
HAL Id: hal-01471566
https://uca.hal.science/hal-01471566v1

Submitted on 20 Feb 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Fast loop-free transition of routing protocols
Nina Pelagie Bekono, Nancy El Rachkidy, Alexandre Guitton

To cite this version:
Nina Pelagie Bekono, Nancy El Rachkidy, Alexandre Guitton. Fast loop-free transition of routing
protocols. 84th Vehicular Technology Conference (VTC), IEEE, Sep 2016, Montreal, Canada. �hal-
01471566�

https://uca.hal.science/hal-01471566v1
https://hal.archives-ouvertes.fr

Fast loop-free transition of routing protocols

Nina Pelagie Bekono, Nancy El Rachkidy, Alexandre Guitton

Clermont Université, Université Blaise Pascal, LIMOS, BP 10448, F-63000 Clermont-Ferrand, France

CNRS, UMR 6158, LIMOS, F-63173 Aubière, France

Emails: {nina pelagie.bekono, nancy.el rachkidy, alexandre.guitton}@univ-bpclermont.fr

Abstract—In networks that operate during a long time, the
routing protocol might have to be changed (in order to apply a
routing protocol update, or to take into account a change in the
routing metrics). A loop-free transition algorithm has to be used
in order to perform the transition to the new routing protocol
without generating transient routing loops. In this paper, we
propose a loop-free transition algorithm called ACH (avoiding
cycles heuristic), which is able to perform the transition in a
very small number of steps. Compared to other algorithms of the
literature, ACH yields a number of steps which is independent of
both the number of nodes and the number of destinations, and
thus allows the transition to be performed in a small time. We
show through simulations that ACH significantly outperforms
other heuristics of the literature, due to its capability to deal
with several destinations at once, and due to a priority-based
procedure to avoid cycles.

I. INTRODUCTION

A routing protocol determines the routes followed by pack-

ets to their destination. In networks that operate during a long

time, the routing protocol might have to be changed. This

change might be required to apply a security update of the

protocol [1], to take into account significant modifications of

the topology and link metrics [2], [3], [4], or to handle urgent

traffic in wireless sensor network monitoring applications [5].

The transition from one routing protocol to another involves

reconfiguring all routers in a given order. It is a complex

and critical task: if the transition is not performed carefully,

transient routing loops can occur, and the performance of

the network can drastically decrease. Loop-free transition

algorithms have been proposed in the literature to address

this problem. RTH, proposed in [6], was the first heuristic

to address this problem. It computes a router ordering that

determines the order in which routers can perform the transi-

tion from a routing protocol R1 to another routing protocol

R2. However, the duration of the transition with RTH is

proportional to the number of nodes in the network. RTH-

p and SCH-p, proposed in [7], allow the transition of some

routers to be performed in parallel, reducing the transition

time. However, the duration of the transition with RTH-p and

SCH-p is proportional to the number of destinations in the

network (for large networks). As most nodes are destinations,

the overall transition duration is still large.

In this paper, we propose a loop-free transition algorithm

called ACH (Avoiding Cycles Heuristic) that performs a

transition in a small number of steps, independently of the

number of nodes or destinations. ACH improves SCH-p on two

aspects: (1) it computes the cycles of every strongly connected

component of the network and delays the transition of nodes

that break the most cycles, which reduces the number of

steps for each destination, and (2) it considers all destinations

together, rather than considering them sequentially. For a

network of n nodes and d ∈ [1;n] destinations, we show

through simulations that ACH performs the transition in O(1)
steps (generally less than 5), RTH-p in O(d. log n) steps, SCH-

p in O(d) steps, and RTH in O(n.d) steps.

The remainder of the paper is organized as follows. Sec-

tion II describes relevant research works of the literature, and

focuses on RTH, RTH-p and SCH-p. Section III presents ACH,

first on one destination, and then on several destinations. Sec-

tion IV presents and analyzes our simulation results. Finally,

Section V concludes our work.

II. RELATED WORK ON LOOP-FREE TRANSITION

Initial research works on loop-free transition focused on the

execution of a single routing protocol on a changing topology.

In [2], authors showed that with link-state routing, forwarding

loops can occur when routers have a different view of the

link metrics. They proposed a loop-less interface-specific

forwarding approach that discards packets arriving through

unusual interfaces, in order to remove these forwarding loops.

The main drawback of their approach is that packets are

dropped to prevent the formation of loops. In [3], authors

showed that transient forwarding loops can occur when the

network topology changes (which occurs due to link failures

for instance). To solve this problem, they proposed a specific

order in which routers can update their forwarding tables so

that their consistency is ensured during the whole process

of convergence. The main drawback of their approach is the

convergence delay which can be large.

In this section, we briefly describe the three main heuristics

that ensure a loop-free transition from R1 to R2.

A. Routing Tree Heuristic (RTH)

RTH [6] separates destinations into two groups: non-

troublesome destinations for which the transition can be

performed simultaneously, and troublesome destinations for

the others. Non-troublesome destinations are treated as a

single destination, while troublesome destinations are treated

individually. For each destination, RTH first identifies a set

of per-destination constraints, and then computes a router or-

dering that satisfies all these constraints. Each per-destination

constraint states that a node has to perform the transition after

all its successors in the path to the destination. In more details,

the process is as follows. For each destination d, a set Sd of

nodes that do not appear in any routing loop is computed with

a greedy approach: initially Sd contains d only. Then, each

node which has both its next-hops (according to R1 and to

R2) in Sd is added to Sd. All the nodes that have two different

next-hops are added to a set Vd. A set Cd of constraints is built

such that, for each path from a source node to a destination on

R2, a constraint is generated for the last pair of nodes (u, v)
with u ∈ Vd and u /∈ Sd. A topological sort is computed in

the acyclic directed graph GCd
, built with all the nodes and

arcs of Cd. Then, nodes perform the transition one by one

according to this topological sort.

The main drawbacks of RTH are the following. First,

the authors did not specify the algorithm to identify non-

troublesome destinations, as they did not experience many

troublesome destinations. Second, nodes perform the transition

one by one for each destination, which yields a long overall

transition. In a network of n nodes and with d ∈ [1;n]
destinations, if there are t ∈ [1; d−1] troublesome destinations,

the transition duration of RTH is O((t + 1).n). Note that as

n grows, t becomes closer to d (this is shown in both [7] and

later in this paper, on Figure 4).

B. Routing Tree Heuristic with Parallel changes (RTH-p)

RTH-p [7] proposes two improvements of RTH-p. The first

improvement is a greedy algorithm to identify as many non-

troublesome destinations as possible. The second improvement

is the use of parallelism: with RTH-p, it is possible to have

several nodes performing the transition together (that is, in

arbitrary order, and not necessarily simultaneously), without

causing transient loops. In RTH-p, nodes perform their transi-

tion according to their distance (on R2) to the destination.

Figure 1 shows an example of a network of five nodes,

for three destinations (a, d and e) and two routing protocols

per destination. RTH produces the order (a, e, d, c, b) for

destination a, (d, e, a, b, c) for destination d, and (e, d, c, b, a)
for destination e, as RTH considers destinations independently.

The overall transition for RTH has fifteen steps. RTH-p identi-

fies that destinations a and e are non-troublesome destinations,

and computes the sequence of steps ({d, e}, {c}, {b}, {a})
for both destinations. Then, RTH-p computes the sequence

of steps ({a, d, e}, {b}, {c}) for the remaining troublesome

destination d. The overall transition for RTH-p has seven steps:

({d, e}a,e, {c}a,e, {b}a,e, {a}a,e, {a, d, e}d, {b}d, {c}d).
The main drawback of RTH-p is that for each destination,

the transition produced by RTH-p is still relatively long. In

a network of n nodes and d destinations, if there are t
troublesome destinations, the transition duration of RTH-p is

O(t. log n). Note that the term logn comes from the maximum

depth of the tree formed by Rd
2 for any destination d.

C. Strongly Connected components Heuristic with Parallel

changes (SCH-p)

SCH-p [7] is based on strongly connected components to

identify possible transient routing loops. SCH-p proceeds as

follows. Each destination d is considered individually. For each

destination d, a graph Gd is built with arcs of Rd
1

(if the node

has not performed the transition yet) and of Rd
2 (in all cases).

Then, Gd is partitioned into strongly connected components.

For each strongly connected component, a set of nodes that can

perform the transition without risking loops is computed. This

set is computed greedily by adding nodes one at a time, until

it is not possible to add new nodes without generating routing

loops. Then, the step built by SCH-p is the union of all these

sets for every strongly connected component. This process is

repeated until all nodes have performed the transition to Rd
2.

On Fig. 1, SCH-p computes the steps ({a, d, e}, {c}, {b})
for destination a, ({a, d, e}, {b}, {c}) for destination d,

and ({d, e}, {c}, {b}, {a}) for destination e. Thus, the

overall transition for SCH-p has ten steps: ({a, d, e}a,
{c}a, {b}a, {a, d, e}d, {b}d, {c}d, {d, e}e, {c}e, {b}e, {a}e).
Note that when the network is small, RTH-p generally yields

shorter transitions than SCH-p due to its ability to identify

many non-troublesome destinations, but SCH-p outperforms

RTH-p in medium to large networks [7] because the number

of non-troublesome destinations in this case is very low and

SCH-p generally produces less steps per destination.

The main drawback of SCH-p is that it considers all desti-

nations individually (that is, all destinations are considered

as troublesome destinations), which results into an overall

duration of O(d), where d is the number of destinations.

III. FAST LOOP-FREE TRANSITION

ACH (Avoiding Cycles Heuristic) is a loop-free transi-

tion heuristic based on strongly connected components, as

SCH-p. ACH aims to maximize the number of nodes that

perform the transition at each step in order to reduce the

total number of steps of the transition, and thus to reduce

the transition duration. When the transition involves more

than one destination, ACH first computes the steps for each

destination independently, and then merges the steps together.

Thus, we present in Subsection III-A how ACH operates for

one destination, and in Subsection III-B how ACH operates

for several destinations.

A. ACH for one destination

ACH operates as follows when there is only one destination.

It first identifies all the cycles (using the algorithm from [8]) in

each strongly connected component. A cycle leads to a routing

loop if and only if each node of the cycle routes within this

cycle. Thus, avoiding a routing loop consists in finding at least

one node in the cycle that routes outside the cycle. We say that

such nodes break the cycle. More formally, a node n breaks a

cycle C if n ∈ C and R1(n) /∈ C. ACH attempts to find the

smallest number of nodes that break all the cycles by using

the following rules: (1) if a cycle is broken by a single node,

this node is chosen first, and (2) nodes that break the largest

number of unbroken cycles are chosen with higher priority.

Once the set is computed, all the other nodes can perform the

transition during the same step, and ACH proceeds to the next

step by reapplying the same procedure on nodes that have not

performed the transition yet.

Ra
1

Ra
2

Rd
1

Rd
2

Re
1

Re
2

(a) (b) (c)

aaa bbb ccc ddd

eee

Figure 1. Example from [7] of routing protocols for three destinations: (a) a is the destination, (b) d is the destination, and (c) e is the destination.

Figure 2 shows a small strongly connected component of

four nodes, with two cycles C1 = (a, b, c, a) and C2 =
(b, c, d, b). Nodes b and c break cycle C1. Indeed, if they do

not perform the transition, they do not use R2 and routing

loop C1 is impossible. Nodes b and d break cycle C2. Thus,

ACH chooses the set {b}, as b breaks the largest number

of cycles. Nodes of {a, c, d} can perform their transition in

arbitrary order, without causing a routing loop.

a b

c d

R1

R2

Figure 2. In this small strongly connected component, two routing loops might
appear. The first routing loop is (a, b, c, a), where node a routes following
R1, node b routes following R2, and node c routes following R2. The second
routing loop is (b, c, d, b), where node b routes following R2, node c routes
following R1, and node d routes following R2.

Algorithm 1 presents the core of the ACH algorithm, which

is the algorithm that computes the set of nodes that break all

cycles. S contains the nodes chosen by ACH to break all cycles

(and thus, these nodes remain on R1 during this step), and is

initially empty. For each cycle C of the strongly connected

component, the list of nodes that break C is computed. If a

cycle is broken by a single node, this node is added to S.

Then, the node of SCC \ S that breaks the most unbroken

cycles is added to S, until every cycle is broken.

Figure 3 shows an example of a network of twelve nodes.

The elementary cycles are: C1 = (a, c, b, a), C2 = (b, f, e, b),
C3 = (g, k, h, g), C4 = (i, k, j, i), C5 = (f, i, k, j, f),
C6 = (a, c, b, f, e, a), C7 = (a, c, g, k, j, f, e, a), C8 =
(a, d, i, k, j, f, e, a), C9 = (a, c, g, k, j, f, e, b, a), C10 =
(a, d, h, g, k, j, f, e, a), C11 = (a, d, i, k, j, f, e, b, a), and

C12 = (a, d, h, g, k, j, f, e, b, a). It is possible to compute the

nodes that break each cycle. We obtain {c} for C1, {b, e} for

C2, {g, k} for C3, {i} for C4, {f, i} for C5, {c} for C6, {g, j}
for C7, {a, i, j} for C8, {e, g, j} for C9, {a, d, g, j} for C10,

{a, e, i, j} for C11, and {a, d, e, g, j} for C12. Cycles that are

broken by only one node are C1, C4 and C6. Thus, nodes c
and i are added to S. Note that these nodes also break cycles

C5, C8 and C11, which do not need to be broken by another

node. Then, the node that breaks the most cycles is g (as it

breaks five of the remaining cycles C3, C7, C9, C10 and C12),

so g is added to S. With S = {c, g, i}, only C2 remains.

Algorithm 1: Computation of the nodes that break all

cycles in ACH.

Data: SCC is a strongly connected component, R1 and

R2 are routing protocols

Result: list of nodes from SCC that perform the

transition in the same step

S ← ∅;
for each cycle C in elementary cycles of SCC do

for each n ∈ C do

if R1(n) /∈ C then

n breaks C;

end

end

if C is broken by only one node then

add n to S;

end

end

repeat
n←the node of SCC \ S that breaks the most

unbroken cycles;

add n to S;

until every cycle is broken by a node of S;

return SCC \ S

Both b and e can break C2, so b is chosen arbitrarily. The

resulting set S is {b, c, g, i}, and the nodes that can perform

the transition during the first step are {a, d, e, f, h, j, k, l}. For

the second step, ACH considers that all nodes of the first step

route according to R2 (that is, R1 ← R2), and reapplies the

same algorithm. The second step is thus {b, c, g, i}.

B. ACH for multiple destinations

ACH operates as follows when there are multiple des-

tinations. It first computes the steps for each destination

independently (see Algorithm 1). Then, it merges the steps for

all destinations. Let us denote by step(i, j) the set of nodes of

the i-th step of ACH for the single destination j. Then, the i-th
step of ACH for all destinations is computed by merging the

i-th step of each destination, that is step(i) = ∪dj=1
step(i, j),

where d is the number of destinations.

Figure 1 showed an example of a network of five nodes

{a, b, c, d, e} with three destinations {a, d, e}. When con-

sidering destinations independently, ACH produces steps

({a, d, e}, {c}, {b}) for destination a, ({a, d, e}, {b}, {c}) for

a b c d

e f g h

i j k l

Figure 3. A small network with twelve nodes and eleven elementary cycles,
used as an example for ACH.

destination d, and ({d, e}, {c}, {b}, {a}) for destination e.

When merging the steps, ACH produces the following four

steps ({d, e}ade ∪ {a}ad, {c}ae ∪ {b}d, {b}ae ∪ {c}d, {a}e).
Recall that on this network, RTH-p produced seven steps and

SCH-p produced ten steps.

It can be noticed that the number of steps produced by ACH

does not depend on the number of nodes of the network, nor on

the number of destinations (as they are all merged by ACH).

The number of steps produced by ACH depends on the largest

number of steps for a single destination. Thus, the transition

duration is O(1). The computation cost of ACH is larger with

ACH than with RTH, RTH-p and SCH-p. However, we believe

that it is more important for the transition to be fast than for

the computation of the transition to be fast, as the computation

can be done off-line.

IV. SIMULATION RESULTS

In this section, we compare the performance of our heuristic

ACH with two other heuristics from the literature: RTH-p

(which is an improvement of RTH) and SCH-p.

A. Performance metrics

The number of groups of compatible destinations indicates

how a heuristic handles multiple destinations. A group of

compatible destinations is the set of destinations which are

treated together by a heuristic. For RTH-p, it is equal to t+1,

where t is the number of troublesome destinations (and 1
represents the set of all non-troublesome destinations, which

are treated together). For SCH-p, it is equal to d, where d
is the number of destinations, because each destination is

treated independently. For ACH, it is equal to 1, because all

destinations are treated together. This metric is mainly used to

better understand the results of the other metrics.

The duration of the transition is our main metric, and it

is computed as the overall number of steps of the transition.

Here, we assume that one step corresponds to a time unit,

as all nodes can be configured in parallel and can perform

the transition in arbitrary order. The smaller is the number of

steps, the faster is the transition.

The cost of the transition is the number of control

messages required to perform the transition. It is equal

to the sum of the number of distinct nodes per step,

as each node has to be configured independently at each

step where it appears. For example, for the transition

({d, e}ae, {c}ae, {b}ae, {a}ae, {a, d, e}d, {b}d, {c}d), the first

step generates two messages (for d and e, independently of

the fact that two destinations are involved), the second one

message (for c), the third one message (for b), the fourth one

message (for a), the fifth three messages (for a, d and e), the

sixth one message (for b) and the seventh one message (for

c). The cost of the transition is thus ten.

B. Simulation settings

Our simulations are performed on random connected net-

work graphs of size varying from 50 to 200 nodes. Nodes are

deployed uniformly at random in an area of 100 m×100 m.

The communication range of nodes is set to 20 m (which is

a standard setup for wireless adhoc networks). We considered

that each node is a potential destination. For each destination d,

we generatedRd
1 by assigning a random weight within [1; 100]

to each link, and by computing the shortest path from each

node to d using these weights. Similarly, we generated Rd
2 by

assigning a random weight within [1; 50] to each link, and by

computing the shortest path from each node to d using these

weights. Simulations are repeated 100 times, and a confidence

interval of 95% is shown on plots.

C. Results

In the following, we present and analyze our simulation

results on our three metrics. Note that all plots are shown

with a logarithmic scale for the y-axis.

1) Number of groups of compatible destinations: Figure 4

shows the average number of groups of compatible destina-

tions, for varying network sizes and for the three heuristics

RTH-p, SCH-p and ACH. For ACH, the number of groups of

compatible destinations is always one because ACH considers

all destinations together. For SCH-p, this number is equal to

the number of destinations d (which is equal to the network

size in our settings), because SCH-p considers all destinations

independently. For RTH-p, this number is between 1 and d.

For networks of 50 nodes, nearly 30 destinations are non-

troublesome (which allows RTH-p to consider only 21 groups

of destinations: one for the 30 non-troublesome destinations,

and 20 for the remaining 20 troublesome destinations). How-

ever, as the network size increases, non-troublesome destina-

tions become less frequent. For networks of 200 nodes, only

3 destinations on average are non-troublesome.

2) Duration of the transition: Figure 5 shows the duration

of the transition, computed as the average number of steps

required to perform the transition for all destinations, for

varying network sizes. We notice that the number of steps

increases consistently with the size of the network for both

RTH-p and SCH-p heuristics. For RTH-p, this is due to two

factors: the increase in the number of groups of compatible

destinations (see Figure 4), and the increase in the number

 1

 10

 100

 1000

 50 100 150 200

Number of nodes

N
u

m
b

er
o

f
g

ro
u

p
s

o
f

d
es

t.

RTH-p
SCH-p

ACH

Figure 4. Number of groups of compatible destinations as a function of the
number of nodes, for the three heuristics.

of steps for each destination (due to the fact that the number

of steps for each destination in RTH-p is equal to depth of

the routing tree Rd
2
). For SCH-p, this is due to the increase

in the number of destinations, as destinations are treated

separately. ACH, however, is able to produce a very small

number of steps, independently of both the number of nodes

and the number of destinations, as its number of steps is

equal to the maximum number of steps for every destination.

ACH outperforms RTH-p with a gain varying from 98% for

small networks up to 99% for large networks. Likewise, ACH

outperforms SCH-p with a gain varying from 97% for small

networks up to 99% for large networks. It is also important to

note that, out of the 400 simulation results we obtained, ACH

reached a maximum of 6 steps only once, and 5 steps or less

for all the remaining simulations.

 1

 10

 100

 1000

 10000

 50 100 150 200

Number of nodes

N
u

m
b

er
o

f
st

ep
s

RTH-p
SCH-p

ACH

Figure 5. Duration of the transition as a function of the number of nodes.
It can be seen that the duration of the transition for ACH does not increase
with the number of nodes nor with the number of destinations.

3) Cost of the transition: Figure 6 shows the cost of

the transition, computed as the average number of control

messages required to perform the transition for all destinations.

For all heuristics, the number of control messages increases

with the network size, as more nodes have to be configured

overall. For large networks, RTH-p and SCH-p achieve similar

results, which comes from the fact that these two heuristics

are unable to merge destinations. The number of control

messages is equal to n.d for SCH-p. For ACH, the small

control overhead comes from the fact that all steps are merged:

when a node appears several times in the same step for

different destinations, it is counted only once as a single

control message can configure the transition of this node for

all destinations. In networks of 50 nodes, ACH outperforms

RTH-p with a gain of 94%, and SCH-p with a gain of 97%.

In networks of 200 nodes, the gain of ACH is 99% compared

to both RTH-p and SCH-p.

 10

 100

 1000

 10000

 100000

 50 100 150 200

Number of nodes

N
u

m
b

er
o

f
co

n
tr

o
l

m
es

sa
g

es

RTH-p
SCH-p

ACH

Figure 6. Cost of the transition as a function of the number of nodes, for the
three heuristics. Due to a small number of steps, ACH is able to perform the
transition for all destinations with a limited overhead.

V. CONCLUSION

The transition from one routing protocol to another routing

protocol can lead to transient routing loops in networks. In this

paper, we propose a fast loop-free transition algorithm called

ACH. ACH focuses on identifying a small set of nodes that

break cycles in strongly connected components, in order to

ensure that many nodes can perform the transition in parallel,

which reduces the overall transition duration. Compared to

the main heuristics of the literature RTH-p and SCH-p, our

simulation results on random networks show that ACH out-

performs both of them. In term of the number of steps, the

gain of ACH compared to RTH-p varies from 98% (for small

networks) to 99% (for large networks), and the gain compared

to SCH-p varies from 97% (for small networks) to 99% (for

large networks). In term of the number of control messages,

the gain of ACH compared to RTH-p varies from 94% (for

small networks) to 99% (for large networks), and the gain

compared to SCH-p varies from 97% to 99%.

ACKNOWLEDGMENT

This work has been sponsored by the French govern-

ment research program ”Investissements d’avenir” through the

IMobS3 Laboratory of Excellence (ANR-10-LABX-16-01), by

the European Union through the regional program competitive-

ness and employment 2014-2020 (ERDF - Auvergne region),

and by the Auvergne region.

REFERENCES

[1] K. Butler, T. R. Farley, P. McDaniel, and J. Rexford, “A survey of BGP
security issues and solutions,” Proceedings of the IEEE, vol. 98, no. 1,
pp. 100–122, 2010.

[2] Z. Zhong, R. Keralapura, S. Nelakuditi, Y. Yu, J. Wang, C. N. Chuah, and
S. Lee, “Avoiding transient loops through interface-specific forwarding,”
in IEEE/ACM IWQoS (International Symposium on Quality of Service),
ser. Lecture Notes in Computer Science, vol. 3552. Springer, 2005, pp.
219–232.

[3] P. Francois and O. Bonaventure, “Avoiding transient loops during the
convergence of link-state routing protocols,” IEEE/ACM Transactions on

Networking, vol. 15, no. 6, pp. 1280–1292, Dec 2007.
[4] S. Nelakuditi, Z. Zhong, J. Wang, R. Keralapura, and C. N. Chuah, “Mit-

igating transient loops through interface-specific forwarding,” Computer

Networks, vol. 52, no. 3, pp. 593–609, 2008.
[5] L. Le Guennec, N. El Rachkidy, A. Guitton, M. Misson, and K. Kelfoun,

“MAC protocol for volcano monitoring using a wireless sensor network,”
in NoF (International Conference on Network of the Future), 2015.

[6] L. Vanbever, S. Vissichio, C. Pelsser, P. Francois, and O. Bonaventure,
“Lossless migrations of link-state IGPs,” IEEE/ACM Transactions on

Networking, vol. 20, no. 6, pp. 1842–1855, 2012.
[7] N. El Rachkidy and A. Guitton, “Changing the routing protocol without

transient loops,” Computer Communications, 2016, to appear.
[8] D. B. Johnson, “Finding all the elementary circuits of a directed graph,”

SIAM Journal of Computing, vol. 4, no. 1, pp. 77–84, 1975.

