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Unexpected Early Triassic marine ecosystem and the
rise of the Modern evolutionary fauna
Arnaud Brayard,1* L. J. Krumenacker,2 Joseph P. Botting,3,4 James F. Jenks,5 Kevin G. Bylund,6

Emmanuel Fara,1 Emmanuelle Vennin,1 Nicolas Olivier,7 Nicolas Goudemand,8 Thomas Saucède,1

Sylvain Charbonnier,9 Carlo Romano,10 Larisa Doguzhaeva,11 Ben Thuy,12 Michael Hautmann,10

Daniel A. Stephen,13 Christophe Thomazo,1 Gilles Escarguel14

In the wake of the end-Permianmass extinction, the Early Triassic (~251.9 to 247million years ago) is portrayed as
an environmentally unstable interval characterized by several biotic crises and heavily depauperate marine benthic
ecosystems. We describe a new fossil assemblage—the Paris Biota—from the earliest Spathian (middle Olenekian,
~250.6 million years ago) of the Bear Lake area, southeastern Idaho, USA. This highly diversified assemblage
documents a remarkably complex marine ecosystem including at least seven phyla and 20 distinct metazoan orders,
alongwith algae.Most unexpectedly, it combines early Paleozoic andmiddleMesozoic taxa previously unknown from
the Triassic strata, among which are primitive Cambrian-Ordovician leptomitid sponges (a 200–million year Lazarus
taxon) and gladius-bearing coleoid cephalopods, a poorly documented group before the Jurassic (~50 million years
after the Early Triassic). Additionally, the crinoid and ophiuroid specimens showderived anatomical characters that were
thought to have evolved much later. Unlike previous works that suggested a sluggish postcrisis recovery and a low di-
versity for the Early Triassic benthic organisms, the unexpected composition of this exceptional assemblage points
toward an early and rapid post-Permian diversification for these clades. Overall, it illustrates a phylogenetically diverse,
functionally complex, and trophically multileveled marine ecosystem, from primary producers up to top predators and
potential scavengers. Hence, the Paris Biota highlights the key evolutionary position of Early Triassic fossil ecosystems in
the transition from the Paleozoic to the Modern marine evolutionary fauna at the dawn of the Mesozoic era.
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INTRODUCTION
The Permian-Triassic boundary (PTB) [~251.9million years ago (Ma)]
is characterized by the largest Phanerozoicmass extinction,marking the
end of the dominance of the Sepkoski’s Paleozoic evolutionary fauna
and the expansion of the Modern evolutionary fauna (1). The PTB
and subsequent Early Triassic recovery interval are characterized by re-
current marked changes in water temperature (2, 3), large-scale fluctua-
tions of the global carbon cycle, and harsh marine conditions including
a combination of ocean acidification, anoxia, euxinia, and fluctuating
productivity (Fig. 1) (4–6).

The postcrisis biotic recovery was rapid for some nektonic-pelagic
groups, such as ammonoids and conodonts (7, 8). In contrast, delayed,
2017
spatially heterogeneous recovery of species-poor communities is as-
sumed to be the hallmark of benthic ecosystems (9–16).

Until now, the oldest known marine Mesozoic complex ecosystem
was dated from theMiddle Triassic of China (Luoping biota, ~242Ma)
(17). Here, we report a new, exceptionallywell-preserved and diversified
Early Triassic marine biota from Paris, southeastern Idaho, USA (see
Figs. 1 to 3 and the Supplementary Materials). Ammonoid and cono-
dont biostratigraphy indicates an earliest Spathian (middle Olenekian,
~250.6 Ma) (Fig. 1) (5) age for this biota and is therefore the first and
oldest known Early Triassic complex marine ecosystem.

The earliest Spathian represents a time of transition following a se-
vere late Smithian extinction event (Fig. 1) (7, 8). During the Early Tri-
assic recovery, the middle Smithian and late Smithian were subject to
renewed, large-scale perturbations of the global biogeochemical cycles
(4–6, 18), including some of the largest d13C excursions of the Phaner-
ozoic, and a peak in seawater temperatures (Fig. 1) (2, 3). In low lati-
tudes, these high temperatures, along with anoxia, are hypothesized to
have been lethal to manymarine clades (2). The newly discovered Paris
Biota (named herein) is therefore highly unexpected because it docu-
ments amarkedly diversified benthic ecosystem only ~1.3million years
(My) after the PTB in an equatorial setting.

Exposures and sampled material
TheParis Biotawas found in four neighboring and equivalent exposures
of the upper part of the early Spathian Lower Shale unit of the Early
Triassic ThaynesGroup [sensu Lucas et al. (19)], west of the city of Paris,
Idaho (see Figs. 2 and 3, figs. S1 and S2, and the SupplementaryMaterials).
The alternating limestones and shales of the ThaynesGroup reflect dep-
ositionwithin the relatively shallowwesternU.S. basin.During the Early
Triassic, it was located at a near-equatorial position on thewesternmargin
of Pangea (Fig. 2C).Tirolites ammonoid specimens are found throughout
the four studied exposures of the upper part of the Lower Shale unit,
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confirming an earliest Spathian age for this biota (see the Supplemen-
tary Materials).

Compared to previously described Early Triassic assemblages [for
example, see study by Schubert and Bottjer (9)], the Paris Biota shows
a remarkably high diversity (Figs. 4 to 6, figs. S3 and S4, and table S1)
with abundant sponges, brachiopods, bivalves, ammonoids, belem-
noids, arthropods, and fishes. Ammonoids and bivalves dominate the
biota in terms of abundance, as is normally observed in Smithian and
Spathian fossil levels from the western U.S. basin (13, 20). Crinoids,
ophiuroids, orthoconic nautiloids, gladius-bearing coleoids, fishes, al-
gae, and vertebrate coprolites also occur. Overall, more than 750 indi-
viduals (excluding isolated fossil pieces and fragments) representing at
least seven phyla and >20 orders have been collected so far (Figs. 4 to 6,
figs. S3 to S28, and table S1). Some of these organisms are documented
from theEarlyTriassic for the first time (leptomitid sponges and gladius-
bearing coleoids), and several display anatomical characters that were
thought to have evolvedmuch later (for example, echinoderms), indicat-
ing an early and rapid post-PTB diversification for these groups aswell
as previously unknown phylogenetical links between Paleozoic and
Mesozoic taxa.

There is nomajor faunal difference between the four sampled expo-
sures, suggesting similar ecological conditions and depositional settings.
Macroscopic field observations and thin section analyses indicate that a
Brayard et al. Sci. Adv. 2017;3 : e1602159 15 February 2017
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part of the sedimentary succession was formed by storm-mobilized
sediments. Abundant planar and undulated laminae indicate an outer
shelf in the deepest part of the storm-dominated environments (that is,
60 to 100mbelow sea level; see the SupplementaryMaterials). The com-
pleteness of delicate specimens, especially echinoderms and crustaceans,
demonstrates that they were usually entombed rapidly and close to their
original habitat. There is no evidence of any size-sorting, mixing, or re-
working processes. Rarity of infaunal bioturbation, high sedimentation
rate, and abundance of framboidal and polyhedral pyrite suggest upper
sediment dysoxic to anoxic conditions. However, the seafloor was oxyge-
nated, as testified by the abundance of benthic organisms including cri-
noids and ophiuroids, which require well-oxygenated conditions.

Ammonoid, sponge, arthropod, and brachiopod specimens are usu-
ally flattened. Most other fossils are compressed but preserve some
three-dimensional features (Figs. 4 to 6 and figs. S5 to S28). Contrary
to someMiddle Triassic assemblages preserving soft parts [for example,
see study by Hu et al. (17)], no evidence of microbial mat–enhanced
preservation was found. Mollusks (except gladius-bearing coleoids)
and echinoderms are preserved in calcite. Sponges, arthropods, brachio-
pods, and coprolites are preserved in calcium phosphate (figs. S29 to
S33), suggesting rapid decay and burial in phosphatizingmicroenviron-
ments. Phosphatic preservation is common for coprolites, vertebrate re-
mains, cuticle of crustaceans, and coleoid soft parts (21) but rare for
sponges [for example, see study by Castellani et al. (22)]. Belemnoid
hooks and parts of gladius-bearing coleoids are preserved as carbona-
ceous structures (fig. S32).
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RESULTS
The Paris Biota is highly diversified and shows a largely unexpected
composition. It combines taxa usually found in the Early Triassic from
the western U.S. basin (for example, ammonoids, nautiloids, bivalves,
lingulids, ophiuroids, and vertebrates) withmore unusual taxa andwith
others previously unknown for this time interval (leptomitid sponges,
epizoan brachiopods, crinoids, gladius-bearing coleoids, belemnoids,
arthropods, and algae) (Figs. 4 to 6 and figs. S5 to S28). In this remark-
able biota, leptomitid protomonaxonids (Figs. 4, A and B, and 5 and
figs. S5 to S11) are by far the most unexpected taxon. Although isolated
spicules and specimens of Early Triassic siliceous and hypercalcified
spongesare frequently found in thewesternU.S. basin (23–28), all complete
sponge specimens recovered from the Paris Biota belong to the leptomitid
protomonaxonids. These sponges differ markedly from all other sponge
taxa reported so far from the Early Triassic, including the western U.S.
basin (24–26). In particular, they showaweak anddelicate structure char-
acterized by primarily longitudinal spicules, a helical twisting of the
skeleton, and a fringe of spicules projecting from the apex to formmar-
ginalia (Fig. 5 and figs. S5 to S11). These features are typical of leptomitid
protomonaxonids and are unknown from other sponge groups, includ-
ing the morphologically plastic, often ecophenotypically variable demos-
ponges. Convergence with any other sponge group can therefore be
confidently discarded, including the grossly reminiscent modern hexac-
tinellid sponge Euplectella aspergillum, whose skeleton is primarily made
of a fused (as adults), orthogonally reticulate grid that is reinforced by
diagonal (helical) bundles and an oscular sieve plate (see the Supplemen-
tary Materials) (29). Leptomitid protomonaxonids are phylogenetically
distant from extant siliceous sponges and are most typical of Sepkoski’s
Cambrian evolutionary fauna (1), most particularly of the Cambrian
Burgess Shale–type faunas, although these protomonaxoids are also pres-
ent in lower abundance in some Ordovician deposits with exceptional
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Fig. 1. Chronostratigraphic subdivisions of the Early Triassic [radiometric ages
from studiesbyGalfetti et al. (5), Ovtcharova et al. (47), Ovtcharova et al. (48), and
Burgess et al. (49)] with simplified global geochemical trends [d13Ccarb data from
Galfetti et al. (5); anoxic episodes modified following studies by Grasby et al. (6),
Galfetti et al. (50), Ware et al. (51), and Hermann et al. (52)] and the relative tem-
perature fluctuations in the Tethyan realm [adapted from studies by Sun et al. (2)
and Romano et al. (3)]. Subdivisions of the Smithian and Spathian follow the ammonoid
zonation from studies by Brühwiler et al. (53) and Guex et al. (54). The late Smithian extinc-
tion event is highlighted in red. Time correlations for the late Smithian and the Smithian-
Spathian boundary are based on high-resolution ammonoid zonations (20, 55, 56). A,
Anasibirites beds; X, Xenoceltitidae beds (both late Smithian); T, Tirolites beds (early
Spathian); ea., early; mi., middle; l., late; VPBD, Vienna Pee Dee belemnite.
2 of 11

http://advances.sciencemag.org/


SC I ENCE ADVANCES | R E S EARCH ART I C L E

http://a
D

ow
nloaded from

 

preservation (30–32). Some Silurian faunas may be dominated by proto-
monaxonids but without clear links to older faunas (30). Very few proto-
monaxonids from later Paleozoic rocks and no examples of Leptomitidae
are known. Therefore, the Paris Biota sponges represent a Lazarus taxon
with a ~200-Mygap in the fossil record, highlighting the poor resolution
of the fossil record for this group (30). Long ghost lineages for surviving
Cambrian-type sponges are also known elsewhere, including a Late
Triassic calcareous sponge genus previously restricted to the Cambrian
(33). The minute epizoan brachiopods (Figs. 4B and 5C and fig. S13)
occasionally found in close association with these leptomitid sponges
directly echo similar biotic associations described in early Paleozoic biotas
(34, 35), suggesting that this brachiopod-sponge association also survived
~200My longer than previously thought. Furthermore, these specimens
indicate that Early Triassic brachiopods exploited not only seafloor ha-
bitats but also additional tiering levels above the substratum.

New forms of the articulate crinoid orderHolocrinida are documen-
ted for the first time in the Early Triassic, with most skeletal elements
articulated (Figs. 4H and 6H and figs. S22 and S23). We collected two
proximal stems with cirri, and subcomplete isolated arms. These fossils
display advanced characters (for example, presence of cryptosymplec-
tial articulations; see the Supplementary Materials), indicating an in-
tense morphological diversification before or during the earliest Spathian,
much earlier than previously thought (36, 37). Ophiuroid remains include
one complete specimen, which is considerably larger than previously
known Early Triassic ophiuroids (Fig. 4I and figs. S24 and S25) (38, 39).
Brayard et al. Sci. Adv. 2017;3 : e1602159 15 February 2017
The diagnostic skeletal characters (for example, spine articulations) sug-
gest basal ophiodermatid affinities, thus pushing the origin of the ophio-
dermatid clade and the early ophiuroid diversification to the lower
limits of divergence time estimates (40, 41).

We also report the unexpected occurrence of gladius-bearing co-
leoids (Fig. 4G and fig. S17). Previously unknown in Early Triassic
strata, gladius-bearing coleoids diversified during the Jurassic and the
Cretaceous [for example, see study by Fuchs andLarson (42)]. The spec-
imens reported here demonstrate that these gladius-bearing coleoids al-
ready existed by the Early Triassic. A putative representative of this clade
was recently described fromtheEarlyPermian (43) butwith a gladius mor-
phology completely distinct from Mesozoic ones. Proostracum-
bearing coleoids are classically considered as the most likely ancestors
of gladius-bearing coleoids (44). Nevertheless, regardless of the still-
unknown phylogenetic relationships between Permian and Triassic
taxa, the microlaminated ultrastructure and organic composition of
the Paris Biota gladii suggest that gladius-bearing coleoids did not
evolve from proostracum-bearing coleoids. Instead, they indicate an
independent evolution of these clades from a still-unknown late Paleo-
zoic common ancestor (see the Supplementary Materials).

Hundreds of mostly isolated belemnoid arm hooks have also been
recovered (Fig. 6, A and B, and fig. S16). Similar forms were already
described from a Spitsbergen Spathian locality (45); thus, their occur-
rence in the Paris Biota is not surprising per se, although their high
abundance is notable. The size of these hooks suggests that their bearers
 on D
ecem

ber 5, 2017
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were about 15 to 20 cm long, corresponding to middle-sized predators.
Their abundance and stratigraphic recurrence indicate a stable presence
and high life abundance of these predators in the earliest Spathian of
this area. In addition, hook concentrations observed in some coprolites
(Fig. 6, K andL) demonstrate that these active predatorswere consumed
by even larger vertebrate predators (fishes or reptiles), the fossils of
which are known from the same area (see Fig. 6, I and J, and the Sup-
plementary Materials).

At least five taxa of arthropods are present in the Paris Biota (Figs. 4,
C to F, and 6, C to F). These include two new genera of thylacocepha-
lans, an uncommon and enigmatic group of arthropods (Fig. 4D and
fig. S21). This is the first reported occurrence of thylacocephalans from
Triassic rocks in North America, considerably extending their spatio-
temporal distribution (46). In addition, the Paris Biota yields the richest
fauna of Triassic crustaceans found so far inNorthAmerica, with abun-
dant decapods including glyphidean lobsters and caridean and penaeid
shrimps [Figs. 4, C to F, and 6, C to F, and figs. S18 to S21].

Last, algae are represented by rod-shaped and branching morpho-
types showing potential affinities with noncalcified dasycladales and
other late Paleozoic green algae, respectively (Fig. 6G and fig. S28). They
Brayard et al. Sci. Adv. 2017;3 : e1602159 15 February 2017
cover large surfaces at some horizons, suggesting transient blooms.
These indicate that algae may have been important primary producers
in some Early Triassic trophic networks. The Early Triassic diversity,
abundance, and geographic distribution of these fragile organisms (es-
pecially when noncalcified) remain largely unknown.
DISCUSSION
Overall, the Paris Biota illustrates a diversified and trophically complete
marine ecosystem—from primary producers up to top predators and
potential scavengers (see figs. S3 to S28 and the Supplementary
Materials). It is close in complexity to the Middle Triassic Luoping
biota (17), which has classically been viewed as an iconic example of
a post-PTB fully rediversified marine ecosystem. This is all the more
notable given the fact that the Paris Biota lived in the immediate af-
termath of the end-Smithian extinction event in an equatorial setting,
that is, at a time and place where marine ecosystems are thought to be
heavily depauperate (2).

The unexpected co-occurrence of taxa previously known only in early
Paleozoic or in middle-to-late Mesozoic strata demonstrates that some
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Early Triassic ecosystemsweremuchmore phylogenetically diverse and
functionally much more complex than previously thought. The Paris
Biota illustrates the oldest occurrence of derived characters in several
clades (fig. S3), and it shows that at least some Early Triassic marine
communities include ancient lineages in the lowest trophic levels
together with newly evolved groups occupying higher trophic levels.
Brayard et al. Sci. Adv. 2017;3 : e1602159 15 February 2017
By revealing previously hidden ecosystem complexity and un-
expected taxonomic occurrences that increase global Early Triassic
biodiversity, this remarkable biota constitutes a new landmark for
understanding the marine recovery dynamics after the end-Permian
mass extinction. It stands in stark contrast with previous works that
suggested a sluggish recovery and low diversity of marine benthic
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Fig. 4. Characteristic earliest Spathian organisms of the Paris Biota. (A) Leptomitid protomonaxonid sponge (s) and ammonoids (a) (slab IMNH IP-026/777). (B) Leptomitid
protomonaxonid sponge showing a twisted apex andminute epizoan brachiopods (arrows) (slab UBGD 30505). (C) Glyphidean lobster Litogaster ?turnbullensis (UBGD 30548).
(D) New thylacocephalan genus (UBGD 30561). (E) Penaeid shrimp (IMNH IP-026/778). (F) Caridean shrimp under ultraviolet (UV) light (365 nm) (UBGD 30558). (G) Gladius-
bearing coleoid (UBGD 30545). (H) Holocrinid crinoid stem with cirri (UBGD 30563). (I) Ophiuroid (UBGD 30565). Scale bars, 5mm (A and C to I) and 10mm (B). [Photo credits:
A. Brayard, Université Bourgogne Franche-Comté (A to G); T. Saucède, Université Bourgogne Franche-Comté (H); and B. Thuy, Natural History Museum Luxembourg (I).]
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organisms during the Early Triassic (9, 10). The Paris Biota shows that
functionally complex, trophically multileveled marine ecosystems were
actually present soon (~1.3My) after the end-Permianmass extinction,
at least in some areas that may have acted as biotic refugia. However, its
peculiar composition indicates that its high diversity is not the simple
consequence of a rapid post-PTB diversification. Instead, it represents
the combined effect of the maintenance of long-ranging Paleozoic taxa
Brayard et al. Sci. Adv. 2017;3 : e1602159 15 February 2017
and the early appearance of derived clades whoseminimum age of orig-
ination is pre-Spathian (see the SupplementaryMaterials). The detailed
timing of this faunal transition remains unknown because Lagerstätten
(that is, sites of exceptional preservation) are extremely rare in thePermian-
Triassic interval and they provide only a fewmacroevolutionary calibra-
tion points. The frequent low-diversity benthic assemblages commonly
sampled in Early Triassic rocks were shown to have a biased composition
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Fig. 5. Specimens and characteristic features of leptomitid protomonaxonid sponges from the Paris Biota. (A and B) General and closeup view of the specimen UBGD
30504 showing projected longitudinal spicules (ls) from the apex forming a fringe ofmarginalia (m) and transverse spicules (ts). (C andD) Closeup views of twisted apex (ta) of two
specimens (UBGD30505 and 30581) under natural andUV light (365 nm). Projecting spicules from the apex forming a fringe ofmarginalia are also visible. Fine transverse spicules
appear mainly as wrinkles, perpendicular to the longitudinal spicules. An epizoan brachiopod (e) is attached to the sponge specimen C. (E and F) Closeup views of specimens
UBGD 30506 and 30508, showing longitudinal and transverse spicules. (G andH) Large-sized specimens UBGD 30510 and 30511. Scale bars, 5mm (A toD andG andH), 2mm (E),
and 1 mm (I). [Photo credits: A. Brayard, Université Bourgogne Franche-Comté.]
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Fig. 6. Characteristic earliest Spathian organisms of the Paris Biota. (A andB) Belemnoid armhooks (UBGD30540 and 30544). (C) Penaeid shrimp (UBGD30559). (D to F) Mass
accumulations of caridean shrimps under UV light (365 nm) and natural light (slabs UBGD 30553 and 30554). (G) Rod-shaped, unbranched specimens of putative noncalcified
dasycladales (slab UBGD 30576). (H) Isolated arms of a holocrinid crinoid (UBGD 30563). (I) Chondrichthyan tooth referable to Acrodus (slab IMNH 1143/46168). (J) Osteichthyan
tooth plate (slab UBGD 30569). (K) Coprolite specimen (UBGD 30573). (L) Closeup view of belemnoid hooks accumulated in a coprolite (slab UBGD 30575). (M) Discinoid inarticulate
brachiopodOrbiculoidea sp. (UBGD 30522). Scale bars, 5mm (A to K andM) and 0.5mm (L). [Photo credits: A. Brayard, Université Bourgogne Franche-Comté (A to H and J to
M); L. J. Krumenacker, Montana State University (I).]
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for some major benthic clades (15, 25). They might therefore represent
poorly sampled, taxonomically biased subsets of much more diversified
ecosystems resembling the Paris Biota, at least at the level of the western
U.S. basin. Alternatively, the Paris Biotamay actually represent an assem-
blage whose taxonomic and functional diversity results from peculiar bi-
otic and environmental conditions acting at the local scale. Additional
field data from correlative beds and different depositional environments
are required before general conclusions can be drawn on the spatio-
temporal distributionof theParisBiota.Nevertheless, this finding illustrates
that the Late Permian–Early Triassic fossil record remains incompletely
known for many marine higher-level taxa, even in the intensively studied
western U.S. basin that is probably one of the best studied areas in the
world for this time interval. Consequently, conclusions of a uniform re-
covery at the basin scale are no more supportable on the basis of cur-
rently available evidences, thanwould be a simple recoverymodel at the
global scale.

Revealing the link between community composition and recov-
ery dynamics will be critical in understanding the transition from
the Paleozoic to the Modern evolutionary faunas. The Paris Biota
highlights the key evolutionary position of Early Triassic fossil eco-
systems in the transition from the Paleozoic to the Modern biosphere
and that the rise of the Modern evolutionary fauna at least sometimes
emerged from taxonomically, phylogenetically, and ecologically di-
verse communities.
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MATERIALS AND METHODS
The four exposures studied are located near the city of Paris, southeast-
ern Idaho (see Fig. 2 and the Supplementary Materials). More than 750
(sub)complete individual specimens (excluding isolated fossil pieces
and fragments) were collected from these exposures so far. Figured spec-
imens were housed in the collections of the Université de Bourgogne
(Dijon, France) and the IdahoMuseum of Natural History (Pocatello,
USA). Specimens were observed in natural light using a Leica M205C
binocular microscope coupled with a Leica DFC295 digital camera.
Photographs were taken in natural light and UV light (365 nm) using a
NikonD5300 reflex camera and processed in Adobe Photoshop CS5. A
camera lucida attached to Leica M205C was used for interpretative
drawings. Scanning electron microscope (SEM) observations coupled
with energy-dispersive spectrometer (EDS) analyses were performed
at the Institut Carnot de Bourgogne (Dijon, France) to determine the
elemental composition of fossil fragments. Variably oriented thin
sections were also prepared and observed in natural and polarized light
microscopy using a Nikon AZ100 microscope coupled with a digital
camera.
SUPPLEMENTARY MATERIALS
Supplementary material for this article is available at http://advances.sciencemag.org/cgi/
content/full/3/2/e1602159/DC1
Supplementary Text
fig. S1. Field view of the upper part of the Lower Shale unit containing the Paris Biota.
fig. S2. Log section of the main Paris Biota exposure.
fig. S3. Taxa of the Paris Biota showing unexpected or extended temporal distributions, new
Early Triassic spatiotemporal occurrences, new oldest records of derived characters for the
clade, and new ecologic or trophic interactions.
fig. S4. Artistic reconstruction of the Paris Biota.
fig. S5. Closeup view of an apex of a leptomitid protomonaxonid sponge.
fig. S6. Closeup views of twisted apex of two leptomitid protomonaxonid sponges.
fig. S7. Closeup views of longitudinal and transverse spicules of four leptomitid
protomonaxonid sponges.
Brayard et al. Sci. Adv. 2017;3 : e1602159 15 February 2017
figs. S8 to S10. Leptomitid protomonaxonid sponges from the Paris Biota.
fig. S11. Leptomitid protomonaxonid sponge from the Paris Biota showing attachment to a
shell fragment.
fig. S12. Linguloid and discinoid inarticulate brachiopods.
fig. S13. Sponge specimen showing minute epizoan brachiopods and closeup views of
epizoan brachiopods.
fig. S14. Bivalve specimens.
fig. S15. Ammonoid and nautiloid specimens.
fig. S16. Belemnoid arm hooks.
fig. S17. Gladius-bearing coleoid.
fig. S18. Different types of preservation for crustaceans from the Paris Biota.
fig. S19. Penaeidean and caridean shrimps and accumulations.
fig. S20. Penaeid shrimps, caridean shrimp, and litogastrid lobsters.
fig. S21. Thylacocephalan specimens.
fig. S22. Holocrinid specimens.
fig. S23. Closeup view of a crinoid stem with cirri and closeup view of an isolated pinnulate arm.
fig. S24. Ophiuroid specimens.
fig. S25. Closeup view of the spine articulations of an ophiuroid specimen.
fig. S26. Vertebrate remains from the Paris Biota.
fig. S27. Coprolites from the Paris Biota.
fig. S28. Algal morphotypes from the Paris Biota.
fig. S29 and S30. SEM photographs and EDS analyses for leptomitid protomonaxonid sponge
specimens.
fig. S31. SEM photograph and EDS analysis for a crustacean specimen.
fig. S32. SEM photograph and EDS analysis for a belemnoid hook specimen.
fig. S33. SEM photograph and EDS analyses for a leptomitid protomonaxonid sponge specimen.
table S1. Sampled taxa from the Paris Biota.
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