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Abstract

Computer networks generally operate using a single routing protocol. However, there are situations where
the routing protocol has to be changed (e.g., because an update of the routing protocol is available, or
because an external event has triggered a traffic with different quality of service requirements). In this
paper, we show that an uncontrolled change of the routing protocol might yield to transient routing loops
(even if the involved routing protocols are loop-free). We show that it is possible to achieve a loop-free
change for multiple destinations using a strongly connected component approach producing successive steps,
where each step contains nodes that can change the routing protocol in parallel. Our aim is to reduce the
number of steps in order to reduce the time required for the network to change from one routing protocol
to another. Simulation results show that our strongly connected component approach greatly reduces the
number of steps compared to the state of the art, and thus it greatly reduces the time for the change.

Keywords: Routing protocols, routing protocol change, transient routing loops.

1. Introduction

Computer networks generally operate a single routing protocol which determines the route packets have
to follow in order to reach a destination. However, some situations require to change the current routing
protocol. For example, this change might be triggered by the availability of a major update of the protocol
or the correction of a security issue [1]. Another example concerns monitoring applications in wireless
sensor networks, where the detection of a critical event might trigger the change from an energy-efficient
routing protocol to a delay-sensitive routing protocol [2]. Another example focuses on the changes in routing
decisions caused by major modifications of the topology (due to link or node failures, or to significant changes
in routing metrics) [3, 4, 5].

If nodes are accurately synchronized, they can perform the change simultaneously from the current
routing protocol R1 to the new routing protocol R2. However, this solution is often difficult to implement in
practice, especially in large networks. Indeed, the cost of an accurate synchronization might be prohibitive,
or nodes might be operated by different network administrators, leading to different plannings for the change.
We assume in the following that nodes cannot be synchronized in such a precise manner.

If nodes are not synchronized and if nodes perform the change arbitrarily, transient routing loops might
occur, even if the routing protocols are loop-free when considered independently. Figure 1 shows such an
example. Initially, all packets towards d are routed according to routing protocol R1, and R1 is loop-free
(see Figure 1(a)). If nodes are requested to change to another protocol R2 in arbitrary order (R2 is shown
on Figure 1(b)), it is possible that c changes first, resulting into the routing depicted on Figure 1(c). In this
case, a transient routing loop occurs between nodes b and c. This loop will eventually disappear when node
b changes to R2 too, but the impact on the network performance is not negligible.
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Figure 1: Uncontrolled changes might yield to routing loops. (a) The initial routing protocol R1 is loop-free for destination d.
(b) The new routing protocol R2 is also loop-free for destination d. (c) A loop occurs between nodes b and c, if a and b route
according to R1 and c routes according to R2.

Routing loops reduce network performance as they can cause node inaccessibility issues or overload the
network. Even if the routing loops caused by the changes are transient (because all nodes will eventually
perform the change to the new, loop-free routing protocol), our aim is to completely avoid them, as they
might have a significant impact for the applications.

In [6], we classified routing protocols into three categories: (i) compatible routing protocols, which do
not yield to routing loops when they are used together, (ii) delayable routing protocols, where nodes might
avoid loops based on the knowledge of the distance functions of the two protocols, and (iii) combined routing
protocols, when the distance functions of the two protocols are not known or hard to compute locally by the
nodes. In [7], we use a probabilistic approach to avoid loops. Indeed, some nodes choose randomly whether
to forward packets or to hold them. However, the common assumption of [6, 7] is that routing protocols
alternate. In this paper, we make a more general assumption, where the change is final: once a node has
changed to R2, it does not change back to R1 anymore. This new assumption makes the previous solutions
inapplicable. Moreover, we show that the change to R2 can be performed in successive steps, where all nodes
of the same step can perform the change arbitrarily without causing loops.

Our contribution is three-fold. First, we show that the probability of transient loops is high for both
random and real topologies, and for several types of routing protocols pairs. Second, we improve the main
heuristic proposed by [8] for networks with several destinations, by proposing a greedy mechanism to deal
with troublesome destinations, and by computing a sequence of steps rather than a sequence of nodes. Third,
we propose our centralized heuristic based on the computation of strongly connected components in order to
classify nodes into steps. It is aimed at reducing the overall number of steps and thus reducing the change
duration, which is our main metric.

The remainder of the paper is organized as follows. Section 2 describes relevant research works of the
literature. Section 3 first presents two improvements for the main protocol of the literature [8]: a greedy
mechanism for the per-destination ordering, and the computation of a sequence of steps rather than a
sequence of nodes. Then, it presents our central theorem based on strongly connected components. Finally,
it presents our heuristic based on this theorem. Section 4 evaluates the performance of these heuristics on
several topologies and for several routing protocols pairs. Finally, Section 5 concludes this work.

2. Related work

In this section, we first describe architectures where routing loops might occur. Then, we present the
solutions from the literature that avoid routing loops occurring during the change from one protocol to
another. Then, we describe in details the Routing Tree Heuristic (RTH) presented in [8], as it is the main
heuristic to change routing protocols. Finally, we describe the main differences between RTH [8] and this
paper.

2.1. Networks and protocols with risks of loop occurrence

Several routing protocols that combine different routing decisions have been proposed in the literature.
In [9], the authors propose to combine a reactive routing protocol with a greedy geographical routing protocol.
When a packet has to be forwarded, the reactive protocol establishes the whole route to the destination. The
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geographical protocol is used when the next-hop according to the reactive protocol becomes unreachable.
Routing loops can occur if the geographical protocol forwards packets to a node that uses the reactive
protocol. In [10], a routing protocol Rd that reduces delay is combined with a routing protocol Re that
reduces energy. Rd and Re are used depending on the traffic produced by the application: urgent packets
are forwarded according to Rd, while periodic packets are forwarded according to Re. Routing loops can
occur if an urgent packet reaches a node that has a limited energy and uses Re. In [11], packets are given
a priority based on traffic type. The next-hop of a packet is computed according to several parameters,
including packet priority, number of hops to the destination, link quality for the next-hop, residual energy
for the next-hop, load of the next-hop, etc. Routing loops can occur if the parameters used by a node are
different from the parameters used by another node on the path to the destination.

Multi-purpose Wireless Sensor Networks (WSNs) [12] have been proposed to enable a single WSN de-
ployment to support several applications. The main advantage of multi-purpose WSNs is that the cost of
deployment is shared by all the applications. Several researchers have proposed protocols for multi-purpose
WSNs [13, 14, 15, 16]. In such networks, several routing protocols can be used simultaneously, because the
large amount of applications yield to different requirements that cannot be met by a single routing protocol.
However, dealing with several routing protocols might cause routing loops when the choice of the routing
protocol is made locally by each node [6, 7].

2.2. Heuristics that avoid routing loops

The problem of avoiding transient loops during a change of routing protocols is a recent issue. We
summarize here the main related works.

In [6, 7], nodes are synchronized and forward packets according to a schedule composed of two periods p1
and p2. During p1, nodes forward packets according to R1, and during p2, nodes forward packets according
to R2. Routing loops can occur if nodes become desynchronized or if the decision to forward a packet
according to R1 or R2 is made locally by each node, independently of the period. In [6], properties of
pairs of routing protocols are studied, and three categories are identified: (i) compatible routing protocols,
which do not yield to routing loops, (ii) delayable routing protocols, where nodes might avoid loops based
on the knowledge of the distance functions of the two protocols, and (iii) combined routing protocols, where
the distance functions of the two protocols are not known or hard to compute locally by the nodes. The
last two categories require R1 and R2 to alternate, as some nodes hold packets indefinitely for one routing
protocol. They are not suitable for a final change of routing protocol, as we consider in this paper. In [7], two
heuristics are proposed to avoid loops or reduce their occurrences. In the first heuristic, all loops are avoided
by forbidding some nodes to forward packets according to one routing protocol Ri. In the second heuristic,
a probabilistic approach is used to reduce the risk of loops: nodes that could potentially be involved in loops
choose randomly whether to forward or to hold packets for one routing protocol. These two heuristics cannot
be applied here because the change from R1 to R2 is final: once a node has performed the change to R2, it
does not change back to R1.

In [4], the authors show that most routing protocols can produce transient routing loops after a topological
change. They show that such loops can be avoided by having routers process routing updates in a specific
order. Their mechanism is able to deal with link failures, new links, or updates on link metrics. The
differences with this paper are the following: (i) we consider arbitrary protocols for R1 and R2, while [4]
considers a single routing protocol on two similar topologies, (ii) we reduce the number of steps required for
the change, while [4] provides an ordering of updates that does not cause loops, and (iii) in our proposition,
each node is updated exactly once for each destination, while the algorithm of [4] might update the same
node several times.

In [3, 5], the authors show that ordering the routing updates yields to additional message overhead and
increases the change delay. They avoid transient routing loops by exploiting the existence of one forwarding
table per interface. Messages arriving through unexpected interfaces are discarded, because they indicate a
discrepancy between the view of the router and of its neighbors. Once all routers have the same view of the
topology, the protocol converges and produces loop-free routes. The main difference with this paper is that
we do not drop packets during the change to reduce the impact of loops, but we avoid changing the routing
protocol of nodes if it causes a loop.
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In [17, 18], the authors show that transient routing loops that occur after topological changes can be
avoided by applying a sequence of topology updates. Between two topology updates, the same routing
protocol is used, but some link values are modified, which result into changes in routing decisions. They
propose a protocol that minimizes the number of topology updates. The difference with this paper are the
following: (i) we consider two different routing protocols on a single topology, while [17, 18] consider a single
routing protocol applied on a sequence of updated topologies, (ii) we consider arbitrary routing protocols,
while [17] considers changes on only one link and [18] considers changes concerning the links of a single
router, and (iii) we reduce the number of steps to perform the change, where each step is a set of nodes and
each node appears exactly once per destination, while [17, 18] attempts to minimize the number of topology
updates to guarantee the convergence of a single routing protocol without transient loops.

In [8], the authors describe a heuristic which is based on similar assumptions as in this paper. We describe
this heuristic in details in the next subsection.

2.3. Routing Tree Heuristic [8]
In [8], authors proposed ordering algorithms in order to avoid loops during the change from one routing

protocolR1 to another routing protocolR2. They proposed a heuristic called Routing Tree Heuristic (RTH).
RTH consists of the following. For each destination d, the ordering constraints are computed separately.

First, a greedy algorithm is used to compute the set Sd of nodes that do not yield to loops in the network. A
node is added to Sd if and only if its next-hops using R1 and using R2 are already in Sd. Second, the set V̄d

of nodes is built by adding each node that does not have the same next-hops using R1 and R2. Third, RTH
builds a set of constraints C in the following way: for each path on R2 from a source node to the destination
d, a constraint is generated for the last pair of nodes (u, v) on this path such that u ∈ V̄d and u /∈ Sd. In
this way, the change from R1 to R2 starts from the destination backwards (according to R2) to the sources,
which guarantees that no loop occur on the path. This means that a node n does not change before all its
successors on R2 have already changed. Finally, RTH creates an acyclic directed graph GC from the set of
constraints C, and the ordering is computed as a topological sort of GC .

2.4. Differences between RTH and our proposition
The differences with this paper are the following:

• RTH changes the routing protocol of nodes one by one, so the duration of the change is proportional to
the number of nodes in the network. However, we show here that it is possible to change the routing
protocol of several nodes in parallel, without any loop occurrence. We use this parallelism to reduce
the time required for the routing protocol change.

• RTH changes the routing protocol of nodes by following the arcs of R2 from the destination backwards
to the sources. However, we show that it is possible to change the routing protocol for nodes indepen-
dently of their position on the paths from sources to destinations according to R2. We use a strongly
connected component approach to identify those nodes.

• The authors of RTH assume that there are few troublesome destinations, so RTH tries to compute the
ordering for all destinations together when possible. However, we show that troublesome destinations
are relatively frequent, so we decided to consider destinations independently.

3. Fast changes of routing protocols

The main criteria when performing changes of routing protocols without transient loops is the overall
time required for the change. We consider in this paper that it is possible to perform the change as a sequence
of steps, where nodes of each steps can change their routing protocol in parallel. Thus, the time required for
the change is proportional to the number of steps, rather than to the number of nodes in the network.

In this section, we first describe improvements to RTH [8]: the first improvement is a greedy mechanism
that deals with troublesome destinations, and the second improvement enables the support of steps. Second,
we give a mathematical background for parallel steps based on strongly connected components. Third, we
describe our heuristic based on this background.
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3.1. Improvements of RTH

We present here two improvements of RTH. The first improvement describes the per-destination ordering,
when a per-router ordering does not exist due to troublesome destinations. The second improvement describes
how to enable parallel changes in RTH.

3.1.1. Improvement 1: Greedy mechanism of per-destination ordering in RTH

The first improvement is a greedy mechanism of per-destination ordering. Note that this ordering can
be applied when a per-router ordering exists (in this case, all destinations can be regrouped, and the re-
sult is the same as with the original RTH) as well as when a per-router ordering does not exist (in this
case, several destinations are regrouped in a greedy manner, and troublesome destinations are processed
independently). Authors of [8] mainly described the per-router ordering (which assumes that there is no
troublesome destination), and explained that troublesome destinations can be processed independently from
the other destinations. However, they did not propose an algorithm that identifies troublesome destinations,
or that aggregates non-troublesome destinations (this was left as future work due to the fact that troublesome
destinations were limited in their experimental evaluation, cf Subsection V.C of [8]).

The RTH heuristic (see Figure 8 of [8]) is modified in the following way. Initially, the set of troublesome
destinations is initialized to ∅. In the main loop that considers each destination d, the constraint graph GC is
computed using V and the set of constraints C. If the new graph GC , including the constraints generated by
all previous non-troublesome destinations and the new destination d, has no loop, then the new destination
is considered as a non-troublesome destination. However, if the new graph GC has a loop, destination d
is added to the list of troublesome destinations, and the constraints generated from this destination are
removed from C. In this case, modifications to GC concerning d are discarded. After all destinations have
been considered, the ordering is made first for all non-troublesome destinations together using GC , and then
for all troublesome destinations one by one, using the per-destination ordering.

3.1.2. Improvement 2: Parallel changes in RTH

The second improvement consists of enabling parallel changes in RTH, in order to obtain a sequence of
steps rather than a sequence of nodes. This modification can be performed efficiently from the constraint
graph GC computed for all non-troublesome destinations (as well as for each troublesome destination inde-
pendently). This improvement consists of changing the last step of RTH, by replacing the topological sort
of GC with Algorithm 1. In this algorithm, a new set S is added to sequence T at each iteration. At each
iteration, all nodes that have no incoming edges in GC (that is, no constraints), are added to the new set S
and all edges leaving from these nodes are removed from GC . Since GC has no loop (due to the construction
of all non-troublesome destinations, and to the fact that troublesome destinations are considered indepen-
dently), the process ends with all nodes being in T . In our implementation, sequence T contains first the
steps for all non-troublesome destinations, then the steps for each troublesome destination successively.

In the following, we denote by RTH-p this heuristic.

3.1.3. Example of RTH-p

In the following, we describe RTH-p in an example. This example shows our greedy mechanism for
per-destination ordering, as well as parallel changes.

Figure 2 shows a graph of five nodes, with three destinations and two routing protocols: (a) destina-
tion a with Ra

1 and Ra
2 , (b) destination d with Rd

1 and Rd
2, and (c) destination e with Re

1 and Re
2. When

considering destinations independently, RTH produces the order (a, e, d, c, b) for destination a, (d, e, a, b, c)
for destination d, and (e, d, c, b, a) for destination e. When considering all destinations together, our greedy
mechanism first considers destination a, identifies destination d as troublesome, and identifies destination
e as non-troublesome. Thus, RTH-p produces sequence ({d, e}, {c}, {b}, {a}) for both non-troublesome des-
tinations a and e, and sequence ({a, d, e}, {b}, {c}) for troublesome destination d. The resulting sequence
is ({d, e}, {c}, {b}, {a}, {a, d, e}, {b}, {c}) (to simplify the notation, we did not indicate which destination
is concerned by the change at each step). Note that each node appears several times but for different
destinations.
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Algorithm 1 Parallel changes in RTH.

Require: GC a graph of constraints
Ensure: T is a sequence of steps
T ← ∅
while some nodes are not in T do

S ← ∅
while node n ∈ GC do

if n /∈ S and n /∈ T then

if n has no incoming edges in GC then

S ← S ∪ {n}
end if

end if

end while

while node n ∈ S do

remove from GC all edges leaving from n
end while

add set S to sequence T
end while

R
a

1
R

a

2

R
d

1

R
d

2

R
e

1

R
e

2

(a) (b) (c)

aaa bbb ccc ddd

eee

Figure 2: Example of routing protocols for three destinations: (a) a is the destination, (b) d is the destination, and (c) e is the
destination.
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3.2. Problem formulation for the construction of sequence of steps

Let V be a set of nodes and d ∈ V a destination. Let us consider two routing protocols for destination d:
R1 is the routing protocol initially used by nodes, and R2 is the new protocol to use. For all i ∈ {1, 2} and
for all n ∈ V , we denote by Ri(n) ∈ V the next-hop of n towards d according to Ri. Given a partition
(V1, V2) of V (i.e., V1 ∪ V2 = V and V1 ∩ V2 = ∅), we denote by RV1,V2

the routing protocol defined in the
following way: for all n ∈ V1, RV1,V2

(n) = R1(n), and for all n ∈ V2, RV1,V2
(n) = R2(n). In other words,

nodes of V1 route according to R1, and nodes of V2 route according to R2. The set of routing decisions of
both R1 and R2 form the set E of the edges of the graph G = (V,E).

Definition 1 (Loop-free step). Let (V1, V2) be a partition of nodes, and S ⊂ V1 a set of nodes that change
their routing protocol to R2 in arbitrary order. S is called step. Step S is said to be loop-free if and only if
for all S′ ⊂ S, the routing protocol RV1\S′,V2∪S′ is loop-free.

Definition 1 states that a step S is loop-free if and only if all the possible intermediate sub-steps S′ ⊂ S
correspond to a loop-free routing protocol. This means that the nodes of S can change their routing protocol
arbitrarily without causing loops.

Definition 2 (Loop-free sequence). Let T = (S1, . . . , Sm) be a sequence of steps. Sequence T is said to be
loop-free if and only if both conditions apply:

• (S1, S2, . . . , Sm) partitions the set V ,

• for all i ∈ [1;m], Si is a loop-free step on partition (V i
1 , V

i
2 ), with V i

2 = S1∪ . . . ∪Si−1 and V i
1 = V \V i

2 .

Definition 2 states that a sequence T = (S1, . . . , Sm) is loop-free if and only if each step Si is loop-free,
and after step Sm, all nodes belong to V m

2 ∪ Sm = V (that is, they have changed to the target routing
protocol R2). Note that the set of nodes running R2, which is V i

2 , increases as the sequence progresses.
Figure 3 shows an example of loop-free sequence T = ({a, b, d}, {c}). Figure 3(a) shows the initial

routing protocol R1. Figure 3(b) shows both R1 and R2 for nodes of the first step {a, b, d}, to indicate that
these nodes might route either according to R1 (if they have not changed yet) or R2 (if they have already
changed). It can be seen that for any routing protocol used by the nodes of the first step, no loop occurs
for any arbitrary order of change. Figure 3(c) shows R2 for nodes that have changed their routing protocol
on the previous step, and shows both R1 and R2 for the node of the second step. On a side note, it can be
noticed that T is a loop-free sequence with a minimum number of steps, as it is not possible to have both b
and c in the same loop-free step.

aaa bbb ccc ddd
R1R1R1

R2R2

(a) (b) (c)

Figure 3: An example of loop-free sequence T = ({a, b, d}, {c}). (a) Initially, all nodes route according to R1. (b) During the
first step, nodes from {a, b, d} might route according to R1 or R2 without causing loops. (c) During the second step, node c

routes according to R1 or R2, while all nodes from {a, b, d} route according to R2. At the end of the second step, all nodes
route according to R2 (not shown).

Theorem 1. Let G, V1, V2, R1 and R2 be defined as previously for a destination d. Let G′ = (V,E′) with
E′ ⊂ E, such that for all x ∈ V1, (x,R1(x)) ∈ E′ and (x,R2(x)) ∈ E′, and for all x ∈ V2, (x,R2(x)) ∈ E′.
Let C = {Ci}i be the set of all strongly connected components of G′. For all i, let us denote by C′i ⊂ Ci a set
of nodes that verifies the following properties:

• C′i ⊂ V1,
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• G′
i = (V,E′

i) does not contain any loop, with E′
i defined as follows:

– if x ∈ C′i then (x,R1(x)) ∈ E′
i and (x,R2(x)) ∈ E′

i,

– if x ∈ V1\C′i then (x,R1(x)) ∈ E′
i,

– if x ∈ V2 then (x,R2(x)) ∈ E′
i.

Then, S = ∪iC′i is a valid step for destination d.

Proof. Let us assume that {C′i}i verifies the properties. We have to show that S = ∪iC′i is a valid step, that
is, for every S′ ⊂ S, RV1\S′,V2∪S′ is loop-free and leads to destination d. Let S′ be an arbitrary subset of S,
and let us build RV1\S′,V2∪S′ .

Let us first show that RV1\S′,V2∪S′ is loop-free. By contradiction, let us suppose that there is a loop
(x0, x1, . . . , xn) in RV1\S′,V2∪S′ , with xn = x0.

• Suppose here that this loop spans a single strongly connected component Ci. For all k, we have
(xk, xk+1) ∈ ES′ . (i) If xk ∈ S′, then xk+1 = R2(xk) by construction of ES′ (since S′ ⊂ S ⊂ C′i).
Because of the properties of C′i, we have (xk,R2(xk)) ∈ E′

i. (ii) If xk /∈ S′ and xk ∈ V1, then
xk+1 = R1(xk) by construction of ES′ . We have to consider the two following sub-cases: xk ∈ C′i and
xk /∈ C′i. If xk ∈ C

′
i, then (xk,R1(xk)) ∈ E′

i. If xk /∈ C′i, then (xk,R1(xk)) ∈ E′
i. (iii) If xk /∈ S′

and xk ∈ V2, then xk+1 = R2(xk) by construction of ES′ , and xk /∈ C′i. Thus, (xk,R2(xk)) ∈ E′
i. To

summarize these three cases, all the arcs of the loop on ES′ are also included in the arcs of E′
i, thus

G′
i contains a loop. However, this is impossible by construction of C′i. Thus, by contradiction, there is

no loop on GS′ .

• Suppose now that this loop spans several strongly connected components, including Ci and Cj , with
i 6= j. For all nodes xm of the loop (with (xm, xm+1) ∈ ES′), let us show that (xm, xm+1) ∈ E′. (i) If
xm ∈ S′, then xm+1 = R2(xm), and xm ∈ C

′
i, which means that xm ∈ V1. Thus, (xm,R2(xm)) ∈ E′ by

construction of E′. (ii) If xm /∈ S′ and xm ∈ V1, then xm+1 = R1(xm). Thus, (xm, xm+1) ∈ E′. (iii) If
xm /∈ S′ and xm ∈ V2, then xm+1 = R2(xm). Thus, (xm, xm+1) ∈ E′. To summarize these three cases,
for all xm of the loop, (xm, xm+1) ∈ E′, so there exists a loop in G′ between a node of Ci and a node
of Cj , which means that Ci and Cj are the same strongly connected component, which is impossible.

Let us show now that for any node x, d is reachable from x in GS′ . By contradiction, let us suppose that
there is a node x from which d is not reachable. Let us consider the path starting from x in GS′ . Either
there exists a node on the path that has no next-hop on GS′ , or the path has a loop. We just proved that
there is no loop in GS′ , so there has to be a node y without a next-hop. By construction of GS′ , we can see
that all nodes y ∈ S′ ∪ (V1\S′) ∪ V2 = V have a next-hop, so destination d is reachable from any node x in
GS′ . This completes the proof.

Figure 4 shows an example of a graph of nine nodes, where destination is node f . The routing protocolsR1

and R2 are shown on Figure 4(a). To build the first valid step, all routing arcs are considered. The strongly
connected components of the resulting graph are the following: C1 = {f}, C2 = {b, c} and C3 = {a, d, e, g, h, i}.
The following sets verify the property of the theorem: C′1 = {f}, C′2 = {b} and C′3 = {d, g, h, i}. Indeed,
it can be verified that none of the graphs G′

i (for i ∈ {1, 2, 3}) has a loop (this can also be seen on the
graph shown on Figure 4(b)). Thus, the step S1 = {b, d, f, g, h, i} is a valid first step. To build the second
valid step, the strongly connected components of the graph shown on Figure 4(c) are computed. They are
the following: C1 = {a}, C2 = {b}, . . . , C9 = {i}. The following sets verify the property of the theorem:
C′1 = {a}, C′3 = {c}, C′5 = {e}, and C′i = ∅ otherwise. The second step is S2 = {a, c, e}. After this step, all
nodes route according to R2. Thus, T = (S1, S2) is a loop-free sequence.

3.3. Centralized heuristic for loop-free change of routing protocols

In this subsection, we describe our centralized heuristic for loop-free change, called Strongly Connected
component Heuristic with parallel changes (SCH-p). We assume that a centralized entity knows the whole
network topology, as well as R1 and R2 for each destination.
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Figure 4: Sequence based on strongly connected components. (a) The graph has three strongly connected components C1 = {f},
C2 = {b, c}, C3 = {a, d, e, g, h, i}. (b) The first step is S1 = {b, d, f, g, h, i}, and only the nodes of S1 can route according to R1

or R2. (c) The second step is S2 = {a, c, e}, and only the nodes of S2 can route according to R1 or R2.

SCH-p is based on Algorithm 2. Each destination is considered sequentially and independently. First,
the set of strongly connected components of the graph is built based on the two routing protocols for the
current destination. Then, each strongly connected component Ci is considered individually, and nodes are
distributed into several steps according to Algorithm 3. We use a greedy approach: for each step Sj , we add
nodes one by one into a set C′i,j, until it is not possible to add more nodes without violating the constraints
of Theorem 1. Then, we move to the next step, until all nodes of Ci are in a step for this destination.

The worst-case complexity of SCH-p is O(|V |5). Indeed, there are at most |V | destinations. For each
destination, the strongly connected components of a graph can be computed in O(|V |+ |E|) with Tarjan’s
algorithm [19]. Note that in our graphs, |E| ≤ 2|V | as each node has at most two outgoing arcs (one with
R1 and one with R2). For each strongly connected component Ci, there are at most |Ci| resulting steps (as
there is at least one node per step). Computing the set C′i,j requires considering at most |Ci|

2 combinations
of nodes, each requiring to build G′ and determining if it has a loop, which can be done in O(|Ci|). As the
set of strongly connected components partitions the graph, we obtain the overall complexity of O(|V |5).

4. Simulation results

In this section, we describe our simulation results. We start by describing our settings. Then, we quantify
the probability of loop occurrence when using arbitrary routing protocols, with uncontrolled changes (that
is, without any heuristic to avoid transient loops). We also quantify the number of troublesome destinations
for RTH and RTH-p. Then, we compute the number of steps required to change the routing protocols for
RTH, RTH-p and our heuristic SCH-p.

4.1. Topologies and parameter settings

We used two types of topologies in order to evaluate the heuristics over a large number of networks. First,
we decided to generate random connected graphs. We generated networks composed of 50, 100, 150, 200,
250, and 300 nodes, randomly deployed on an area of 100m×100m. Nodes that are distant of less than 20 m
are considered connected. Second, we decided to test our heuristic SCH-p on real networks. We used the
Rocketfuel network topologies [20, 21], which are also used for the evaluation of RTH in [8]. The resulting
topologies have 79, 87, 104, 138, 161, and 315 nodes.

In the following, we use three scenarios for the routing protocols. They are all based on shortest paths,
using different link metrics. In Scenario 1, R1 uses the hop-count metric and R2 uses a random metric,
chosen randomly within [1; 100] for each link. R2 models a protocol based on a delay or loss rate. In
Scenario 2, both R1 and R2 are based on independent random metrics chosen within [1; 100] (such as delay
for R1 and loss rate for R2). In Scenario 3, R1 is based on a random metric chosen within [1; 100] for each
link, and R2 uses a correlated weight for links. If w ∈ [1; 100] denotes the weight of the link for R1, the
weight of the link for R2 is chosen randomly within [max(1, w − 10);min(100, w + 10)]. This models the
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Algorithm 2 Main algorithm for SCH-p.

Require: G = (V,E) a graph, D ⊂ V a set of destinations, R1 and R2 two routing protocols (for each
destination of D)

Ensure: T is a valid sequence
j ← 1
for d ∈ D do

max← 1
C ← strongly connected components of G (with arcs resulting of R1 and R2 for destination d)
for Ci ∈ C do

if |Ci| = 1 then

Sj ← Sj ∪ Ci
else

old← j
while there are nodes of Ci that are not in a step yet do
find a suitable set C′i,j ⊂ Ci (see Algorithm 3)
Sj ← Sj ∪ C′i,j
j ← j + 1

end while

if j − 1 > max then

max← j − 1
end if

j ← old
end if

end for

j ← j +max
end for

return T = (S1, . . . , Sj−1)

Algorithm 3 Computation of one step for Ci in SCH-p.

Require: Ci is a strongly connected component (with at least two nodes), d is a destination, the list of
previous steps is known

Ensure: C′i,j satisfies Theorem 1
C′i,j ← ∅
end← false
while not end do

end← true
for node n in Ci do
if n is not already in a step and n /∈ C′i,j then

build G′ with the nodes of G and no edges
for each node m that has been added in a previous step, add arc (m,R2(m)) to G′

for each node m ∈ C′i,j ∪ {n}, add arcs (m,R1(m)) and (m,R2(m)) to G′

for each other node m 6= d, add arc (m,R1(m)) to G′

if G′ does not contain a loop then

C′i,j ← C
′
i,j ∪ {n}

end← false
end if

end if

end for

return C′i,j
end while

10



case where protocol R2 uses an updated version of the topology, or includes an additional parameter in the
computation of link weights.

4.2. Simulation on loop occurrence with uncontrolled changes

We consider that a loop occurs if it is possible for a packet to enter a routing loop when nodes on the
path decide arbitrarily to route according to R1 or R2. For instance, we consider that there is a loop in the
topology shown on Figure 1, because it is possible that b routes according to R1 while c routes according to
R2. Notice that even if there is a loop occurrence in a topology, some nodes might be able to send packets
to the destination without loops. Thus, our metric refers to the risk of occurrence of at least one loop.

In the following, all the results on loop occurrences are averaged over 100 simulations per destination,
and over all possible destinations.

4.2.1. Loop occurrences on random networks

In this subsubsection, we quantify the probability of loop occurrence for random graphs, in the three
previous scenarios.

Figure 5 shows the percentage of loop occurrence as a function of the number of nodes in the network,
for the three scenarios. In Scenario 1, the percentage of loop occurrence increases with the number of nodes.
Even when the number of nodes is small (for instance, 50), the percentage of loop occurrence is about 60%,
which means that loops are likely to occur. This comes from the fact that the two routing protocols build
paths with low correlations due to the random weight of R2. In Scenario 2, the percentage of loop occurrence
is about 100% for all numbers of nodes in the network. This is due to the fact that R1 and R2 yield to
different routing decisions, thus paths have a very low correlation. In Scenario 3, the percentage of loops
is low for a small number of nodes. Indeed, since the link metrics are correlated, R1 and R2 are likely to
be similar, so packets are likely to follow similar paths. However, when the number of nodes is large, the
two routing protocols exhibit differences, and the resulting shortest paths have low correlations (even if the
weights are correlated).
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Figure 5: In random networks, when R1 is based on a hop-count metric and R2 is based on a random metric, the percentage of
loop occurrence is high, due to the low correlation of the metrics of R1 and R2. When R1 and R2 are both based on a random
metric, the percentage of loop occurrence is very high, again due to the very low correlation of the metrics of R1 and R2. When
R1 is based on a random metric and R2 is based on a deviation of the metric of R1, the percentage of loop occurrence is high
for topologies with a large number of nodes, despite the high correlation of the metrics.

4.2.2. Loop occurrences on real networks

In this subsubsection, we quantify the number of loops that might appear using R1 and R2, for real
networks.

Figure 6 shows the percentage of loop occurrence as a function of the number of nodes, for the three
scenarios. We notice that the percentage of loop occurrence is much larger with Scenario 1 and Scenario 2
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than with Scenario 3. This is due to the fact that the routing protocols R1 and R2 of Scenario 3 are highly
correlated. However, the percentage of loop occurrence is more important for large networks as the paths are
longer. For real networks, the percentage of loop occurrence depends on the underlying topology. In general,
this percentage increases with the network size, but there are some real topologies (such as the Rocketfuel
topology ’1221.city’ with 104 nodes) that yield few routing loops (see also Figure 16 of [8]).
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Figure 6: In real networks, for Scenario 1, the percentage of loops is high (between 50% and 80% for small networks (less than
104 nodes), and above 90% for large networks). For Scenario 2, the percentage of loops is always high independently of the
network size (between 90% and 100%). For Scenario 3, the percentage of loops increases with the network size (10% for small
networks and up to 90% for large networks).

4.3. Average percentage of troublesome destinations

In this subsection, we focus on the percentage of troublesome destinations. Troublesome destinations are
destinations that require to be considered independently by RTH and RTH-p. These destinations cannot
follow the common per-router ordering used for all the remaining destinations.

We compute the number of troublesome destinations for random and real networks by averaging over
100 simulations, and we normalize it with respect to the number of nodes of the network in order to obtain
a percentage. All nodes act as destinations.

4.3.1. Troublesome destinations for random networks

Figure 7 shows the average percentage of troublesome destinations in random networks. We notice that
the percentage of troublesome destinations is low for small networks and increases consistently for large
networks. This is due to the fact that the percentage of loop occurrence is small (cf Subsubsection 4.2.1).
Moreover, the percentage of troublesome destinations depends on the scenarios. In Scenario 1, we notice that
the percentage of troublesome destinations is low for small networks (less than 26%) but it increases quickly
for large networks (up to 94%). In Scenario 2, the percentage of troublesome destinations is about 80% for
a network of 50 nodes and goes up to about 100% for a network of 300 nodes. In Scenario 3, the percentage
of troublesome destinations is almost zero for small networks when R1 and R2 are highly correlated, but it
increases up to 98% for large networks.

4.3.2. Troublesome destinations for real networks

Figure 8 shows the percentage of troublesome destinations in real networks. For Scenario 1 and Scenario 2,
the percentage of troublesome destinations is important (between 70% and 100% for Scenario 1, and above
90% for Scenario 2) for large networks. This percentage is low for small networks as paths to destinations
are smaller, which leads to a small number of loops in the network (cf Subsubsection 4.2.2). For Scenario 3,
the percentage of troublesome destinations is low, even for large networks. Note that the low percentage of
troublesome destinations for Scenario 3 is the main argument used by authors of [8] to justify that there are
few troublesome destinations. However, we believe that Scenario 3 represents only a specific case, where the
two routing protocols are highly correlated.
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Figure 7: In random networks, the percentage of troublesome destinations is more important in large networks than in small
networks. Troublesome destinations appear even with correlated routing protocols (such as in Scenario 3).
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Figure 8: In real networks, the percentage of troublesome destinations is more important in large networks than in small
networks. Correlated routing protocols (see Scenario 3) are able to greatly reduce the number of troublesome destinations.
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4.4. Results on average number of steps

In this subsection, we evaluate the number of steps required for all the nodes to change from R1 to R2

without any loop occurrence. This is our main metric, as the change duration is proportional to the number
of steps produced by the heuristics.

We consider that all nodes are destinations. Simulation results are averaged over 100 repetitions and
confidence intervals of 95% are shown.

We compare our heuristic SCH-p to RTH [8]. Recall that RTH provides an ordering to change the nodes
sequentially: the number of steps of RTH is equal to the number of nodes in the network, if there is no
troublesome destination. We also compare our heuristic SCH-p to RTH-p. Recall that RTH-p consists of
changing several nodes in parallel.

4.4.1. Number of steps for random networks

Figure 9 shows the average number of steps required to change the routing protocol, in term of the
number of nodes in the network, for Scenario 1. The y-axis is depicted using a logarithmic scale. We notice
that the number of step increases consistently with the size of the network for all the heuristics (RTH, RTH-p
and SCH-p). We notice also that the number of steps is very large for RTH. This is due to the fact that only
one node at each step is able to change from R1 to R2. More precisely, the number of steps for RTH is equal
to the number of nodes in the network, times α + 1, where α is the number of troublesome destinations.
Both RTH-p and SCH-p outperform RTH with a gain that reaches up to 97% for RTH-p, and up to 99% for
SCH-p. SCH-p outperforms RTH-p: for large networks (more than 100 nodes), SCH-p shows a gain of 63%
for a network of 100 nodes, and a gain of 77% for a network of 300 nodes. The large gain of SCH-p can be
explained as follows:

• SCH-p is able to change the routing protocol of nodes independently on their position on the paths
from the sources to the destinations (according to R2), while RTH-p only changes the routing protocol
for nodes starting from the destinations and going backward to the sources.

• Since the number of troublesome destinations is large (see Fig. 7), RTH-p is not able to aggregate
many non-troublesome destinations together.
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Figure 9: In random networks for Scenario 1, SCH-p is able to perform the change in about 600 steps on average for large
networks. RTH and RTH-p require respectively 85182 steps and 2602 steps to perform the change of all the nodes.

Figure 10 shows the average number of steps required to change the routing protocols in term of the
number of nodes, for Scenario 2. The y-axis is depicted using a logarithmic scale. We can see that the
number of steps increases consistently with the size of the network. We notice also the same behavior for
RTH as in Fig. 9: the number of steps required to change all the nodes is very large, especially for large
networks. RTH produces 2021 steps for networks of 50 nodes, and 90000 steps for networks of 300 nodes.
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Figure 10: In random networks and for Scenario 2, SCH-p is able to perform the change in about 761 steps on average for large
networks. RTH and RTH-p require respectively 90000 steps and 3864 steps to perform the change of all the nodes.

SCH-p outperforms RTH-p (respectively RTH), with a gain varying from 57% (respectively 94%) for small
networks up to 80% (respectively 99%) for large networks.

Figure 11 shows the average number of steps in term of the number of nodes in the network, for Scenario 3.
The y-axis is depicted using a logarithmic scale. RTH-p shows a better behavior than SCH-p for small
networks of less than 150 nodes. Indeed, RTH-p shows a gain of 89% for a network of 50 nodes and 11% for
a network of 100 nodes compared to SCH-p. Those gains are due to the fact that there are few troublesome
destinations in this case, as R1 and R2 are highly correlated. Recall that SCH-p considers destinations
independently, and thus is not able to benefit from non-troublesome destinations. SCH-p is better than
RTH-p for large networks. Indeed, SCH-p shows a gain of 42% for a network of 150 nodes and of 61% for a
network of 300 nodes, compared to RTH-p.
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Figure 11: In random networks and for Scenario 3, SCH-p is able to perform the change in about 998 steps on average for large
networks. RTH and RTH-p require respectively 89361 steps and 2585 steps to perform the change of all the nodes.

4.4.2. Number of steps for real networks

Figure 12 shows the average number of steps in term of the number of nodes for Scenario 1 and Rocketfuel
topologies. The y-axis is depicted using a logarithmic scale. We notice the same behavior as for random
networks. For small networks, SCH-p and RTH-p achieve a similar performance. For large networks, SCH-p
shows better performance than RTH-p: SCH-p shows a gain that reaches 99% compared to RTH and 68%
compared to RTH-p, for a network of 315 nodes.

Figure 13 shows the average number of steps in term of the number of nodes in the network, for Scenario 2,
using a logarithmic scale. The gain of SCH-p reaches 96% for the smallest network compared to RTH, and
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Figure 12: In real networks and for Scenario 1, SCH-p is able to perform the change in about 664 steps on average for the
largest network (315 nodes). RTH and RTH-p require respectively 94890 steps and 2121 steps to perform the change of all the
nodes.

48% compared to RTH-p. The largest gain reached for the largest network is 99% compared to RTH, and
69% compared to RTH-p.
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Figure 13: In real networks and for Scenario 2, SCH-p is able to perform the change in about 869 steps on average for the
largest network. RTH and RTH-p require respectively 99102 steps and 2851 steps to perform the change of all the nodes.

Figure 14 shows the average number of steps in term of the number of nodes in the network, for Scenario 3,
using a logarithmic scale. RTH-p is better than SCH-p due to the very small number of troublesome
destinations in this specific scenario and for these specific networks. The gain of RTH-p reaches 94% for a
network of 104 nodes.

The computation time of SCH-p is larger than the computation time of RTH and RTH-p. With our
mono-thread implementation on a i7-2600 CPU at 3.40 GHz (with eight cores), SCH-p is able to compute
all the steps for the largest real topology in 91 seconds on average (with a standard deviation of 3 seconds,
and for Scenario 2 which yields the largest number of loops). RTH and RTH-p compute all the steps in 1.5
seconds and 2.2 seconds respectively. However, we believe that the computation time of SCH-p is reasonable
for large networks of 300 nodes, and that the gain of the change duration outweights the computation time.

5. Conclusion

When a routing protocol has to be changed, transient routing loops might occur in the network. In this
paper, we quantified the percentage of loop occurrence on several scenarios. We show that loops can be
completely avoided by having nodes change their routing protocol according to a sequence which depends
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Figure 14: In real networks and for Scenario 3, RTH-p is generally better than SCH-p due to the very low number of troublesome
destinations. SCH-p performs the change in about 666 steps for the largest network. RTH and RTH-p require respectively
59629 steps and 698 steps to perform the change of all the nodes.

on the topology and on the routing protocols. This sequence is a list of steps, where each step is a set of
nodes that can change their routing protocol in arbitrary order. We proposed RTH-p, an enhancement of the
RTH heuristic [8], that is able to change several nodes in parallel. Then, we proposed SCH-p, a centralized
heuristic which builds sequences with a small number of steps. Reducing the number of steps is crucial, as
the duration of a change is proportional to the number of steps. Simulation results for random and real
networks show that SCH-p outperforms both RTH and RTH-p in most scenarios. The gain of SCH-p in
term of number of steps varies between 80% and 99% when compared to RTH, and between 61% and 77%
for most large networks when compared to RTH-p.
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