.: Py (Grg, k) — Mody.
neX(T)

Moreover, F is exact and faithful. O

Remark 10.5. Using Theorem 10.4 one can also generalize the proof of Lemma 5.11: the
functors F) do not depend on the choice of Torel T C B, up to canonical isomorphism.

Below we will also need the following claim (where, as in §6.2, we denote by DEGO (Grg, k)
the constructible Gp-equivariant derived category).

Lemma 10.6. For any .F in DEGO(Grg, k), the following conditions are equivalent:

1. F is a perverse sheaf

2. for any p € X.(T) and k € Z we have

HE(S,, Z) #0 = k= (2p,1).

3. for any p € X.(T) and k € Z we have

HE, (Gra, F) £0 = k=—(2p,p).
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Proof. If # is perverse, then the conditions (2) and (3) hold by Proposition 10.1 together
with the facts that % is G-equivariant and that T.,,, = o - S, where wy is any lift of the
longest element wy of W in G.

Now, let us assume that (2) holds, and prove that .# is perverse. Of course we can assume
that .# # 0. Let n be the highest degree for which P72 (%) # 0 (where P.2#"(?) is the n-th
perverse cohomology functor). Then we have a “truncation triangle”

F' 5 F P (F) -]

where .#’ is concentrated in perverse degrees < n — 1. By Theorem 10.4, there exists u €
X,.(T) such that F,(P5#"(F)) # 0. Then Proposition 10.1 implies that H*(S,,.#") = 0 if
k> n+ (2p, u), so that the natural morphism

H RO (S, ) — HEPI0 (S, P (F))

is an isomorphism. Since the right-hand side is nonzero by our choice of u, so is the left-hand
side, and then our assumption implies that n = 0.

If now m is the lowest degree such that P72 (%) # 0, then similar arguments using the
truncation triangle

P (TN —m] = F — 7" L

(where #" is concentrated in perverse degrees > m+ 1) show that m = 0, which finally proves
that % is perverse.

The fact that (3) implies that .# is perverse can be proved similarly using the other description
of the functor F, and the relation between S, and T, noticed at the beginning of the
proof. O

More generally, using arguments similar to those in the proof of Lemma 10.6 one can show
the following claim by induction on #{m € Z | P (.7) # 0}.

Lemma 10.7. For any % in D% (Grg,k) and any n € Z we have

HIH 00 (S, ) 2 F, (7 (7))

10.2 Equivariant and constructible perverse sheaves

Now we can prove that Corollary 4.8 is still true in this context (but for more serious reasons).
By definition, the forgetful functor DE,G@ (Grg, k) — D% (Grg, k) is t-exact for the perverse
t-structures. In the following proposition we consider the restriction of this functor to perverse
sheaves.

Proposition 10.8. The forgetful functor
PG’@ (Grg, k) — Py(Grg, k)

s an equivalence of categories.
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In view of this result, below we will not distinguish the categories Pg,, (Grg, k) and P »(Grg, k)
anymore. In particular, we will now consider F and F, as functors from Pg,, (Grg, k) to Mody.

To explain the proof of Proposition 10.8 we need to recall a construction from [Vi]. Consider
some categories & and %, two functors F,G : &/ — %, and a morphism of functor ¢ : F' — G.
Then we define a new category € (F,G;v) with:

e objects: quadruples (A, B,m,n) with A in &/, B in #, and m : F(A) —» B, n: B —
G(A) morphisms in # such that ¥(A) = nom;

e morphisms from (A, B,m,n) to (A4’,B',m/,n'): pairs (f,g) where f : A — A’ and
g : B — B’ are morphisms in &/ and £ respectively, such that both squares in the
following diagram commute:

If o7, & are abelian, F is right exact and G is left exact then € (F,G;9) is abelian (see Vi,
Proposition 1.1]). In practice we will only consider this situation, but this fact will not play
any role in our arguments.

Proof of Proposition 10.8. First, we claim that the forgetful functor
Pao (Gra, k) = Py c(Gra, k) (10.1)

is an equivalence of categories. In fact, since Gy is the semi-direct product of G with a
pro-unipotent subgroup (namely the kernel of the natural morphism Gp — G), [BL, Theo-
rem 3.7.3] shows that the forgetful functor D';GO (Grg, k) — D;’G(Grg,k) is fully-faithful.
Since the codomain of this functor is generated (as a triangulated category) by the objects
of the form (j A)!kc,rg , which belong to its essential image, this functor is also essentially sur-
jective, hence an equivalence. Restricting to perverse sheaves we deduce that (10.1) is an
equivalence as well.

On the other hand, the forgetful functor Py ¢(Grg, k) — P (Grg, k) is fully faithful,
see §A.1; hence what we have to prove is the following claim: for any finite closed union
of Gp-orbits Z and any .#-constructible®® perverse sheaf .# on Z, there exists an isomor-
phism (pz)*# = (az)*%, where az,pz : G x Z — Z are the action map and the projection,
respectively. In fact, we will prove this property for any locally closed union of strata, by
induction of the number of strata in Z.

We note that the claim is obvious if Z contains only one Gp-orbit. (In fact, in this case the
category P (Z, k) is equivalent to the category Mody via V +— V ,[dim Z].) Now we consider
a general Z, choose A\ € X,(T)" such that Gr)(‘; C Zisclosedin Z, and set U := Z \ Gr)(‘;. We
denote by i : Gré, — Z and j : U — Z the closed and open embeddings, respectively. We also

%Here (and below), by abuse, we still denote by .# the restriction of the stratification .# to Z (or to any
locally closed union of strata in Grg).
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consider the varieties Z := G x Z, U =G x U, and denote byfz'v: G x Gré, —~Z and; U —Z
the closed and open embeddings, respectively. Finally, we denote by 7 the stratification of
Z whose strata are the products G x Gré with Gr’é C Z, and also the restriction of this
stratification to U.

By induction, we know that the forgetful functor Py (U, k) — P »(U, k) is an equivalence of
categories. Now we take .# in P o (Z, k), and need to show that there exists an isomorphism
(p2)*F = (az)*.#. To check this, we set &7 := P (U, k), and denote by 2 the category of
k-local systems on G. We consider the functor

E = 20 dmG)((5,),(3,)*?) : P A2, k) — Z,

where &y : G x (S\ N Z) — G is the projection and 3y : G x (Sy N Z) — Z is the embedding.
(Here, the fact that E takes values in local systems rather than more general sheaves follows
from the observation that the simple objects in P i(Z ,k) are actually G-equivariant, so that

their images under E are also G-equivariant, hence are local systems.) For ¢ in ny;(z L k), if
g € G the fiber of the complex ()i1(5))*Y at g is RTc(g- Sx N Z, 9 (4yxz); hence this fiber is
concentrated in degree (), 2p) by Remark 10.2 (for the choice of Torel gT'g~! C gBg~!). This
implies (as in the proof of Lemma 10.3) that F is an exact functor.

We then set N _ R ~ _ ~
Fi=Tj(?), G:="5u(?): P 7(U, k) = P 5(Z,k).

We also denote by 6 : l/j — @ the natural morphism of functors_ (provided by adjunction
and the fact that j* o F' = id, or equivalently the fact that j*G = id). Finally, we set

# =P G x Grg,k), which we consider as a full subcategory of Pi(g’ k) via the functor

iy. Then we are exactly in the setting of [Vi, Proposition 1.2], which claims that the functor

E: P (Z,k) —C(EoF,EoG;E o),
sending ¢ to the quadruple (7*4,E(¢4),m,n) where m : Eo F(;*9) — E(%) and n : E(%) —
E o G(j*9) are the images under E of the adjunction morphisms, is fully faithful.2”

Now, recall our object .7 of P »(Z,k). The induction hypothesis provides a canonical isomor-
phism

7 (pz) ZF[dim G = (py)*j* Z[dim G] = (ay)*5* F[dim G] = j*(az)*.Z[dim G].

On the other hand, for g € G, the fiber of E((pz)*#[dim G]), resp. of E((az)*.#[dim G]), at
g is H(<;>"2p>(S>\ NZ, ), resp. Hé)"2p>((g -S\NZ,. 7). If k:Z — Grg is the embedding, then

we have

HO2P (S0 Z, F) = P Sy, b F) = Fp (P (b F)
(by the base change theorem and then Lemma 10.7) and similarly

HM) (g - Sy) N Z, F) 2 HM) (g - Sy, F) = FY (20 F)),

Tn [MV2, Proof of Proposition A.1], the authors claim (without proof) that this functor is in fact an
equivalence of categories. Since this fact is not necessary for the proof of Proposition 10.8, we will not consider
this problem here.
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where Fg\T denotes the A-weight functor constructed using the Torel ¢Tg~" C gBg ' (as
in §5.5). The independence of the functor Fy on the choice of Torel (see Remark 10.5) provides
a canonical identification between these spaces, and then an isomorphism of local systems
E((pz)*Z[dimG]) = E((az)*Z#|dimG]). The pair of isomorphisms we have constructed
provides an isomorphism E((pz)*y [dim G]) = E((a z)*.Z[dim G]). Since E is fully faithful,
we deduce that (pz)*.# and (az)*.# are (canonically) isomorphic, which shows that .Z is
G-equivariant. O

10.3 The convolution bifunctor

Recall the setting of §6.2. If .# and ¢ are in Pg, (Grg, k), the convolution product .# x ¥ is
again defined by N
F*G :=m(FXRYD),

but where now .% K¢ is defined by the property that
~ L
¢ (FNRYG) = p*(p,%”o(y Xk 9)),

where &ﬁ is now the derived external tensor product over k. The same considerations as
in §6.3 (based on the use of stratified semismall maps) show that .# x ¢ is a perverse sheaf.

An associativity constraint for this bifunctor can be constructed as in §6.4, using the obser-
vation that

L L L L L L
PV (T Ry LA (Fry By F3)) 2PV (T Ry Ty Wy F3) 2P0 (PO (Fy Ry Fo) Wy F3)

for 91, ﬁg, ﬁg in PGO(Grg, k).

Finally, the same considerations as in Section 7 apply in this generality, and lead to a descrip-
tion of this convolution bifunctor in terms of fusion and to the construction of a commutativity
constraint (which we then modify as in §8.2). In fact, the only change that is required is the
replacement of the formula (7.8) by an isomorphism

L
T(F1 % Fa) 2%, (P (10T Ry 7°.F) |0) - (10.2)

10.4 Compatibility with the fiber functor

In this subsection we study the compatibility of convolution with the functor F (considered
either with values in finitely generated k-modules, or in X, (T')-graded finitely generated k-
modules). The proof will use the following lemma.

Lemma 10.9. If F(.#) or F(9) is flat over k, then F RE 4 is perverse.
Proof. By Lemma 10.6 (applied to the group G x G instead of G), it suffices to prove that

L
HE(S,, x S,,,. ZF K 4) =0
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unless k = (2p,v1 + o), for any vi,1n € X.(T). However, if for p € X.(T) we denote by
s, : Sy — Grg the embedding, and by o, : S;, — pt the projection, we have

(UVI X UVQ)!(Svl X SVQ)*(“? ék {f) = ((O-VI)!(Sl/l)*y) é)k ((O-V2)!(Sl/2)*g)'

(Here we use the compatibility of external products with x-pullback functors, which is easy,
and with derived global sections with compact supports, which is proved in [Bor, Theo-
rem V.10.19].) By Proposition 10.1 (0,,)i1(sy,)*.Z is isomorphic to a k-module shifted by
[—(2p,11)] and (ou,)1(Sy,)*F is isomorphic to a k-module shifted by [—(2p,rv2)]. More-
over, our assumption and Theorem 10.4 imply that one of these k-modules is flat; hence
(00 X Tu)1(S0, X 81,)*(F KL G) is concentrated in degree (2p,v; + va), which finishes the
proof. O

Our next task is to define a canonical isomorphism
F( x o) = F(oh) Q@ F(os)

for @/, in Pg,(Grg, k). The proof is similar to the one explained in §8.1, using the
following lemma.

Lemma 10.10. For <, @/ in Pq,(Grg, k), there exists a canonical isomorphism
L
H® (Grg x Grg, P (o Ry o)) = H*(Grg, ) @k H*(Grg, ).

Proof. First, we construct a natural morphism from the right-hand side to the left-hand side.
For this we consider f € H"(Grg, %), considered as a morphism kg, , — #[n], and g €
H™(Grg, 9%), considered as a morphism k¢, . — @%[m]. Then we can consider

L L
I ¥ g Karoxarg — 1 Xy @h[n +m.

Now, since & &ﬁ /5 is concentrated in nonpositive perverse degrees, we have a canonical
(truncation) morphism @ K& o — P (ot WL o). Composing f KL g with the shift of
this morphism by n +m provides the desired element of H?**™ (GrG x Grg,P° (a1 @ﬁ 42%2))

We next prove that our morphism is an isomorphism. If F(4%) is projective over k, then by
Lemma 10.9 the left-hand side identifies with H® (GrG x Grg, &{: %) By the formula [Bor,
Theorem V.10.19] (already used in the proof of this lemma), we have

L L
RT' (Grg x Grg, ) Wy o4) = RT(Grg, #) @k RT(Grg, @4).

The cohomology of the left-hand side is H'(GrG x Grg, 9 &ﬁ 42%2) Now since F(4) is pro-
jective, RT'(Grg, %) is isomorphic, in the derived category of k-modules, to its cohomology;
it follows that the cohomology of the right-hand side is F(%) ®k F(%), and then that our
morphism is an isomorphism.

To deduce the general case, we observe that by the results of Section 12 below (see in particular
the remarks at the end of §12.1 and Proposition 12.3(3)) there exists an exact sequence

F =Y > o1 =0
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in Pg,(Grg, k) where F(#) and F(¥) are free over k. By right-exactness of the functor
PO (7 @ﬁ o), we deduce an exact sequence of perverse sheaves

L L L
PO (F Ry oty) — PAO (G Ry aty) — PAO (ot Ry aty) — 0.

Since the functor H'(GrG x Grg,?) is exact on Gp-equivariant perverse sheaves (by The-
orem 10.4 applied to the group G x G), and the case already proven, we deduce an exact
sequence

H*(Grg, #) @k H*(Grg, o) — H*(Grg,9) @k H* (Grg, 94)
L
— H*(Grg x Grg, P (o Ry b)) — 0.

Comparing with the exact sequence obtained by applying the functor ? ®y H®*(Grg, o) to the
exact sequence
H*(Grg, #) — H*(Grg,9) — H*(Grg, 9) — 0,

we finally deduce that our morphism is an isomorphism in general. U

We also have the following generalization of Proposition 8.3, where we denote by Mody (X.(T))
the category of finitely generated X, (7T')-graded k-modules.

Proposition 10.11. The functor

D F.:Pey(Gra, k) — Modi(X.(T))
neX«(T)

sends the convolution product x to the tensor product of X, (T)-graded k-modules, in a way
compatible with the associativity and commutativity constraints.

Here again, the proof is similar to that of Proposition 8.3, except that now we have to provide
a canonical isomorphism

L
HZ (S,ul X SHQ,I’%O(% ZOR %)) = HZ(SM’%) Xk HZ(S,U«Q’%)

for @, 9% in Pg,(Grg, k) and pi,pe € X (T). The proof is completely similar to that of
Lemma 10.10.

11 Study of standard and costandard sheaves

11.1 Definitions
Recall that for any A € X, (T)* we denote by jy : Gré, — Grg the embedding. We set

TNK) =P (G2 ) kg [dim Grgy]),  Ju(M\ k) = pﬁo((jA)*kGrg[dimGrg]).

A
G
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By adjunction there exists a canonical morphism of complexes
(kg [dim Grg] — (j2) kg, [dim Grgy],
hence a canonical morphism of perverse sheaves
T\ k) = T\ k),

and we denote its image (in the abelian category of perverse sheaves) by Ji.(\, k). It follows
from the definition of the perverse t-structure that (j,\)ngré: [dim Grg] is concentrated in
perverse degrees < 0, hence that for any perverse sheaf .# we have

Hom(Ji(A, k), #) 2 Hom ((jx)ikg, [dim Gy, 7).

In particular, using adjunction we see that J(A, k) has no nonzero morphism to a perverse

sheaf supported on Gré‘;\Grg. Similar arguments show that 7. (A, k) has no nonzero morphism

from a perverse sheaf supported on Gr)c‘; ~ Gré;.

If k is a field then J1. (), k) is simple, and coincides with the object denoted IC) in Section 4. If
moreover k has characteristic 0, then the category Pg,, (Grg, k) is semisimple by Theorem 4.2.
In view of the properties of Ji(A, k) and J,(\, k) recalled above, it follows that the canonical
morphisms

TN k) > TN k) = T(A k)
are isomorphisms in this case.

Now we come back to the case of a general Noetherian commutative ring k of finite global
dimension. In view of the remarks above, the following result is a generalization of Proposi-
tion 5.13.

Proposition 11.1. Let A, u € X, (T) with A dominant. Then the k-module F,(7i(\k)),
resp. Fu(j*()\,k)), is free, with a canonical basis parametrized by the irreducible components
of Gré, NSy, resp. of Gr)c‘; NT,.

Proof. By Lemma 10.7, we have
Fu(Zi(AK)) 2 HEPH (S, (ke [(20, M)

Using the base change theorem, it is not difficult to check that there exists a canonical iso-
morphism

HEPH) (Sys (0 [(20, M) 2 HEPAF1 (G 1 S ).

Since (2p, A + p) = 2dim(Gr} N S,,) (see Theorem 5.2), the right-hand side is free, with a
canonical basis parametrized by irreducible components of Gr)(‘; NnS,.

The case of J (A, k) is similar, using the description of F,, as H%p’m (Grg, ?), and Borel-Moore
homology instead of cohomology with compact supports. U
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Remark 11.2. More generally, if M is a finitely generated k-module, we can consider the
perverse sheaves

T\, M) = p%o((jA)!MGré[dimGré]), T\, M) = p%O((jA)*MGré[dimGr)(‘;]).

Considerations similar to those in the proof of Proposition 11.1 show that there exist canonical
isomorphisms

Fu(Ti(\, M) 2 Fu(Bi(\K) @ M, Fu(JTe(\, M) 2 Fu(J:(\ k) @ M (11.1)

for any p € X, (T).

11.2 Extension of scalars

In the following proposition, we denote by

L
k @z (?) : D2, (Gra, Z) — D2, (Grg, k)

the (derived) extension-of-scalars functor. (Note that this functor does not send perverse
sheaves to perverse sheaves.) Below we will use this notation also for varieties other than
Gra.

Proposition 11.3. For any A € X.(T)", we have a canonical isomorphism
L L

Proof. As in the proof of Lemma 10.9, for p € X,(T) we denote by s, : S, — Grg the
embedding, and by o, : S, — pt the projection. Then by definition we have

HE (S, 7) = H ((00)1(5)" (7)),

where we identify the derived category of k-sheaves on pt with the derived category of k-
modules.

By general considerations, we have

L L
k @z (0,)1(su)"(?) = (ou)1(s,)* (k @z (7).

We apply this isomorphism to Ji(A, Z). In this case, by Proposition 10.1 and Proposition 11.1
the complex (0,)1(s,)*(J1(A, Z)) is isomorphic to the shift by [—(2p, )] of a free Z-module.
Hence k®% (0, )1(5,)* (J1(\, Z)) is concentrated in degree (2p, ) which, by Lemma 10.6, shows
that k ®% Ji(\, Z) is a perverse sheaf.

Now, we clearly have
L
(71)' (k @z Fi(A, Z)) = ke, [dim Gry).

By adjunction we deduce a canonical morphism (j)\)!k(}rg [dim Gr] — k®% Ji1(\, Z), and then
taking the 0-th perverse cohomology we deduce a canonical morphism

FNK) = k Gz TN Z). (11.2)
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Using Proposition 11.1 and the same kind of considerations as above, we see that this morphism
induces an isomorphism

- L
Fu(7(\ k) = F, (k ®z (A, Z))

for any p € X, (T'). By the faithfulness claim in Theorem 10.4, this implies that (11.2) is an
isomorphism, and concludes the proof of the first isomorphism.

The proof of the isomorphism 7,(\, k) 2 k ®% J.(\, Z) is similar. O

~

Remark 11.4. These results imply that there exists a canonical isomorphism D(7,(\, k)) =
Ji(\ k), where D is the Verdier duality functor on the category DEGO (Grg, k). In fact,
by general considerations D(J(A,k)) is the 0-th cohomology of D((jA)*ZGrg [dim Gr]) =
(jA)!ZGrg [dim Gr] for the t-structure p* of [BBD, §3.3]. Now consider the truncation triangle
for the usual perverse t-structure:

Preo((7a) Zpy [dim Grd]) — () By [dim Gr] — Fi(A, Z) s

By definition the left-hand side belongs to »DY (Grg, Z)<, hence to »' D% (Grg, Z)<°. On
the other hand, the fact that k ®% Ji(\, Z) is a perverse sheaf (see Proposition 11.3) shows
that J1(\, Z) in torsion-free; in view of [BBD, §3.3.4] this implies that this object belongs to
p+Dﬁ’/(Gr9, Z)=°. Hence the triangle above is also the truncation triangle for the t-structure
pT: in other words we have

TN Z) =P A ((a) B [dim Gr]) = D(T.(\, k).
(See [MV2, Proposition 8.1(c)| for a proof of this isomorphism which does not refer to the
t-structure p*.)

11.3 Relation between integral standard and IC-sheaves

Lemma 11.5. For any A € X.(T)*, the canonical surjection
J(AN2Z) = Ti.(N Z)

is an isomorphism.

Proof. The claim amounts to saying that the canonical morphism
JTNZ) = TN Z)

(see §11.1) is injective or, in view of Theorem 10.4, that for any pu € X,.(T) it induces an
embedding
Fu(7(X, Z)) = Fu(T.(A Z)).

However, since the left-hand side is free over Z by Proposition 11.1, it suffices to prove that
the induced morphism

Q®z Fu(J(N\Z)) = Q®z Fu(J(\, Z))
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is an embedding. By Proposition 11.3 and its proof, this morphism identifies with the mor-
phism
Fu (A Q)) = Fu(J:(X, Q))

induced by the canonical morphism J(\, Q) — J«(A, Q). The latter morphism is an isomor-
phism (see §11.1), which concludes the proof. O

12 Representability of the weight functors

In Section 2, we presented Deligne and Milne’s proof of (a version of) Tannakian reconstruc-
tion for rigid tensor k-linear abelian categories, where k is a field. One of the key steps is
Proposition 2.2, which established an equivalence, for each object X in an abelian k-linear
category ¥ endowed with a k-linear exact faithful functor w : ¥ — Vecty, between the
abelian subcategory (X) generated by X and the category Mod 4, of modules over an algebra
Ax C Endg(w(X)).

The condition that k is a field, needed for the proof of Proposition 2.2, is too restrictive for
our current setup. Mirkovié and Vilonen choose therefore another approach. Rather than
an equivalence (X) = Moda, for each object X € %, they produce a Morita equivalence
Pc,(Z,k) = Mod Az (k) for each closed subset Z C Grg union of finitely many Gp-orbits.
Here Pg,(Z,k) is the subcategory of Pg,(Grg, k) consisting of Gp-equivariant perverse
sheaves supported on Z and Az(k) is the (opposite algebra of the) endomorphism algebra
of a projective generator Pz(k) of Pg,(Z, k).

The aim of this section is to construct and study the objects Pz (k). Since the diagram

Hom(Pz (k),?)

Pay(Z,k) Mody,, (k)
Mody

has to commute, we will choose Pz(k) so that it represents F.

12.1 Construction of projective objects

Let Z be a closed subset of Grg, union of finitely many Go-orbits. For n > 0, we set
O, = O/t"1O and let Gp, be the complex algebraic group which represents the functor
R — G(R®c O,). We choose (as we may) n € Z>q large enough so that the Gp-action on Z
factors through Go,,; then by definition (see §A.4) we have D};GO(Z’ k) = DgGon (Z,k).

Let v € X.(T). For any &/ € Pg,(Z,k), we have
Fo (/) = HE"Y(Z, o) = Hom py 7.4 (irk, 2 [~ (20, 1)), 7).

where i : T,NZ — Z is the embedding. To represent the functor F, on the category Pg,, (Z, k),
we need to transform the nonequivariant object ik, -, [—(2p,v)] of D2(Z, k) into an object of
P, (Z,k). We do this using the (I-)induction functor (whose construction is recalled in §A.2).
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Concretely, we consider the commutative diagram

T,NZ<~—Go, x (T,NZ) -2~ 2Z

l l H (12.1)

A Go, x Z Z

a )

P
where a is the action map and p is the projection, and we define
Pz(v,k) : = PA° (aipike, nz[—(20,1)])
=P (ap*irkr, z[2dim(Go,) — (2p,v)])
p%O (d!kG@n x(TyNZ) [2 dlm(GOn) - <2p7 V>])7

I

the last equality being given by base change along the left (Cartesian) square in (12.1).

Proposition 12.1. The perverse sheaf Pz(v,k) is a projective object of P, (Z,k) that rep-
resents the weight functor F,.

Proof. We set
F = a!P!i!kTymZ[—@P, v)l.
For any & € Pg,(Z,k), we have by Lemma A.3

Fo (/) = HE"Y (2, of ) = Hompp 7.0 (irkr, 7 [~ (20, 1)), 7)
= Hompp . (2K (@p'iky, nz[—(2p,v)), o) = Hompy . (z10(F> 7).

We claim that .% is concentrated in nonpositive perverse degrees. Indeed, let n be the largest
integer such that P.2#"(.#) # 0. The second arrow in the truncation triangle

PronF = F = P (F)—n] L

is nonzero, so that

04 Hompy (11(F AN F) =n]) = (o (F)[-n)) = KT (2,67(7);
applying Lemma 10.6, we deduce that n = 0, proving our claim.
Our truncation triangle now reads
ProF = F = Pr(n,k) 1
For any &/ € Pq,(Z, k), we have a long exact sequence
Home (Zk)(pT<097427[—1]) —>H0me (Zk)(PZ(Vak)an{)
C’GOn ) C’GOn ’

—>H0me (Zk)(y’d) —>H0me (Zk)(p7—<0ﬁ’d)'
¢.Go,, V7 &Go, 7
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By perverse degrees considerations, the first and the last spaces above are zero; we conclude
that we have a canonical isomorphism

F.(o) = HomDE’GO (zx) (Pz(v, k), ).

Thus Pz(v, k) represents the functor F, on Pg,(Z, k). Since the latter is exact (see Lem-
ma 10.3), Pz(v,k) is projective. O

For a fixed Z, there are only finitely many v € X,(T') such that T, N Z # & (see Theo-
rem 5.5(1)), so that the sum
@ PZ(Va k)

veX.(T)

involves finitely many nonzero terms; it therefore defines an object Pz(k) of Pg, (Z, k). The-
orem 10.4 and Proposition 12.1 imply that Pz(k) represents the functor F. Since F is exact,
Pz(k) is projective. Since F is faithful, Pz (k) is a generator of the category Pg,(Z, k) (see
e.g. [Bas, chap. II, §1]). Specifically, for each object &/ € Pg,(Z,k), there exists an epimor-
phism Pz (k)" — < for some n > 0 (because the k-module Homp,, | (zx)(Pz(k), <) is finitely
generated).

12.2 Structure of the projective objects

Let Y C Z be closed subsets of Grg, unions of finitely many Ge-orbits. Let i : Y — Z be
the inclusion. The functor Pi* := P.#°(i*(?)) maps Pg,(Z,k) to Pg, (Y, k) and is the left
adjoint to the inclusion i, : Pg, (Y, k) = Pg, (Z, k).

Proposition 12.2. There exists a canonical isomorphism Py (k) = Pi* Pz (k) and a canonical
surjection Pz(k) — Py (k).

Proof. Since Pz(k) represents F on Pg,(Z, k), its restriction Pi* Pz(k) represents F on the
subcategory Pg, (Y,k). Since Py (k) also represents F on Pg, (Y, k), we get a canonical
isomorphism ?i* Pz (k) — Py (k).

Composing with the adjunction morphism Pz(k) — i,Pi*Pz(k), we get a canonical map
u: Pz(k) — i, Py (k). Let f : i, Py (k) — C be the cokernel of u. As a quotient of i, Py (k), the
sheaf C'is supported on Y, and since i, is full, f is of the form i,g for some map g : Py (k) — C’
with C' = 4,C’. Under the adjunction isomorphism

Homp,, (v (Py (k) ') = Homp,, (v ("i" Pz (k), ') = Homp,, (7 (Pz(k), i C"),
g goes to (i.g) ou = 0, hence g = 0, and we conclude that wu is surjective. O

Proposition 12.3. Let Z be a closed subset of Grg, union of finitely many Go-orbits.

1. The object Pz(k) admits a filtration in the abelian category Pa,(Z,k) parametrized
by {\ € X.(T)" | Gi} C Z} (endowed with any total order refining <) and with
subquotients isomorphic to

F(T.(\, k) ®k Ji(A k).
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2. There exists a canonical isomorphism Pz(k) 2k ®L Pz(Z).

3. F(Pz(Z)) is a finitely generated free Z-module and we have F(Pyz(k)) = k ®z F(Pz(Z)).

Proof. The proof proceeds by induction on the number of Gp-orbits in Z.

Let us pick an orbit Grg which is open in Z, let 5 : Gr)(‘; — Z be the inclusion, and set
Y =27\ Gré;. Our goal is to analyze the kernel K (k) of the surjection constructed in
Proposition 12.2:

0 — K(k) = Pz(k) — Py(k) — 0. (12.2)

Let M be a finitely generated k-module and let .Z := M Grd, [(2p, A)] be the shifted constant
sheaf with stalk M on Grg. From the truncation triangle

TN M) =5 jodl = Prog(utt)

we get an embedding

EXt%b (Z7k)(PY(k)a j*(Aa M)) — EXt%b (Z7k) (PY(k)’.]*%)

¢,Gp ¢,Gp

for i € {0,1}, because ExtlgblG (
]

Z’k)(Py(k),pT>o(j*///)) = 0 for (perverse) degree reasons.

Since, by adjunction,

EXti b
DC,GO

(PY(k)’]*%) = EXti)b

c,Go

(" (Py (), #) = 0,

(Z,k) (Grd k)

we deduce that EXt%GO (zx) Py (k), T (A, M)) = 0 for i € {0,1}. Applying the functor
HOIIIPGO (Z,k) (?’ j*()" M))
to the exact sequence (12.2) and using this vanishing, we get an isomorphism
Homp,, (71)(Pz(k), J«(A, M)) = Homp,, (71 (K (k), Ju(A, M)),
and thus

Hom ¢y, 1) (17K (k), .4) = Homp,, (71 (K

= Homp,, (71 (Pz(k), J«(X, M))

= F(J.(A, M))

= F(J.(\ k) @ M by (11.1)
= Homy (F(J.(\, k)", M) by Proposition 11.1.

Since K (k) is an object of Pg,,(Z,k) and Gr, is open in Z, the restriction j*K (k) is a shifted
local system on Gr)é. From the isomorphism

Hom pp ¢, 1) (7K (k), A4) = Homy (F(Jx (A, k)", M)
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proved above for any M, we deduce that
R () 2= F(ZAK) @ik [(20. )]

The adjunction map jij*K (k) — K (k) then gives, after truncation in nonnegative perverse
degrees, a map

a: F(J.(\ k)" @k Ji(\ k) — K(k)
in Pg,(Z,k) (see again (11.1)).

Since j*(«a) is an isomorphism, the cokernel C' of « is supported on Y. Applying the functor
Homp o Z7k)(?, () to the exact sequence (12.2), we get an exact sequence

0 — Hompg,_ (z30(Py (k),C) 2 Hompg,_ (739 (Pz (k). C)
— Homp,_(zx)(K (k),C) — Ext},% (210 (Py (k), C).

Since C belongs to Pg, (Y, k), the map S is an isomorphism between two copies of F(C).
Moreover, using (4.1) we have

Bxtp,, (210 (k),C) = Ext})g% (za0(Pr (k). C)

o Ext})g% o (Pr(k),C) = Extlg% i (Py(k),C) =0

since Py (k) is projective in Pg, (Y k). It follows that HompGO(Z,k)(K(k),C) = 0, and
therefore that C' = 0. This shows that « is an epimorphism. We will see shortly that it is in
fact an isomorphism.

Let K'(k) be the kernel of «, so that we have an exact sequence
0— K'(k) = F(Z.(\, k)* @ Ji(\ k) = K(k) — 0 (12.3)
in Pg,(Z,k). As for C above, since j*(«) is an isomorphism, K’(k) is supported on Y.

Now we consider the case k = Z. As a consequence of Lemma 11.5 (see also the remarks
in §11.1), the perverse sheaf Ji(\,Z) does not have any subobject supported on Y, and
therefore K'(Z) = 0. Thus

K(Z) = F(J:(\,2))" @z N(\, Z),
and from (12.2), we easily get statement (1) by induction in this case.

We come back to the general case. Since J1(\, k) 2 k®%Z Ji()\, Z) (see Proposition 11.3), each
object

kg (7 2) 02 50 2)) = F(T.(0K) @k T K)

is a perverse sheaf. The complex k ®% Pz(Z) is thus an iterated extension (in the sense of
triangulated categories) of perverse sheaves, and is therefore perverse. On the other hand, for
each &/ € Pg,(Z,k), we have by [KS, First formula in (2.6.8)]

L
Homp,, (k) (k®z Pz(Z), o) = Hompy . (22) (Pz(Z), Rotomy(ky, o))
= HomPGO(Z,Z)(PZ(Z)a ) =F(),
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naturally in &/. Thus Pz(k) and k ®% Pz(Z) both represent F on Pg,,(Z, k), and therefore
Pz(k) = k ®% Pz(Z), as claimed in statement (2).

Using this description for Pz(k) and Py (k) in (12.2), we get K (k) = k ®% K(Z). Turning
o (12.3), we see that K'(k) = k ®% K'(Z); and since K'(Z) = 0, we eventually get that
K'(k) =0, or in other words that

K(k) 2 F(T.(\ k)" @k Ji(\ k).
This information leads to statement (1) by induction.

Finally, statement (3) follows from the discussion above and Proposition 11.1 (since an exten-
sion of free Z-modules is free). O

12.3 Consequence: highest weight structure

In this subsection we assume that k is a field. Recall the notion of highest weight category,
whose definition is spelled out e.g. in |Ri, Definition 7.1]. (These conditions are obvious
extensions of those considered in [BGS, §3.2], which are inspired by earlier work of Cline—
Parshall-Scott [CPS].) Our goal in this subsection is to prove the following proposition.

Proposition 12.4. The category Pg, (Grg, k), together with the “weight poset” (X.(T)"
the “standard objects” {Ji(\, k) : X € X.(T)*} and the “costandard objects” {J.(\, k) :
X.(T)*}, is a highest weight category.

, <),
=

Proof. Condition (1) in [Ri, Definition 7.1] is obvious, and conditions (2)—(4) are easily checked
using adjunction and the general theory of perverse sheaves. Hence to conclude it suffices to
prove that for any A\, u € X,(T)" we have Ext%go (Grax0) (J1(AK), T (k) = 0. And for this

it suffices to prove that for any finite closed union of Gp-orbits Z C Grg containing Gré; and
Grf, we have EXt%GO (zx0) (J1(A k), Tu (11, k)) = 0. Before that, let us note that we have

Bxtp,, (210 (J(AK), J(. k)) = 0. (12.4)
In fact, using (4.1) we can assume that Z = Gr)c‘; U G—ré Then the vanishing follows from

the fact that either J(A k) is projective (if p % A) or Ji(u, k) is injective (if A ¥ p) in
Pgo (Gry U Gri, k).

We denote by Q7 the projective cover of the simple object Ji.(A, k) in the abelian category
Pc,(Z,k). (This category is equivalent to the category of finite-dimensional modules over a
finite-dimensional k-algebra, see §13.1 below for details; in particular we can indeed consider
projective covers.) We claim that @z has a filtration with J7i(\, k) at the top and with

subquotients of the form Ji(v, k) for some v’s in X, (T)*.

This property is true if Grg is open in Z, since then @z = Ji(A, k) by condition (3) in the
definition of a highest weight category. When Gr)c‘; is not open in Z, we proceed along the
lines of the proof of Proposition 12.3. We note that @z ) is a direct summand of Pz(k), for
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the latter is a projective generator of Pg,(Z, k). Let Gr{y C Z be an open Gp-orbit and set
Y := Z ~\ Gr{. The short exact sequence (12.2) then induces a short exact sequence

0= K' —=Qzx— Qyy—0.

Here Q) , := i,PA#°(i*Qz.), and K’ is a direct summand of the sheaf K (k) in (12.2), which is
a direct sum of copies of Ji(v, k). Since the perverse sheaf J)(v, k) is indecomposable, K’ must
also be a direct sum of copies of Ji(v, k). Further, there is no nonzero map J(v, k) — J.(\, k)
(see §11.1), so the kernel of the covering map

Qzx = (A k)
contains K’, whence a surjective map
Qyp =~ Ju(X k).

Moreover Q'Y)\ is a direct summand of the term Py appearing in (12.2), so is a projective
object of Pg,, (Y, k). Lastly, the projectivity of @z x gives a surjective map

Homp,, (21)(Qzx Qzx) — Homp,,_(710(Qzx, Qy,));
and since by adjunction we can identify
Homp,, (710(Qz, Qy\) = Homp,, (71 (Qz2, &P (1" Qz0))
= HOIHPGO (Y.k) (p%ﬂo(i*QZ«\),p%ﬂo(i*QZ,A))
= Homp,, (v k) (Qy.x, Qy.n),
we obtain the existence of a surjective ring homomorphism
Endp, (71)(@z) = Endp, (v (Qy)-

Therefore @, , has a local endomorphism ring, so is indecomposable. We finally conclude that
Qg/)\ can be identified with the projective cover Qy  of Ji«(A, k) in Pg, (Y, k). To sum up,
we have a short exact sequence

0= K —Qzx— Qv —0,

where K’ is a direct sum of copies of J(v,k). Our claim now easily follows by induction on
the number of Gp-orbits in Z.

At this point, we have shown the existence of a short exact sequence
0— RZ,)\ — QZ,)\ — ‘_71()\71() — 0

such that Rz admits a filtration with subquotients of the form J(v,k) for some v’s in
X.(T)*. We then consider the exact sequence

EXtIgGO (Z,k) (RZ,)U T (,U,, k)) - EXt%GO (Z,k) (‘m()V k)7 T (:U'a k)) - EXt%GO (Z,)k) (QZ,A; T+ (M? k))

obtained by applying the functor Hom(?, 7. (u, k)) to this exact sequence. Here the first term
vanishes because Ext%)G (zx) (v, k), Ti(p, k) = 0 for any v, and the third term vanishes
O bl

because @y is projective. We deduce the desired vanishing, and finally the proposition. O
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13 Construction of the group scheme

In this section, we construct an affine k-group scheme ék and an equivalence of monoidal
categories S from Pg,(Grg, k) to the category Repk(ék) of representations of this group
scheme on finitely generated k-modules. Along the way, we will show that the function
algebra Z [éz} is a free Z-module and that k [ék} Yk Rz 7Z [éz} (These facts will play a

key role in Section 14 below.)

13.1 Abelian reconstruction

Let us recall the following variant of Gabriel and Mitchell’s theorem. Here we will denote by
mody the category of all (i.e. not necessarily finitely generated) k-modules.

Proposition 13.1. Let € be a k-linear abelian category. Let P be a projective object and let
A = Endg(P). Let Modfpp be the full subcategory of € consisting of those objects that admit
a presentation of the form Py — Py — M — 0, where Py and Py are direct sums of finitely
many copies of P. Let also Modfp’y be the category of finitely presented right A-modules.

1. The functor G = Homg(P,?) defines an equivalence of categories from Modfpp to
Modfp'y.

2. The endomorphism ring of the functor G : Modfpp — mody is canonically isomorphic
to A°P.

Proof. Statement (1) is proved as in [ARS, Proposition I1.2.5]. The proof of (2) is similar to
that of the corresponding claim in Proposition 2.2. O

Let Z be a closed subset of Grg, union of finitely many Go-orbits. As we mentioned at
the end of §12.1, each object in Pg,(Z, k) is a quotient of a module Pz(k)", so each object
o/ € Pqg,(Z, k) admits a presentation of the form P, — Py — & — 0 with P; and Py
isomorphic to direct sums of finitely many copies of Pz (k). Moreover, the ring

Az(K) = Endp,,_(710(Pz (k)P

is a finitely generated k-module, hence is left Noetherian, so that each finitely generated left
Az (k)-module is finitely presented. In the present situation, Proposition 13.1 thus states that
the functor F = HompGO (Z7k)(PZ(k), ?) induces an equivalence of categories Sz, as depicted
on the following diagram:

Sz

P6o(Z,k) ~ Mod 4, (k)
\ %get
Modg.
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Let i : Y < Z be the inclusion of a closed subset, union of (finitely many) Gp-orbits. The
perverse restriction functor

Pi* =P (i*(?)) : Pao(Z,k) — Py (Y. k)

is left adjoint to the extension-by-zero functor i : Pg, (Y, k) — Pg,(Z,k). Further, this
functor sends Pz (k) to Py (k) (see Proposition 12.2) and thus induces a morphism of algebras
fZ from Az(k) = Endp,, (zx)(Pz(k))°P to Ay (k) = Endp,, (vk)(Py (k))°P. By functoriality
and adjointness, for each &/ € Pg,, (Y, k), the action of an element a € Az(k) on

Sz(o) = Homp,, (zx)(Pz(k), i)
coincides with the action of fZ(a) € Ay (k) on

Sy (&) = Homp,, (vi)(Py (k), ).
As a consequence, the diagram

Sy

Pgo (Y, k) Mod 4y (k)
zl l(fé )"
Sz
Pgo(Z,k) Mod 1)
Mody

*

commutes, where (f£)* is the restriction-of-scalars functor associated with fZ.

Since Az(k) = F(Pz(k)) is a finitely generated free k-module (see Proposition 12.3(3)), the
same dictionary as the one set up in §2.2 can be used in the present context. Namely, we may

endow the dual k-module

Byz(k) := Homy (Az(k), k)
with the structure of a k-coalgebra and identify the category Mody,, ) with the category
Comodp, ) of right B z(k)-comodules that are finitely generated over k. The dual of the
algebra map fZ : Az(k) — Ay (k) is a coalgebra map By (k) — Bz(k), and we can consider
the limit B(k) of the directed system of coalgebras thus constructed (over the poset of closed
finite unions of Gp-orbits under inclusion).

Proposition 13.2. The Z-module B(Z) is free, and we have a canonical isomorphism of
k-coalgebras B(k) = k ®z B(Z).

Proof. The freeness assertion follows from Proposition 12.3(1) and its proof. The second
assertion follows directly from Proposition 12.3(3). O

We eventually get an equivalence of abelian categories S and a commutative diagram

Pg,(Grg, k) SN Comod )
\ A
MOdk.
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13.2 Tannakian reconstruction

We now want to endow B(k) with the structure of a Hopf algebra, and upgrade S to an
equivalence of monoidal categories.

For \ € X.(T)*, we set Zy := Grj, and we shorten the notation Py, (k), Az, (k) and By, (k)
to respectively Py(k), Ax(k) and By(k). We note that for \, u € X,(T)", the perverse sheaf
o x & belongs to Pg, (Zx4,, k) whenever & € P, (Zy,k) and & € Pg,(Z,,k).

An element a € Ay, (k) defines an endomorphism of the bifunctor
HompGO(ZHWk)(P,\Jr“(k),?*?) :Pay (2, k) x Pgy (Zu, k) — Mody.
Now since F is a tensor functor, we have a canonical isomorphism of bifunctors
HOHIPGO (ZA‘H“k) (P)H,“(k), ?*?) = F(?*?)

> F(?) @k F(?)
= HOIHPGO (z»x) (Pa(k), ?) @k HomPGO (2 k) (Pu(k), 7).

By an immediate generalization of Proposition 13.1(2), our element a thus defines an element
of the ring Ay (k) ®x A, (k). This leads to a ring homomorphism

Axtu(k) = Ax(k) @i Ay (k).
Dualizing, we get a coalgebra map
BA(k) Rk Bu(k) — B)\+M(k).

Taking the limit of these maps over A and g, this construction provides a multiplication map
on B(k), which can be seen to be associative and commutative.

On the other hand, it is clear that By(k) = k, so that the natural morphism By(k) — B(k)
defines a canonical element in B(k) which is easily seen to be a unit. Altogether, we have
thus constructed a bialgebra structure on B(k). Since our construction is based on natural
transformations of functors, the functor S is easily seen to be compatible with the monoidal
structures.

If we set

Gy = Spec(B(K)),

then the bialgebra structure on B(k) translates to a structure of monoid scheme on Gl To
conclude, what remains to show is that B(k) admits an antipode, or in other words that Gy
is a group scheme. Since, by Proposition 13.2, we have

G = Spec(k) Xspec(z) Gz, (13.1)
it suffices to prove this when k = Z. This will be done in Proposition 13.4 below.

Lemma 13.3. Assume that k = Z. If M is an object of P, (Gra, Z) such that F(M) is free
of rank 1, then there exists M* in Pg,(Grg,Z) such that M « M* is the unit object.
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Proof. Consider the object Q ®5 M € Pg,(Grg, Q). This object is such that F(Q ®% M)
has dimension 1, where here F means the tensor functor for coefficients Q; as noticed at the
beginning of Section 9, this implies that Q®% M = 7,.(\, Q) for some A € X,(T)* orthogonal
to all the roots of G, i.e. such that Grpy = {L)}.

By the results in §13.1, we have an embedding
I HomPGO(Grg,Z) (M, u%*()" Z)) — HOmz(F(M), F(j*()\, Z)))

whose image is the set of all the B(Z)-comodule maps. Since F(M) = Z = F(J1.(\, Z)), the
codomain of f is a free Z-module of rank 1. Therefore Homp,, (Gx o.2) (M, J1«(\, Z)) is either
0 or a free Z-module of rank 1; since

L
Q Xz HomPGO (Grg,Z)(Ma \.%*()‘7 Z)) = HomPGO (Grg,Q)(Q Xz M7 \f*()‘a Q)) = Q7

it is in fact free of rank 1. We see moreover that the cokernel of f is either 0 or a cyclic group.
Now if a nonzero multiple of a Z-linear map f : F(M) — F(J1.(\, Z)) is a morphism of B(Z)-
comodules, then the map f itself is a morphism of comodules, because F(J1.(\,Z)) ®z B(Z)
is torsion-free. The cokernel of f is therefore torsion-free, hence is zero. In other words, f is
an isomorphism, and any map in Homg (F(M), F(J1.(\, Z))) is a B(Z)-comodule map.

The image by f~! of an isomorphism of Z-modules F(M) = F(Jx(\,Z)) is thus an isomor-
phism M = J1,(\,Z). One can then take M* := Ji,(—=\, Z). O

Proposition 13.4. The monoid scheme Gz is a group scheme.

Proof. First, we remark that if M is a right B(Z)-comodule which is free of rank 1 over Z,
then Lemma 13.3 implies that M is invertible in the monoidal category of éz—modules, hence
that Gz(R) acts by invertible endomorphisms on R ®z M, for any Z-algebra R. As in the
case of fields (see the proof of Theorem 2.7), this implies the same claim for any right B(Z)-
comodule which is free of finite rank. Then, consider an arbitrary object M in Comodp(z).
By [S2, Proposition 3|, there exist right B(Z)-comodules M’" and M" which are free of finite
rank over Z and an exact sequence of B(Z)-comodules

M" — M — M — 0.
Then for any Z-algebra R we have an exact sequence
Rz M" - Rz M' - Rz M — 0.

Any element of Gz(R) acts on R ®z M” and R &z M’ by invertible endomorphisms by the
case treated above; the 5-lemma implies that the same claim holds also for M. This implies
the proposition since the statement in Remark 2.8(1) holds in our present setting, see [SR,

Chap. II, Scholie 3.1.1(3)]. O
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14 Identification of the group scheme

14.1 Statement and overview of the proof

In Section 13 we have constructed an affine k-group scheme ék and an equivalence of monoidal
categories B
Pao(Gra, k) — Repy(Gy).

Our goal now is to identify Gx. To state this result we need some terminology. Recall that:

e a reductive group over a scheme S is a smooth affine group scheme over S all of whose
geometric fibers are connected reductive algebraic groups; see [SGA3, Exposé XIX,
Définition 2.7];

e a split torus over S is a group scheme which is isomorphic to a finite product of copies
of the multiplicative group G, s;

e a split maximal torus of a group scheme H over S is a closed subgroup scheme K of H
which is a split torus and such that for any geometric fiber s, the morphism Kz — Hs
identifies K3z with a maximal torus of Hz; see [SGA3, Exposé XIX, p. 10].

When S = Spec(Z), it is known that a reductive group H over Spec(Z) which admits a split
maximal torus is determined, up to isomorphism, by the root datum of Spec(C) Xgpec(z) H;
see [SGA3, Exposé XXIII, Corollaire 5.4]. For such a group, if k is an algebraically closed
field, the root datum of Spec(k) Xgpec(z) H does not depend on k, and will be called the root
datum of H.

When k = Z, the answer to our question is provided by the following theorem.

Theorem 14.1. The group scheme éz s the unique reductive group over Z which admits a
split torus and whose root datum is dual to that of G.

In fact, below we will prove a slightly more precise result: we will construct a maximal torus
of Gz whose group of characters identifies with X, (T'), and show that the root datum of Gz
with respect to this maximal torus is dual to the root datum of (G,T'). For a general k, since
Gy = Spec(k) Xgpec(z) Gz, (see (13.1)), Theorem 14.1 determines Gy also up to isomorphism.

When k is a field of characteristic 0, this description®® has already been proved in Theo-
rem 9.8; this special case will play an important role in the proof below. In fact, a result of
Prasad—Yu [PY, Proposition 1.5] ensures that a flat affine group scheme H over Z such that
Spec(k) Xspec(z) H 1s a connected reductive group for any algebraically closed?! field k, whose
dimension is independent of k, is necessarily reductive. Hence what remains to be done is:

30Note that in this setting there are two different groups that we have denoted Gx: the one constructed in
Section 9 using Tannakian reconstruction, and the one constructed “by hand” in Section 13. These two groups
are canonically identified thanks to [Mi, Theorem X.1.2].

31 As stated in [PY], the claim requires this property rather when k is either Q or a finite field F,,. But an
affine group scheme over a field is reductive iff its base change to an algebraic closure of the field is reductive;
this follows from the fact that smoothness can be checked on this base change, see [GW, Remark 6.30(2)], and
similarly for connectedness, see Footnote 3.
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1. construct a subgroup scheme of Gz which is a split torus;
2. check that for an algebraic closure k of a finite field, the group scheme ék is reductive;
3. show that the base change to k of our Z-torus is a maximal torus of C~¥k;

4. and finally, show that Gy has the appropriate root datum with respect to this maximal
torus.

Here (1) will be easy, and based on the same arguments as for fields of characteristic 0,
see §14.2. The proof of (2)—(4) will rely on another result of Prasad—Yu [PY, Theorem 1.2]
which, in our setting, characterizes reductive group schemes over Z, in terms of properties of
their base change to Q) and to an algebraic closure of F,. (More precisely, this result will be
needed to show that Gy is reduced; the other properties will be checked directly.)

14.2 First properties

For any k, by construction Gy is an affine group scheme over k. Moreover, this group scheme
is flat over k by Proposition 13.2.

Lemma 14.2. If k is a field, the group scheme ék 1s algebraic and connected.

Proof. 3 By Proposition 2.11(1), to prove that Gy is algebraic we need to exhibit a ten-
sor generator of the category Repk(ék) = Pg, (Grg, k). By Proposition 12.4, the category
Pa, (Grg, k) has a natural highest weight structure. Hence we can consider the tilting objects
in this category, namely those which admit both a filtration with subquotients of the form
Ji(A\, k), and a filtration with subquotients of the form 7. (A, k); see e.g. [Ri, §7.5]. If we de-
note by Tiltg, (Grg, k) the full subcategory of Pg,, (Grg, k) consisting of the tilting objects,
then the indecomposable objects in Tiltg, (Grg, k) are parametrized by X,.(T)" (see e.g. [Ri,
Theorem 7.14]), and the natural functor

KPTiltg, (Grg, k) — D°Pg, (CGrg, k)

is an equivalence of categories (see [Ri, Proposition 7.17]). In particular, any object of
P, (Grg, k) is a subquotient of a tilting object.

Now, it is known that the subcategory Tiltg,, (Grg, k) is stable under the convolution bifunctor
*. In fact, consider the “parity sheaves” {& : A € X,(T)"} in D% (Grg, k) in the sense of
Juteau-Mautner-Williamson [JMW] (for the constant pariversity). It follows from [JMW2,
Proposition 3.3] that if these objects are perverse, then they coincide with the tilting objects
in P (Grg, k) = Pg, (Grg, k). The fact that they are indeed perverse is proved in [JMW2]
under certain technical conditions on char(k), and in [MR, Corollary 1.6] under the assumption
that char(k) is good for G.33 This settles the question in this case, since convolution preserves

32This proof was suggested to us by G. Williamson.

33Recall that a prime number p is called bad for G if p = 2 and A(G,T) has a component not of type A, or
if p=3and A(G,T) has a component of type E, F of G, or finally if p = 5 and A(G, T) has a component of
type Es. A prime number is called good for G if it is not bad for G.
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parity complexes; see [JMW2, Theorem 1.5|. The proof that Tiltg, (Grg, k) is stable under
convolution for a general field k will appear in [BGMRR)].

Finally we can conclude: if (A1,---,\,) is a finite generating subset of the monoid X, (7)™,
and if 7 is the indecomposable tilting object attached to A; for any i € {1,--- ,n}, then
by support considerations we see that any indecomposable tilting object in Pg,, (Grg, k) is a
direct summand of a tensor power of 7 @ --- ® .%,, and therefore that 71 @ --- ® .7, is a
tensor generator of the category Pg,, (Grg, k).

Once we know that Gy is algebraic, the fact that it is connected follows from Proposi-
tion 2.11(2), using the same considerations as in the proof of Lemma 9.3. O

Remark 14.3. 1. The algebraicity claim in Lemma 14.2 is not proved in this way in [MV?2].
In fact, in order to apply the results of [PY] we only need to know that the reduced
subgroup (Gx)red is of finite type, when k is an algebraic closure of a finite field. The
proof of this claim in the published version of [MV2] is incomplete, but the authors have
recently added in the arXiv version of their paper an appendix explaining how to fill
this gap. In any case, the prior knowledge of the fact that Gy is algebraic will allow us
to simplify some later steps of the proof.

2. The fact that Gy is connected implies that (ék)red is connected; see [Wa, §6.6].

Lemma 14.4. If k is an algebraic closure of a finite field, then the dimension of Gy is at
most the dimension of the reductive k-group with root datum dual to that of G (i.e. dim(G)).

Proof. This property follows from the general fact that the dimension of fibers of a flat mor-
phism of finite presentation is a lower semicontinuous function (on the target), see [SP, Tag
0D4H]. In more “down to earth” terms, one can argue as follows. Let p be the characteristic
of k, and set d := dim(ék). Then there exist d algebraically independent functions fi,--- , fg

in k [ék} (see e.g. |[GW, Theorem 5.22|). Since
k|G| = ke, F, |G, |,
there exists a finite field F C k such that each f; belongs to
F or, F, |Gr,| 2 F |Crl.
Let O be a finite extension of Z, with residue field F. Then since
F |Gr| =F 20 0 |Gol.
each f; can be lifted to a function f; € O [éo] Since O [éo} is torsion-free, the collection

f 17 s f 4 does not satisfy any algebraic equation with coefficients in O. Finally, since O [éo]
is free over O, if K is the fraction field of O this collection is algebraically independent in

K @0 O [éo] ~ K [GK} .

Hence d is at most dim(Gxk). We conclude using the fact that dim(Gk) is the dimension of
the split reductive k-group with root datum dual to that of GG, see Theorem 9.8. O
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We finish this subsection with the following remark, valid for any ring k. We denote by 7}/ the
split k-torus whose group of characters is X, (7). Then, as in the case of fields of characteristic
0 (see §9.1), the weight functors define a canonical functor Pg, (Grg, k) — Rep(7y) sending
convolution to tensor product and the functor F to the natural forgetful functor. In view
of [Mi, Theorem X.1.2] (compare with Proposition 2.6 and Proposition 2.10), this defines for
any k-algebra k’ a group morphism 7}/(k’) — ék(k’ ), or in other words a k-group scheme
morphism 7} — Gx. Again as in the characteristic-0 case, for any A\ € X,(T) the free
rank-1 7,/-module defined by X appears as a direct summand of the image of an object of
P, (Grg, k); considering matrix coefficients we deduce that A belongs to the image of the
associated morphism k[Gy] — k[7}/]. This shows that this morphism is surjective, i.e. that
the morphism 7,/ — Gy is a closed embedding.

14.3 Study of the group (ék)red for k an algebraic closure of a finite field

In this subsection we fix a prime number p and assume that k is an algebraic closure of F,,. We
study in detail the algebraic k-group scheme®* (G )req. Recall that this group is connected; see
Remark 14.3(2). We also remark that the embedding 7} — G factors through an embedding
T — (Gx)rea since T} is reduced. The goal of this subsection is to prove the following
proposition.

Proposition 14.5. The group scheme (ék)red is a connected reductive group, T, is a mazimal
torus of this group, and the root datum of (Gx)rea with respect to Ty, is dual to that of (G, T).

Note that Proposition 14.5 is sufficient to complete the program outlined in §14.1. Indeed,
once this result is proved, we will know that the group scheme Gz, over Z, satisfies the
following conditions:

. ézp is affine and flat over Z, (see §14.2);

e the generic fiber éQp = Spec(Qp) Xspec(z,) C~¥Zp is connected and smooth over Q,, (see
Theorem 9.8);

e the reduced geometric special fiber (ék)red = (Spec(k) Xgpec(z,) ézp)red is of finite type
over k (see Lemma 14.2) and its identity component (ék)fed is a reductive group of the

same dimension as Gq, (see Proposition 14.5).
In the terminology of [PY], this means that ézp is quasi-reductive. We will also know that
e the root data of éQp and (ék)fed coincide.

By [PY, Theorem 1.2], it will follow that ézp is a reductive group over Z,. This will imply in

particular that C~¥k is reduced, hence that in Proposition 14.5 we can omit the subscript “red,”
and thus will finally prove the properties (2)—(4) of §14.1.

34Recall that if H is a group scheme over a field F', the associated reduced scheme H;.q is not necessarily a
closed subgroup. But this is true if F is perfect, which is the case here; see [Mi, §VI.6].
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The proof of Proposition 14.5 will be based on the same ideas as in Section 9, but with many
additional difficulties. We need some preparatory lemmas. We denote by R the quotient of
(Gx)red by its unipotent radical. Then the composition 7, kv — (Gk)rea — R is injective, so
that we can also consider T}/ as a closed subgroup of R.

Lemma 14.6. T}/ is a mazimal torus of R.

Proof. First, by |[DG, Corollary I11.3.6.4], Gy is isomorphic, as a scheme, to the product (over
Spec(k)) of (Gi)red With a scheme of the form Spec(k[X1,--- , X,]/(XP™" .-, XP™)) for
some positive integers ni,--- ,n,. It follows® that for some n, the n-th Frobenius morphism
Fr"ék : G — (Gy)™ (see e.g. [Ja, §1.9.2]) factors through ((ék)red)(n). Hence we can consider
the diagram

n
Fr%

R

Now, consider a simple representation V of R™, seen as a (simple) representation of the

group ((Gk)red)(n) S5
representation is simple: in fact, its restriction to (Gx)req is simply the twist of V' by Fr

. Our factorization above allows to see V' as a representation of C~¥k. This
n

(Gk)red ’
hence it is simple by [Ja, Proposition 1.9.5]. In this way we obtain an injective ring morphism

Q @z K°(Repi(R™)) = Q @z K°(Repy (Gi)).
By [GW, Theorem 5.22(3)], this shows that
dim Spec(Q ®z KO(Repk(ék))) > dim Spec(Q ®z KO(Repk(R(”)))).

Here, by (9.1) the right-hand side is equal to rk(R(™) = rk(R), and the left-hand side is equal
to dim(7") (by the same considerations as in the characteristic-0 case, see §9.1). Hence this
inequality means that rk(R) < dim(7}), hence that 7}/ is a maximal torus in R. O

Now we choose a Borel subgroup Bof R containing T}/ for which the sum 2p of the positive
roots of G is a dominant cocharacter (for the choice of positive roots given by the 7,/-weights

in the Lie algebra of B). We then use the same notation as in §9.2 for roots and coroots of G
and R.

Lemma 14.7. The set of dominant weights of (R, T}) relative to the system of positive roots
AL(R,B,T) is X.(T)t € X(T) = X*(T})).
358ee also [Mi, Corollary V1.10.2] for a direct proof of this fact.
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Proof. For A € X, (T) a dominant weight relative to the system of positive roots Ay (R, B, 7)),
we denote by L¥(\) the corresponding simple R-module. Let n be as in the proof of Lem-
ma 14.6. Then for A as above, the action of R on L¥(p™\) factors through an action of R
by Steinberg’s theorem (see [Ja, Proposition 11.3.16]), hence this module determines a simple
Gx-module (see the proof of Lemma 14.6). The action of 7} on this module is then determined
by the character of the R-module L%(p"\).

On the other hand, let u € X.(T)* be the dominant coweight of G such that the simple
perverse sheaf corresponding to LT (p™)) is Ji.(u, k). Then we can write in the Grothendieck
group of Pg,, (Grg, k)

(k)] = (AR + Y e (AWK
veX.(T)*
v<p
for some coefficients ¢,,,, € Z. This gives rise to a second way of expressing the action of T}
on this Gy-module using Proposition 11.1. In particular, since the highest weight of LE(pm))
(considered as an R-module, with the choice of positive roots determined by B) is a weight for

which the function (2p,?) attains its maximum, we must have p = p"\, so that p™\ belongs
to X, (T)", and finally A € X,(T)".

On the other hand, let A € X, (T)". Consider the simple Gy-module LE%()) corresponding
to the simple perverse sheaf Ji.(A, k). The T)/-weights of this module, or equivalently of its
restriction to (ék)re(b can be estimated as above using Proposition 11.1; in particular X is
a weight of this module. Hence there exists a composition factor M of the (ék)red—module
L%<()\) which admits ) as a T}Y-weight. Since M is simple, the (G )req-action factors through
an R-action. Considering once again the values of the function (2p, ?), we see that A\ must be

the highest weight of M, and thus that A is dominant with respect to the system of positive
roots Ay (R, B, T}). O

As for (9.2), Lemma 14.7 implies that
{Qi-a:aeAY(R,B,TY)} =1{Qy-B: 5 € AG,B,T)}. (14.1)
Lemma 14.8. We have Z - A(R,TY) C Z - AY(G,T) (in X.(T) = X*(T)))).

Proof. Recall that the connected components of Grg are in a natural bijection with the quo-
tient X, (T)/ZAY(G,T), see §3.1. Let Z C T}/ be the (scheme-theoretic) intersection of the
kernels of all the elements in ZAY(G,T), so that Z is a diagonalisable group scheme with
X*(Z) =2 X.(T)/ZAY(G,T). Then any object of Pg,(Grg, k) is naturally graded by the
group of characters of Z, in a way compatible with the functor

Pg, (Gra, k) 2 Repi(Gy) — Repy(2)

(where the second arrow is the forgetful functor). In particular, for any x € X*(Z), the
subspace of the left regular representation k[él(] consisting of the functions f satisfying
f(z71g9) = x(2) f(g) is stable under the action of G; hence Z is a central subgroup of Gy, and
then its image in R is central also. We deduce that all the roots of (R, T}) restrict trivially to
Z, i.e. that the morphism X, (T) — X.(T)/ZAY(G,T) factors through X,(T)/Z - A(R,T}!),
whence the claim. O
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Lemma 14.9. The Weyl groups of (G,T) and of (R,T}Y), seen as groups of automorphisms
of X«(T), together with their subsets of simple reflections, coincide.

Proof. Recall that the Weyl group of (G,T) is denoted by W. We also denote by S C W the
subset of simple reflections (i.e. the reflections associated with simple roots). We will denote
by W’ the Weyl group of (R,T})), and by S” C W’ the subset of simple reflections. We fix n
as in the proof of Lemma 14.6.

For A € X, (T)™", we can recover the orbit W’-(p™\) as the set of extremal points of the convex
polytope consisting of the convex hull of the weights of the simple R-module L%(p")). Using
the same considerations as in the proof of Lemma 14.6 we see that this set coincides with the
orbit W - (p"\), so that W/ - A=W - \.

Now, we define an element of X.(T)" to be regular if its orbit under W’ (or equivalently
under W) has the maximal possible cardinality, or equivalently if it is not orthogonal to any
simple root of (G,T), or equivalently if it is not orthogonal to any simple coroot of (R,T}’).
Then for A regular, we can recover the subset {s-\:s € S} C W -\ as the subset consisting
of elements p such that the segment joining A to u is also extremal in the convex hull of W - A.
A similar description applies for {s’- X : s’ € S’} from which we deduce that

{s:A:se8}={s N:s e}

This implies that S = S”: in fact if s € S, then for any A € X, (T)" regular there exists s’ € S’
such that s- A = s’ - \, and s’ does not depend on A\ because the direction of A\ — s’ - X is the
line generated by the coroot of G associated with s and also the line generated by the root of
R associated with s’; then we have s = s'.

Finally, once we know that S = S” we deduce that W = W', since W, resp. W', is generated
by S, resp. S’. O

Lemma 14.10. We have ZA(G,T) C ZAY(R,T)) in X*(T) = X.(T))). Moreover, if this
inclusion is an equality the root datum of (R,T}) is dual to that of (G,T).

Proof. Let a € Ag(G,B,T). By (14.1), we know that there exists a € Q4 ~\ {0} such that
aa € AY(R, B, T}Y). We can also consider the coroot a" of (G, T') associated with the root a,
and the root (aa)" of (R,T}) associated with the coroot ac. By Lemma 14.9, we have

id — (oY, )a = id — {(ac)", ?)(ac)

as automorphisms of X*(T) = X.(T}); it follows that (a)" = LaV. On the other hand,
Lemma 14.8 shows that (aa)" € ZAY(G,T); hence 1 € Z, and o = 1(aer) € ZAY(R, T}Y).

If the inclusion ZA(G,T) C ZAY(R,T}) is an equality, then with the notation used above
we must have a = 1 for any a; then Ay (R, B,T)Y) = AY(G,B,T) and AY(R,B,Ty) =
As(G, B,T), and the canonical bijections between simple roots and coroots of R and of G
coincide. Taking orbits under the Weyl groups, it follows that A(R,T) = AY(G,T) and
AY(R,T})) = A(G,T), in a way compatible with the bijections between roots and coroots. [

Lemma 14.11. If G is semisimple of adjoint type, then Proposition 14.5 holds.
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Proof. If G is semisimple of adjoint type, then ZA(G,T) = X*(T). It follows that the
inclusion in Lemma 14.10 is an equality, and then that the root datum of R with respect to
T,/ is dual to that of (G,T).

Then we conclude as follows: of course we have dim(R) < dim((ék)red) = dim(Gy). Lem-
ma 14.4 and our determination of A(R, 7)) imply that this inequality is in fact an equality,
so that (Gx)rea = R, and then the claim follows from our identification of the root datum of

R. O

Lemma 14.12. If G is semisimple, then Proposition 14.5 holds.

Proof. We assume that G is semisimple. Now that the claim is known if G is of adjoint type
(see Lemma 14.11), we will in fact prove directly that Gy is a semisimple group with maximal
torus 7} and root datum dual to that of (G, T).

Let Gaq be the adjoint quotient of G, and let T,q be the image of T' in G,q. Then we
can consider the group scheme (G,q)x constructed in Section 13 starting from the group
Gaq. By Lemma 14.11 and the remarks following Proposition 14.5, we know that (é;l)k is
semisimple with root datum dual to that of (Gaq,Taq). The morphism G — G,q induces a
closed embedding Grg — Grg Gad
via Tannakian formalism.

.q» Which then defines a group scheme morphism (Gaq)x — Gy

The connected components of Grg,, are parametrized by X, (Thq)/ZAY(Gaa,Twa), and Grg
is the union of those corresponding to elements in the subset X, (T)/ZAY(Gag,Taa). (Here
AY(Gaq, Tha) is included in X, (T), and identifies with AV(G,T).) Hence if Z C (Tha)y.
is the (scheme-theoretic) intersection of the kernels of the elements of X,.(T'), so that Z
is a diagonalisable k-group scheme with X*(Z) = X,(Taq)/X«(T), then any object .# of
PG.q.0(Grg,,, k) admits a canonical grading # = @XG X*(2) Fy, and using the equivalence
of Proposition 10.8 we see that Pg,(Grg, k) identifies with the full subcategory of objects
F such that .#, = 0 for x # 1. This means that Gy is the quotient of (CA{;i)k by the finite
central subgroup scheme Z. Hence Gy is semisimple, and its root datum is dual to that of

(G, T). O

Finally, we conclude the proof of Proposition 14.5 with the following lemma.

Lemma 14.13. Proposition 14.5 holds for a general reductive group G.

We will give two proofs of this lemma: the first one is a slightly expanded version of the proof
given in [MV2], and the second one is new (to the best of our knowledge).

First proof of Lemma 14.13. Here also, we will prove directly that Gy is reduced and reduc-
tive, and compute its root datum.

Let Z(G) be the center of G, and set H := Z(G)°. Then H is a torus and G/H is a semisimple

group; in particular the group I;'k constructed as for G is the k-torus dual to H, and G/H,
is the semisimple group dual to G/H.
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The natural maps H < G and G — G/H induce morphisms

Grg — CGrg & Grg/m,

which exhibit Grg as a trivial cover of Grg,y with fiber Gry. (In fact, if we choose a
lattice Y C X, (T') such that the composition Y — X,(T) - X,.(T/H) is an isomorphism,
then Grg/ g identifies with the union of the connected components of Grg corresponding to
elements in Y/ZAV(G,T) C X.(T)/ZAY(G,T). Note that there exists an isomorphism of
varieties Grg = Grg X Grgp, but that in general such an isomorphism cannot be chosen to
be compatible—in any reasonable sense—with the construction of the convolution product.)
We have associated exact functors

P10 (Grir, k) 25 Pay (Gra, k) = P/ (Grg m, k), (14.2)

where i, is fully faithful and 7, is essentially surjective. (Here we use Proposition 10.8 to make
sense of the functor i, as a functor between the categories of equivariant perverse sheaves.)
These functors are compatible with the monoidal structures and forgetful functors, hence
induce group scheme morphisms

57_}/[1( — ék — ﬁ[k (14.3)

via Tannakian formalism. If .7 is in Pg, (Grg, k) and if we set Fo 1= i,P#0(i*.F), then F
is a subobject of .# and 7, (%) C % is the largest subobject isomorphic to a direct sum of
copies of the unit object. This shows that (14.2) is an exact sequence of tensor categories in the
sense of [BN, Definition 3.7]; in view of [BN, Remark 3.13] we deduce that (14.3) is an exact
sequence of k-group schemes. (Here the fact that the first morphism is a closed embedding can
be seen using [DM, Proposition 2.21(b)], and the fact that the second morphism is a quotient
morphism in the sense of [Wa, §15.1] or [Mi, §VIL.7] follows from [DM, Proposition 2.21(a)|;
however exactness at the middle term is less obvious, in particular since it is not clear a priori

that 617?[ « is a normal subgroup. In fact, the property stated right after (14.3) essentially
guarantees this.)

We have just proved that Gy is an extension of Hy by Cfl/\fl k- Since both of these group
schemes are smooth, by [Mi, Proposition VII.10.1] this implies that Gy is also a smooth group,
i.e. that (14.3) is an extension of k-algebraic groups in the “traditional” sense of e.g. [Hu|. The

unipotent radical of Gy has trivial image in the torus ﬁlk, hence is included in G/H,; since

the latter group is semisimple it follows that this unipotent radical is trivial, i.e. that Gy is
reductive.

Since I;'k is commutative, 6/\1?[ k contains the derived subgroup of ék; and since C?/\;I Kk 18
semisimple it coincides with the derived subgroup of Gk. The torus (7'/H),. dual to T/H

embeds naturally in 7}/, and identifies with a maximal torus in G/H,; hence the associated
embedding X, ((T/H)Y) < X,(T}}) induces an isomorphism

ZAY(G/H,, (T/H)Y) = ZAY (G, TYY).

On the other hand, in terms of G this embedding identifies with the morphism X*(T/H) —
X*(T) induced by the quotient morphism 7" — T'/H; hence it induces an isomorphism

ZA(G/H,T/H) = ZA(G,T).
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Since the embedding ZA(G/H,T/H) C ZAY (6/\]7—[10 (T/H))) of Lemma 14.10 is known to
be an equality, we deduce that the embedding ZA(G,T) C ZAY (ék, Tll/) is an equality also,
hence by Lemma 14.10 that the root datum of (Gy,T}) is dual to that of (G, T). O

Second proof of Lemma 14.13. We again set H = Z(G)°, and consider the quotient G/H and
the closed embedding G / H, — Gk Since G / H, is known to be reduced this embedding
factors through (Gk)reda and since G/ H, is sermslmple the composition with the quotient

morphism (Gy)req — R is injective; hence G / H, can (and will) be considered as a closed
subgroup of R. Consider the subspaces

Lie(G/H,), Lie(Ty) C Lie(R),

where Lie(?) means the Lie algebra. We have

Lie(G/H,) NLie(TY) = {z € Lie(G/H,) |Vt € Ty, t - = z}
C {z € Lie(G/H,) | ¥t € (T/H)Y, t - @ = 2} = Lie((T/H)Y)

(where the k-torus (T'/H)), dual to T/H is seen as a closed subgroup of 7/, and as the
maximal torus of G/H, ). We deduce that

dim(Lie(R)) > dim (Lie(éﬁ(k) + Lie(Ty)) > dim(G/H) + dim(H) = dim(G).

Since the left-hand side coincides with dim(R) (see [Wa, §12.2]), which is at most dim ((Gi)red),
using Lemma 14.4 we deduce that all the inequalities above are equalities. In particular,
(Gx)red = R is reductive, and we have

H#AR,TY) = #A(G/Hy, (T/H)) = #A(G,T).

This formula, together with Lemma 14.9, implies that if Z(R) is the derived subgroup of R
we have o
dim(2(R)) = #A(R, TY) + #04(R, Ty) = dim(G/Hy).

—_~—

Since G/H, is semisimple it is included in Z(R), which is connected (see [Wa, Theorem 10.2]);
hence this equality implies that G/H, = Z(R).

Once this equality is known, we can conclude essentially as in the last part of the first proof:
the embedding X, ((T'/H)Y) < X.(T}/) induces an isomorphism ZAY (Cfl/\ﬁk, (T/H)Y) =
ZAY(R,T)) and an isomorphism ZA(G/H,T/H) = ZA(G,T), which shows that the em-
bedding ZA(G,T) C ZAY(R,T}/) of Lemma 14.10 is an equality, and then that the root
datum of (R,Ty) is dual to that of (G,T). Since R = (G )red, this concludes the proof of
Lemma 14.13. U

Remark 14.14. From the point of view of Geometric Representation Theory, the most inter-
esting case of the geometric Satake equivalence is when k is an algebraically closed field. As
explained above, for this special case the results of [PY] are required only to justify that the
group scheme Gy is reduced. It would be desirable to find a direct justification for this fact
(but we were not able to do so).
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15 Complement: restriction to a Levi subgroup

In this subsection we construct a geometric counterpart of the functor of restriction to a
Levi subgroup, following [BD, §§5.3.27-31]. This construction plays a key role in various
applications of the geometric Satake equivalence, see e.g. [BrG, AHR].

15.1 The geometric restriction functor

Let P C G be a parabolic subgroup containing B, and let L C P be the Levi factor containing
T. If B = BN L, then By, is a Borel subgroup of L, and P is determined by the subset
Ag(L,Br,T) C As(G, B, T).

The embedding L < G induces a closed embedding Gry, — Grg, whose image identifies with
the fixed points (Grg)?(H)° (where Z(L) C L is the center of L, and Z(L)° is the identity
component of Z(L)). In fact, choose a dominant cocharacter n € X,(T') which is orthogonal
to the simple roots in Ag(L, Br,,T), but not to any other simple root. Then (the image of)
Gry, identifies with (Glrg)n(cX ). We will denote by .}, the stratification of Gry by Lo-orbits.

The connected components of the affine Grassmannian Gry, are in a canonical bijection with
the quotient X, (T")/ZAY(L,T); see §3.1. If ¢ belongs to this quotient, then we denote by Gr{
the corresponding connected component of Gry, and we set

S, = {x € Grg | lim(n(a) @) € Grg};
T, := {x € Grg alggo(n(a) -T) € GrL} .

If Np C P is the unipotent radical and N, C G is the unipotent radical of the parabolic
subgroup of G which is opposite to P with respect to T, then we have

Se= (Np)-Gri,  To=(Np)c-Grf.
We will denote by

Grg €5 5. 7% Gr§,  Grg &< T. 7 Gr§,
the natural maps.

If py, is the half sum of the positive roots of L determined by By, then for any A € AY(L,T)
we have (2p — 2pr,\) = 0. It follows that the pairing (2p — 2pr, ) makes sense for ¢ €
X.(T)/ZAV(L,T).

Lemma 15.1. For any ¢ € X.(T)/ZAV(L,T) and any F in Pg,(Grg, k), there exists a
canonical isomorphism

(TC)*(tC)!ﬁ = (och(se)*F

mn D}L(GrL,k). Moreover, this complex is concentrated in perverse degree (2p — 2pr,,c).

Proof. As in the case L = T (see Proposition 10.1), the isomorphism follows from Braden’s
hyperbolic localization theorem [Br, Theorem 1]. If, for A € X, (T)), we denote by S&, T C
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Gry, the semi-infinite orbits for the group L, then for any A € ¢ the base change isomorphism
provides a canonical isomorphism

HE (Y, (0c)i(se)*.F) = HE(Sy, 7).

By Lemma 10.6, this implies that (o.)1(s.)*#[—(2p — 2pL, )] is a perverse sheaf, and finishes
the proof. O

In view of this lemma, for ¢ € X,(T)/ZAY(L,T) we consider the functor
Fe = (oe)i(se)*(7)[—(2p — 2p1,¢)] : PG, (Grg, k) = P, (Grp, k).

We also set
R = &y F.:Pg,(Crg, k) = P, (Grp, k).
cEX.(T)/ZAY (L,T)

The arguments of Lemma 15.1 provide, for any A € X, (T"), a canonical isomorphism
FoRY 5 F)y (15.1)

(where Ff is the A-weight functor for the group L). In particular, summing over A\ and using
Theorem 10.4 we deduce a canonical isomorphism of functors.

FEoRY ~F
where FL' := H*(Grp, 7).
Proposition 15.2. The functor Rg sends the convolution product on Pg,(Grg, k) to the

convolution product on P, (Grr, k), in a way compatible with associativity and commutativity
constraints.

Proof. Recall the objects considered in Section 7. As in the proof of Proposition 8.3 (which
was only concerned with the case L =T') we can consider “relative” versions S.(X) C Grg x,
S.(X?) c Grg x2 of the varieties S, and denote the corresponding embeddings and projec-
tions by

8c 1 Se(X) = Grgx, 0c:Sc(X) = Gl y,

§2 : SC(X2) — GI‘G7x2, 5'2 : SC(X2) — Gri X2

c c

where Gry x and Grf y. are the connected components of Gry x and Gry, x2 defined by c.
Here, for € X, the fiber of S.(X?) over (z,r) € X? is canonically identified with S., and

the fiber over (71, 22) with z; # x3 is canonically identified with | |, | . _.Se¢ X Se,.
Now, consider the diagram
(GI"G7X X GTG,X)|U ] GTG,XQ : GI“G,X

(@UT TSQ Ts?c

ey oy (Ser (X) X 8oy (X)) [ — > Se(X?) =——— S,(X) (15.2)

(52)U\L Lffﬁ léc

j i
I_lcl+02:c (Gril,X x Gr%,X) ’U - Gri,XQ .
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where 7. and j. are the restrictions of ¢ and j. All the squares in this diagram are Cartesian
by [DrG, Lemma 1.4.9]. Moreover, (32)|y identifies with the restriction to U of the disjoint

union of inclusions 3., x 3.,, and similarly for 52.

We fix &/, o in Pg,(Grg, k). Then by (10.2) we have

(A % ) 2 s (PHO (0. B 7 85) ).
We set
Foi= (6oh(5)" (7)1 (20 — 201, 0)], B2 = (02)(82)" ()~ (20 — 2p1..0).
Then on the one hand we have
Fe(7°(h * o)) = (71)° (Felh * ), (15.3)

and on the other hand we have

0 - 0/ o L o .c\o [ 12 . 0/ o L o
Fu (8 ju (26" (r° 0 R ) 1) ) 2 (85)° (B2 0 jue (280 (7 B )0

by the base change theorem. We claim that

_ L
E2 0 i (PAO (7000 Ky 7°95) )

c1+co=c

%(ji)!*< D pﬁo((TL)"Fcl(%)ék (TL)°Fc2(»@72))IU>- (15.4)

In fact, to check this it suffices to prove that the left-hand side satisfies the properties (4.2)
which characterize the right-hand side. The isomorphism over U follows from the base change
theorem applied in the left-hand side of diagram (15.2) and the description above of the maps
(82)|y and (62)|y. The restriction of our complex to the inverse image of X is computed
in (15.3), and satisfies the required property. Finally, the co-restriction to the inverse image of
X can be computed similarly, using the other description of the functors F,. and lEz provided by
Braden’s theorem.?® Finally, comparing (15.3) and (15.4) and using the isomorphism (10.2)
for L, we obtain a canonical isomorphism

(10)°(Fe( % ) 2 D (11)°(Fey () * Fey ().

c1+ca=c

Restricting to a point in 2 and then summing over ¢, we deduce the wished-for isomorphism
RY (o * ) = RE () x RE ().

The proof of compatibility with the constraints is left to the reader. O

36Here we need to apply Braden’s theorem on a finite-dimensional subvariety of Grg x2. Since such a variety
is not necessarily normal, the proof in [Br| does not apply in this context. The more general form of this result
that we need is proved in [DrG].
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15.2 Description of the induced morphism of group schemes

The results of Section 13 provide canonical equivalences of monoidal categories
Pao(Gra, k) = Repy(Gi),  Pro(Gri, k) 2 Repy (L)
In view of [Mi, Theorem X.1.2], the functor Rg defines a k-group scheme morphism
%+ Ly — Gk

The 1som0rphlsms (15.1) show that the composition of gpL with the canonical embedding
) — Ly (see §14.2) is the canonical morphism ) — Gx.

Proposition 15.3. The morphism w% 1s a closed embedding, which induces an isomorphism
between Ly and the Levi subgroup®” of Gy containing T} whose roots are the coroots of L.

Proof. First, we assume that k is a field. In this case, by [DM, Proposition 2.21(b)], to
prove that gpg is a closed embedding it suffices to prove that any object of Pr,(Grp, k) is a
subquotient of an object in the essential image of Rf. However, as in the proof of Lemma 14.2,
any object of P, (Grp, k) is a subquotient of a tilting object. Now the functor Rg sends tilting
objects of Pg,, (Grg, k) to tilting objects of Pr, (Grr, k). (In the case char(k) is good for G,
this fact follows from [JMW2, Theorem 1.6] and the results of [MR, §1.5]; the general case is
treated in [BGMRR].) Moreover, it is not difficult to check that if A € X, (T") is dominant for
L, then the indecomposable tilting object in P, (Grp, k) labelled by A is a direct summand of
the image under Rg of the indecomposable tilting object in P, (Grg, k) labelled by the unique
W-conjugate of A belonging to X, (7). It follows that any tilting object in P, (Grp, k) is a
direct summand of an object in the essential image of Rg, which finishes the proof of the fact
that w% is a closed embedding.

Once this fact is established, we note that since apf intertwines the canonical morphisms
Y — Ly and Y — C~¥k, it must induce, for any o € AY(L, Br,,T), an isomorphism between
the root subgroup of Lk associated with « and the root subgroup of Gk associated with a.
Now the group Ly, resp. the Levi subgroup L of Gx containing 7}/ whose roots are the
coroots of L, is generated by T} and these subgroups. We deduce that the image of apf is L ,
or in other words that apf induces an isomorphism between Ek and Ei(

Now we treat the case k = Z. Consider the morphism (p%)* : Z|Gz) — Z]Lz]. If C is
the cokernel of this morphism, then C is a finitely generated Z[éz]—module which satisfies
C ®z F = 0 for any field F. By [BR, Claim (%) in the proof of Lemma 1.4.1], it follows
that C' = 0, i.e. that (p¥)* is surjective, and hence that ¢¥ is a closed embedding. It is
easily checked, using similar arguments, that the image of apf satisfies condition (b) in [SGA3,
Exposé XX VI, Proposition 1.6(ii)] (for the parabolic subgroup containing 77/ and whose roots
are AY (L, Br,T) U (—AY(G, B,T)). By the unicity claim in this statement, it follows that
this image is the Levi subgroup of Gz containing Ty whose roots are the coroots of L.

Finally, the general case follows from the case k = Z by base change. U

37See [SGA3, Exposé XXVI, §1.7] for the notion of Levi subgroup of a reductive group over a base scheme.

105



A Equivariant perverse sheaves

A.1 Equivariant perverse sheaves

Let X be a complex algebraic variety, let H be a connected®® algebraic group acting on X,
and consider a commutative Noetherian ring of finite global dimension k. Let

a,p:HxX - X, e: X —>HxX

be the maps defined by

p(g’x) =, a(g,x) =97, 6(5[7) = (1,$)

Let also pog : H x H x X — H x X be the projection on the last two components, and
m : H x H — H be the multiplication map.

Let 7 be a stratification of X whose strata are stable under the H-action. Then there are
at least 3 “reasonable” definitions of the category of .7 -constructible H-equivariant perverse
sheaves on X:

1. the heart P?'_Z; (X, k) of the perverse t-structure on the .7-constructible equivariant
derived category D% ,;(X,k) in the sense of Bernstein-Lunts, see [BL, §5];

2. the category P’ ,(X,k) whose objects are pairs (#,9) where # € Pz(X,k) and
¥ a*F — p*.F is an isomorphism such that

e*(¥) =idz and (m xidx)*(¥) = (p23)*(¥) o (idy x a)*(9), (A.1)
and whose morphisms from (#,9) to (%’,9¢) are morphisms f : % — %' in P (X, k)
such that the following diagram commutes:
- F —" ' F
a*(f)t lp*(f)
a* F' p*F';

3. the full subcategory Pz (X, k) of P#(X, k) consisting of objects .# such that there
exists an isomorphism p*.# = a*.%.

There exists an obvious forgetful functor P%% (X, k) = Pg (X, k). Next, we will define a
canonical functor

P (X, k) = P (X, k). (A.2)

For this we need the following observation. We denote by Fory : DY (X, k) — D% (X k)
the forgetful functor. The morphism p is a ¢-morphism of varieties in the sense of [BL, §0.1],

38This assumption is crucial; in case H is disconnected, only the first definition of equivariant perverse
sheaves has favorable properties.
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where ¢ is the unique morphism H — {1} and where H acts on H x X via left multiplication
on the first factor. Therefore, this map defines a functor

p%[@L&ky+D%ﬂuyxxx) (A.3)
(where 7 is the stratification of H x X whose strata are the subvarieties H x S with S € .7 )
see [BL, §6.5].

Lemma A.1. For any .% in Dby (X, k), there exists a canonical isomorphism
a*F = p*Fory (F)

mD%MHxXk)

Proof. In view of |[BL, §6.6, Item 5], the functor (A.3) is an equivalence of categories, whose
quasi-inverse is the composition e* oFory (where we also denote by Fory the forgetful functor
Dbﬁ H(H x X, k) — D%(H x X,k)). Therefore, to define an isomorphism as in the lemma it

suffices to construct an isomorphism
e* o Fory (a*F) = Forg (F).
In fact, such an isomorphism is clear from the facts that ¢* commutes with forgetful functors

in the obvious way and that a o e =idx. O

If & isin P?H(X, k), applying the forgetful functor to the isomorphism of Lemma A.1 we
obtain a canonical isomorphism ¥ : a*Fory(#) = p*Fory (%) in D%(H x X, k). We leave
it to the reader to check that this isomorphism satisfies the conditions (A.1); then the pair
(Forg (#),1) defines an object of P%% (X, k). This construction provides the whished-for
functor (A.2).

The following result is well known, but not explicitly proved in the literature to the best of
our knowledge (except for a very brief treatment in [MV1, Appendix A]).

Proposition A.2. The forgetful functors
P% 4 (X.k) = P (X, k) = Py (X, k)

are equivalences of categories.

In view of this proposition, in the body of these notes we identify the three categories above,
and denote them by Pz (X, k).

In the proof of this proposition we will use the fact (see [BBD, Théoréme 3.2.4]) that perverse
sheaves form a stack for the smooth topology. In our particular case, if 7 : P — X is a
smooth resolution (in the sense of [BL|), % denotes the stratification on P whose strata are
the subsets 7=1(S) for S € .77, ¥ denotes the stratification on P/H whose strata are the
subsets ¢(U) with U € % (where g : P — P/H is the projection), and if

Tl,TQSPXP/HP—)P, 7"12,7“23,7"13:PXP/HPXP/HP—)PXP/HP
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are the natural projections, this means that the category Py (P/H, k) is equivalent, via the
functor ¢*, to the category whose objects are pairs (#,0) where % € Py (P, k)[— dim(H)]
and o : (r))*%# = (r2)*.% is an isomorphism such that (r23)*(c) o (r12)*(0) = (r13)* (o),
and whose morphisms (#,0) — (%',0’) are morphisms f € Hom (px) (7, F') such that

(r2)"(f) oo =" o (r1)*(f).

With this result at hand we can give the proof of Proposition A.2.

Proof. The second functor is an equivalence by |Le, §4.2.10|. Hence what remains to be proved
is that the composition P?; (X, k) = Pz (X, k) is an equivalence.

Fix a free H-space P and a smooth dim(X)-acyclic map 7 : P — X of relative dimension
d (which exist thanks to the results of [BL, §3.1]), and let ¢ : P — P/H be the quotient
morphism. Then P?; (X, k) is (by definition, see |BL, §2.2.4]) equivalent to the category
whose objects are the triples (#p, Zx, ) where #p € D2(P/H,k), #x € P7(X,k) and 3 :
q* Fp = m* Fx is an isomorphism, and whose morphisms from (Zp, Zx, B) to (Fp, F, ')
are the pairs (fp, fx) with fp : Fp — Fp and fx : Fx — F% compatible (in the natural
sense) with 3 and /.

First we show that our functor is faithful. Let (fp, fx) : (%p, Zx,B) = (Fp, F%,') be a
morphism in P?; (X, k) such that fx = 0. Then by the compatibility of (fp, fx) with 8 and
B" we deduce that ¢*(fp) = 0. Now it is easily seen that .%p belongs to Py (P/H,k)[dim(H) —
d]. Since ¢ is smooth with connected fibers, the functor ¢* is fully faithful on perverse sheaves
(see |BBD, Proposition 4.2.5]); we deduce that fp = 0, finishing the proof of faithfulness.

Next we prove that our functor is full. Let (Z#p, Zx, ) and (Fp, Z, ') be in P?H(X, k),
and let f : Fx — F% be a morphism. To construct a morphism fp : Fp — F} such
that 8 o ¢*(fp) = 7*(f) o B, we use the stack property recalled above: we remark that the
morphism (8")~! o 7*(f) o 3 satisfies the descent condition, hence is of the form ¢*(fp) for a
unique morphism fp : Fp — Fp.

Finally, we prove that our functor is essentially surjective. Let .# be in P 7 (X, k). Then
there exists a (unique) isomorphism 9 : a*(.#) — p*(.%) which satisfies the conditions (A.1).
Identifying H x P with P p,p P via the morphism (a,p), (idy x7)* () defines an isomorphism
o (r) (7" F) = (r2)*(7*F). Identifying H x H x P with P xp,g P Xp,g P via (g, h,z) —
(ghx, hx,x), we see that the second condition in (A.1) guarantees that o satisfies the descent
condition, so that the pair (7*.%,0) defines an object #p € DP(P/H, k) such that 7*.% =
q*Zp. Fixing such an isomorphism, we obtain an object of Pﬁ (X, k) whose image in
Ps u(X k) is 7. ’ O

A.2 Induction

Let X, H and k be as in §A.1. We consider the constructible derived category DE(X , k) of
k-sheaves on X, and its H-equivariant version DE’ (X, k). We also denote by

Fory; : D (X, k) — D2 (X, k)
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the forgetful functor. Recall that if H x X is considered as an H-variety via left multiplication
on the first factor, and if p : H x X — X is the projection, then the functor p' induces an
equivalence of categories D?(X, k) — D ,,(H x X, k), see [BL, Proposition 2.2.5|. We consider
the functor ,
indg : DY (X, k) = D (X, k)
defined by
indg (F) = ap'(F).

Lemma A.3. The functor indy is left adjoint to Forg.

Proof. Let Z in D?(X,k) and 4 in D};H(X, k). Using first the fact that p' is an equivalence,
then Lemma A.1, and finally adjunction, we obtain canonical isomorphisms

Hong(X7k)(ﬁ,ForH(%)) = HomDE’H(HxX,k) (p!ﬁ,p!ForH(%))
= HongH(HxX,k) (p'F,d'9) = HomDE’H(X,k) (ap' Z,9).
The claim follows. O

A.3 Convolution

Let H be a complex algebraic group, and let K C H be a closed subgroup. Recall that the K-
bundle given by the quotient morphism H — H/K is locally trivial for the analytic topology,
see [S1]. (In all the cases we will consider, this morphism is in fact locally trivial for the
Zariski topology.) We consider the constructible equivariant derived category D r-(H/K, k).
This category admits a natural convolution bifunctor, constructed as follows. Consider the
diagram

H/K x H/K +* Hx H/K - H x" H/K " H/K, (A.4)
where Hx® H/K is the quotient of H x H/K by the action defined by k-(g, hK) = (gk~ !, khK)
for k € K and g,h € H, q is the quotient morphism, and the maps p and m are defined by

plg, hK) = (9K, hK), m([g,hK]) = ghK.
Since K acts freely on H x H/ K, by |[BL, Theorem 2.6.2| the functor ¢* induces an equivalence
D}:),K(H x® H/K k) = D]cD,KxK(H x H/K, k)
(where K acts on H x®& H/K via left multiplication on H, and K x K acts on H x H/K via
(k1, ko) - (9, hK) = (k1gks ', kohK)). Now, consider some objects %1, # in DEK(H/K7 k).
Then . KL 75 belongs to DY, (H/K x H/K,k). Since p is a (K x K)-equivariant
morphism, p*(F; KL F,) defines an object in D};KxK(H x H/K,k). Hence there exists a
unique object .#; K.% in DY (H x® H/K, k) such that

~ L
q*(ﬁl X ﬁQ) = p*(gl &k gg) (A5)

We then set N

91 * 92 = m*(ﬁl X 92)
It is a classical fact that this construction defines a monoidal structure on the category
DEK(H/K7 k) (which does not, in general, restrict to a monoidal structure on Px(H/K, k)).
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Remark A.4. 1. Since the maps p and ¢ are smooth of relative dimension dim(K), we
have canonical isomorphisms p' 2 p*[dim(K)] and ¢' = ¢*[dim(K)], so that the condi-

tion (A.5) can be replaced by ¢'(F1 X %) = p'(F; KL ).

2. In the special case considered for the geometric Satake equivalence, when k is not a
field one modifies this construction slightly so that it sends pairs of perverse sheaves to
perverse sheaves; see §10.3.

A.4 The case of Grg

The main object of study in these notes is the category Pg, (Grg, k). This setting does not
fit exactly in the framework of §§A.1-A.3 because G and G are not algebraic groups in the
usual sense. But the category D};GO(Gr(;, k) still makes sense, as follows.

For any n € Z>1, we denote by H,, C Go the kernel of the morphism
Go — G@/tno

induced by the quotient morphism O — O/t"O. (Here the group scheme Gp /e is defined
in a way similar to Go.) Note that if m > n, then H,, is a normal subgroup in H,, and
the quotient H,,/H,, is a unipotent group. If X C Grg is a closed finite union of Gp-orbits,
there exists n € Z>; such that H,, acts trivially on X. Then it makes sense to consider the
equivariant derived category D}:),Go JHn (X,k). Since H,/H,, is unipotent for any m > n, one
can check using [BL, Theorem 3.7.3] that the functor

DE,GO/Hn (X’ k) - DE,G@/Hm (X7 k)

given by inverse image under the projection G/H,, — G/H, is an equivalence of categories.
Hence one can define the category DEGO (X, k) to be D}:),GO/Hn (X, k) for any n such that H,
acts trivially on X.

If X CY C Grg are closed finite unions of Gp-orbits, the direct image under the embedding
X < Y induces a fully-faithful functor D};GO (X, k) — DEGO (Y, k). Hence we can finally
define DE,G@ (Grg, k) as the union of the categories DE,G@ (X, k) for all closed finite unions of
Gp-orbits X C Grg.

A construction similar to that of §A.3 produces a convolution bifunctor x on the category
DE,GO (Grg, k). More precisely, if #; and %, are in DE,GO (Grg, k), one should choose a

closed finite union of Gp-orbits X C Grg such that %5 belongs to DE,G@ (X,k), and n € Z>;
such that H,, acts trivially on X, and replace diagram (A.4) by the similar diagram

Grg X X « Gy /H, x X — (Gx/Hy,) x'Go/Hn) X s Grg,

and proceed as before. In the body of the paper, as in [MV2], to lighten the notation we
neglect these technical subtleties.
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