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Abstract

Given two connected subsets Y � X of the set of the surfels of a connected digital

surface, we propose three equivalent ways to express that Y is homotopic to X . The �rst

characterization is based on sequential deletion of simple surfels. This characterization

enables us to de�ne thinning algorithms within a digital Jordan surface. The second

characterization is based on the Euler characteristics of sets of surfels. This character-

ization enables us, given two connected sets Y � X of surfels, to decide whether Y is

n�homotopic to X . The third characterization is based on the (digital) fundamental

group.

Introduction

Digital surfaces of three dimensional objects have proved to be a fruitful model for visualization

and analysis of the objects they represent ([1]), especially in the biomedical �eld. E�cient

algorithms for extracting surfaces from a volume, and computing shape characteristics exist

([7]). Sometimes, the surface itself needs to be segmented since some particular points are

de�ned on it. In 2D and 3D digital images, the skeleton of an object de�ned in the image is often

used to analyze this object. Skeletons may be obtained by iterative deletion of simple points

([6]). From the very de�nition of a simple point, a skeleton thus constructed is topologically

equivalent to the initial object.

In this paper, we �rst de�ne a framework to study the �topology� of subsets of a digital

surface. To do this we use the notion, already well known in digital topology, of a digital surface

as de�ned for instance in [3], [11], [1] and [7], which is a surfel-based notion of a discrete surface.

We introduce two adjacency relations, called e�adjacency and v�adjacency, analogous to the

famous 2D notions of 4�adjacency and 8�adjacency (see [6] for example). It is of prime

importance that all the notions considered in this paper be completely discrete, and as much

as possible formally similar to the extensively used 2D notions considered for instance in [6].

However, as far as the notion of topology preservation is concerned, the non-planar framework

of this paper leads us to several important changes with respect to the 2D framework.

We propose three equivalent characterizations for topology preservation in a digital surface.

In other words, given � a connected digital surface and Y � X two subsets of the set of the

surfels of �, we propose three equivalent ways to express that Y is homotopic to X.
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- The �rst characterization is based on sequential deletion of simple surfels (De�nition 3 and

De�nition 4). This characterization enables us to de�ne topology-preserving thinning algo-

rithms within a digital Jordan surface.

- The second characterization is based on the Euler characteristics of sets of surfels (De�nition 6

and Theorem 1). This characterization enables us, given two sets Y � X of surfels, to decide

by an e�cient algorithm whether Y is n�homotopic to X or not.

- The third characterization is based on the (digital) fundamental group (Theorem 2). This

invariant was initially introduced by T. Y. Kong, �rst in the 3D euclidean case ([4]), and

then in a more general framework ([5]). The characterization of homotopy of sets through

the fundamental group provides a solid foundation for our notion, since it shows that it is

essentially similar to the corresponding notion of continuous topology.

An application is presented in Section 5: we have used our �rst characterization of topology

preservation to skeletonize geometrical areas of the surface of a human brain in order to extract

the loci cortical sulci.

1 Basic De�nitions and Notations

1.1 Connectedness in Digital Spaces

Let � be a �xed set and let X � �. We denote by card(X) the number of elements of X

and we denote X = � nX. In the following, we shall de�ne an adjacency relation � on X to

be an antire�exive symmetric binary relation on X. An �-path with a length p is a sequence

(x

0

; : : : ; x

p

) in which x

i�1

is �-adjacent or equal to x

i

for i = 1; : : : ; p. Such an �-path is called

closed if and only if x

0

= x

n

and is called simple if the points x

i

for i 2 f0 : : : pg are pairwise

distinct. Two elements x and y are said to be �-connected in X if there exists an �-path

(x

0

; : : : ; x

p

) in X with x

0

= x and x

p

= y. The ��connectedness relation is an equivalence

relation and we call ��connected components its equivalence classes. We say that two sets

are ��adjacent if there exists two of their respective members which are ��adjacent. A set is

��adjacent to an element x if at least one element of the set is ��adjacent to x. We denote by

C

�

(X) the set of ��connected components of X. We also de�ne the ��neighborhood N

�

(x)

of x by N

�

(x) = fy 2 � = y is �� adjacent to xg.

1.2 Structure of a Digital Jordan Surface

Here we describe the model of a surface considered in this paper, and some local structures

which can be de�ned on such a surface. Afterwards, we no longer consider the volume from

which the surface is built, and we give some intrinsic de�nitions and results on subsets of a

surface.

First we will recall some de�nitions, which can be found for example in [3] or [11], restricted

to the three dimensional case. In the following discussion, voxels may be seen as unit cubes

rather than points of Z

3

. We consider two kinds of adjacency between voxels. Two voxels are

said to be 18�adjacent if they share a face or an edge. They are said to be 6�adjacent if they

share a face. A surfel is a couple (c; d) of 6�adjacent voxels. It can be seen as a unit square

shared by c and d. A surface is a set of surfels.
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Let O �Z

3

be a 6�connected or 18�connected set. We consider � the set of all surfels of

the form (x; y) with x 2 O and y 2 O: we call � the surface of O. It is possible to de�ne an

(already classical) adjacency relation, here called e�adjacency between surfels of �.

The de�nition of the e�adjacency relation depends on whether we consider O as 18�con-

nected or 6�connected. Indeed, let us consider two voxels v and v

0

of O which are 18�adjacent

but not 6�adjacent and without a common 6�neighbor in O (see Figure 1.a). There exists on

the voxel v a surfel x which shares a �xed edge � with three other surfels, two surfels of v

0

and

one surfel of v. If we consider the object O as 6�connected, the surfel x is e�adjacent to the

unique surfel of O which shares the edge � with x and lies on the same surfel v of O as x. By

contrast, if we consider the object O as 18�connected, the surfel x is e�adjacent to the unique

surfel of the voxel v

0

which lies on the same voxel of O as x. Thus, for each considered type of

connectivity 6, 18, an e�adjacency relation is well de�ned, and any surfel of � has exactly 4

neighbors for this relation.

The kind of surface thus de�ned satis�es the Jordan property ([3]): an e�connected surface

separates the space into two parts, one of which is 6�connected, and the other one which is

18�connected. This kind of surface is widely used in image analysis and manipulation.

Now let s and s

0

be two e�adjacent surfels of �. The surfels s and s

0

share an edge. The

pair fs; s

0

g is called an edgel. It is important to distinguish an edgel from the underlying edge of

cube. Indeed, some geometrical edges lead to two edgels, as the edge between the two vertices

marked with �lled circles on the object O made of two voxels represented on �gure 1.a.

We de�ne a loop in � as an e�connected component of the set of the surfels of � which

share a vertex w. For example, in Figure 1.b, we see an object with three voxels. The vertex

w marked with a �lled circle de�nes two loops, one which can be seen on the �gure and

is composed of 3 surfels, and the other loop which is hidden and is composed of 6 voxels.

Considering loops rather than vertices is a way to duplicate such vertices formally. As for

edgels and edges, it is important to distinguish between loops and vertices.

We can de�ne a unique cycle in any loop l: from a pair (s

1

; s

2

) of e�adjacent surfels in

l choose s

3

the unique surfel of l which is e�adjacent to s

2

and which is distinct from s

1

.

By repeating this process we obtain a unique simple closed e�path of surfels which we call a

parametrization of the loop l. The length of a loop ranges between 3 and 7. All the surfels of

a loop share a common vertex. For this reason, we say that two surfels are v�adjacent (vertex

adjacent) if they belong to a common loop.

Note that in the case of a planar surface orthogonal to one of the coordinate lines (i.e.

in the case when the object O is a half space limited by a plane perpendicular to one of the

coordinates axis), then the set of the surfels of the surface clearly identi�es with the set of the

pixels of Z

2

. Through this identi�cation, v�adjacency corresponds to the classical 2D digital

image notion of 8�adjacency and e�adjacency to the classical 4�adjacency.

De�nition 1 (d�cell) We associate a dimension to surfels, edgels, and loops, which is equal

respectively to 2, 1, and 0. We can identify a surfel s with fsg. We call a surfel a 2-cell, an

edgel a 1-cell, and a loop a 0-cell.

If a surfel is a member of a loop or of an edgel, we also say that it is incident to this loop or

this edgel. Moreover, whenever an edgel is a subset of a loop, we also say that it is incident to
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(a) (b)

Figure 1: Counter example and example

this loop. We see that each surfel is incident to 4 loops and 4 edgels, and each edgel is incident

to 2 loops.

Remark 1 We can consider a structure of a cellular complex for the surface. This even leads

to a structure of a combinatorial surface, as de�ned in [2]. However, it is important that for this

structure, a 0�cell indeed corresponds to a loop, and not to a vertex, and a 1�cell corresponds

to an edgel, and not to an edge. We shall not use this notion of a cellular complex in the

sequel, since in this framework it would make the formalism even heavier than it is by adding

here a new set of de�nitions.

In the sequel, we make the assumption that each loop of the surface of our object O is

a topological disk (i.e. has Euler v�characteristics equal to 1, see De�nition 6). This is

equivalent to assuming that any two v�adjacent surfels which are not e�adjacent cannot both

belong simultaneously to two given distinct loops. For instance, in Figure 1, the object (a)

does not satisfy this hypothesis: The two loops corresponding to the vertices marked with �lled

circles contain two non e�adjacent surfels in common. By contrast, the object (b) satis�es

our hypothesis. We can express this assumption on the object O the surface of which we

consider, saying that we assume that if O is considered as 18�connected and x and y are

two 18�adjacent voxels of O which are not 6�adjacent, one of the two following properties is

satis�ed:

1. The voxels x and y have an 18�neighbor (or 6�neighbor) in O in common;

2. The voxels x and y have two 26�neighbors in O in common which are themselves

26�adjacent.

We must make the same assumption on O if O is considered as 6�connected.

In the sequel of this paper, we consider � a �xed e�connected component of a digital

surface, and n 2 fe; vg. We also denote by n the element of fe; vg such that fn; ng = fe; vg.

We denote respectively by L

�

and E

�

the set of loops and the set of edgels of the surface �.

We denote L

�

(x) = fl 2 L

�

= x 2 lg and E

�

(x) = f� 2 E

�

= x 2 �g. In the sequel, we

consider X a nonempty subset of � analyzed with the n�connectivity. We analyze X with the

n�connectivity.
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2 Simple surfels, Euler characteristics

Let x 2 �. As we have already said, we assume that any loop in � is a topological disk.

However, the neighborhood N

v

(x) [ fxg of the surfel x is not always a topological disk (see

the v�neighborhood of the grey surfel of the surface of Figure 1.b for instance). If this is the

case, we have to de�ne a topology on N

v

(x) [ fxg under which it is a topological disk. Let us

consider two surfels y and y

0

in N

v

(x)[fxg. We say that y and y

0

are e

x

�adjacent [respectively

v

x

�adjacent ] if they are e�adjacent [respectively v�adjacent] and are contained in a common

loop which contains x. We denote by G

e

(x;X) [respectivelyG

v

(x;X)] the graph whose vertices

are the surfels of N

v

(x)\X and whose edges are pairs of e

x

�adjacent [respectively v

x

�adjacent]

surfels of N

v

(x) \ X. We denote by C

x

n

(G

n

(x;X)) the set of all connected components of

G

n

(x;X) which are n�adjacent to x. Note that C

x

n

(G

n

(x;X)) is a set of subsets of the set of

all surfels of � and not a set of surfels.

De�nition 2 We call x an n�isolated surfel if N

n

(x) \ X = ; and an n�interior surfel if

N

n

(x) \X = ;.

De�nition 3 (Simple surfel) A surfel x is called n�simple in X if and only if the number

card(C

x

n

(G

n

(x;X))) of connected components of G

n

(x;X) which are n�adjacent to x is equal

to 1, and if x is not interior to X.

Remark 2 Note that, as in the 2D case, if x 2 X is non n�isolated, then x is n�simple if

and only if the number card(C

x

n

(G

n

(x;X))) of connected components of G

n

(x;X) which are

n�adjacent to x is equal to 1. Moreover, if x is neither n�interior nor n�isolated we have:

card(C

x

n

(G

n

(x;X))) = card(C

x

n

(G

n

(x;X))).

The purpose of this paper is to study the following notion:

De�nition 4 (homotopy) Let Y � X � �. The set Y is said to be (lower) n�homotopic to

X if and only if Y can be obtained from X by sequential deletion of n�simple surfels.

This notion of homotopy is formally analogous to a 2D discrete notion which has been

thoroughly studied (see [10]). It intuitively corresponds to a discrete notion of "deformation

retract".

Now we propose a de�nition in this framework of a topological invariant for subsets of a

digital surface: the Euler n�characteristics. We shall prove later that it is coherent with the

de�nition of an n�simple surfel. It is also in accordance with the continuous analog of a digital

surface, and with the dimension associated with cells.

De�nition 5 (Elementary Euler n�characteristics of a cell) For d 2 f0; 1; 2g and for c

a d�cell, we de�ne the elementary Euler characteristic of c in X as

�

d

n

(X; c) = (�1)

d

:card(C

n

(c \X))

Note that the only case in which �

d

n

(X; c) can be di�erent from 0, 1 and �1 is when c is a loop

and n = e. We denote �

2

n

(X) =

X

s2�

�

2

n

(X; s), �

1

n

(X) =

X

�2E

�

�

1

n

(X; �) and �

0

n

(X) =

X

l2L

�

�

0

n

(X; l).
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De�nition 6 we de�ne the Euler n�characteristics of X, and we denote by �

n

(X) the follow-

ing quantity:

�

n

(X) = �

0

n

(X) + �

1

n

(X) + �

2

n

(X) = card(X) + �

1

n

(X) + �

2

n

(X) (1)

Remark 3 Note that 0 cells have a weighted contribution to the Euler characteristics (i.e. their

elementary Euler n�characteristics is not always 1). This is the most important di�erence with

the classical de�nition of the Euler characteristics.

Also note that the Euler e�characteristics is di�erent from the Euler v�characteristics.

This comes from the fact that, as usual in digital topology, the "topology" of the objects is

not the same according to which adjacency relation we use to analyze them. For instance,

if we consider a set X composed of two v�adjacent surfels which are not e�adjacent, then

this object has one v�connected component which we want to consider as a disk. The Euler

v�characteristics of this set X is 1. However, the same set X has two e�connected components

which are both composed of one surfel, hence the set X, when analyzed with the e�adjacency

relation, is made of two �disjoint� disks. That is why the Euler e�characteristics of this set X

is 2.

De�nition 7 (Contribution of a surfel to the Euler n�characteristics) For X � �,

we de�ne the contribution of a surfel x 2 X to �

n

(X) as �

n

(X;x) = �

n

(X)� �

n

(X n fxg).

In the same way as �

n

(X), the number �

n

(X;x) can be broken up into three terms which

denote the contribution of x to the elementary Euler characteristic of the cells of di�erent

dimension which contain x:

�

n

(X;x) = �

2

n

(X;x) + �

1

n

(X;x) + �

0

n

(X;x)

= 1 + �

1

n

(X;x) + �

0

n

(X;x)

Where the second and the third terms can be expressed in the following way:

�

1

n

(X;x) =

X

�2E

�

(x)

�

1

n

(X; �; x) �

0

n

(X;x) =

X

l2L

�

(x)

�

0

n

(X; l; x)

with �

1

n

(X; �; x) = �

1

(X; �)� �

1

(X n fxg; �) and �

0

n

(X; l; x) = �

0

n

(X; l)� �

0

n

(X n fxg; l). The

number �

1

n

(X; �; x) [respectively �

0

n

(X; l; x)] is called the contribution of x to the elementary

Euler n�characteristics of � in X [respectively of l in X].

3 Another Characterization for Homotopy of Sets

The purpose of this section is to prove the following theorem which, together with Theorem 2,

justi�es our de�nition of simple points:

Theorem 1 If Y � X � �, then the two following properties are equivalent:

1. Y is n�homotopic to X.
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2. �

n

(X) = �

n

(Y ) and each n�connected component of Y contains a surfel of X.

Before proving this theorem, we should provide several concepts and lemmas. Let X � �

and x be a surfel in X. The surfel x is incident to 4 loops which can be cyclically ordered.

Due to our hypothesis that any loop is a topological disk, any surfel of N

v

(x) belongs either

to a single loop of L

�

(x) or to exactly two loops of L

�

(x), and the second case occurs if and

only if the surfel is e�adjacent to x. Finally, as we have already seen, each loop of L

�

(x) is an

oriented cycle for the e�adjacency relation. From these properties, we see that any surfel in

N

v

(x) is e

x

�adjacent to exactly two other surfels of N

v

(x). In other words, the graph G

e

(x;�)

is a simple closed curve. Consequently, similarly to a loop, N

v

(x) also is an oriented cycle:

there exists a closed e

x

�path in N

v

(x) which contains each surfel of N

v

(x) exactly once. Such

a closed e

x

�path is called a parametrization of N

v

(x). Therefore, two non e

x

�adjacent surfels

of N

v

(x) split N

v

(x) into two intervals.

De�nition 8 (Support of a connected subgraph of G

n

(x;X)) We can also de�ne the

support of a connected induced subgraph C of G

n

(x;X), denoted by

e

C, as the union of the

intervals of N

v

(x) which have two n�adjacent surfels of C as their extremities and are con-

tained in a loop.

Remark 4 The support

e

C of C is an interval of N

v

(x) or is equal to N

v

(x). The support of

C can be di�erent from C only in the case n = v.

Now, let C be a connected component of G

n

(x;X). We de�ne a surfel s as being interior to

C if fs; s

1

; s

2

g �

e

C, where s

1

and s

2

are the previous and next surfels of s in a parameterization

of N

v

(x). With the same notations, s is in the immediate interior of C if s

1

=2

e

C or if s

2

=2

e

C.

A surfel s

0

2 N

v

(x) n

e

C which is e

x

�adjacent to

e

C is said to be in the immediate exterior of

C. We de�ne the extremities of C as the pairs of e

x

�adjacent surfels, one surfel of the pair

lying in the immediate interior of C and the other surfel of the pair belonging to the immediate

exterior of C. Note that two given successive surfels of N

v

(x) belong simultaneously to only one

loop of L

�

(x). As a consequence, we can say that an extremity fs; s

0

g of C is in a given loop

without ambiguity. If x is neither n�isolated nor n�interior, each element of C

x

n

(G

n

(x;X)) or

C

x

n

(G

n

(x;X)) is a proper subset of N

v

(x), and has two extremities. Moreover, the cardinalities

of these two last sets are equal.

In the following de�nition, we consider a loop l and its position with respect to connected

components of G

n

(x;X) which are n�adjacent to x. We shall further link this classi�ca-

tion with the contribution of x to the elementary Euler characteristic of l. Furthermore,

we suppose that x is neither n�interior nor n�isolated, so that each connected component

C 2 C

x

n

(G

n

(x;X)) has two extremities.

De�nition 9 (Classi�cation of loops) Let us consider x 2 X and l 2 L

�

(x).

� If for any C 2 C

x

n

(G

n

(x;X)) we have C \ l = ; we will say that the loop l is n�interior

to X in N

v

(x).

� If there exists C 2 C

x

n

(G

n

(x;X)) such that C � l and l contains the two extremities of

C, we say that l contains an n�connected component C 2 C

x

n

(G

n

(x;X)).
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� If there exists C 2 C

x

n

(G

n

(x;X)) such that l contains exactly one extremity of C we say

that l contains an extremity of G

n

(x;X).

� If l intersects any C 2 C

x

n

(G

n

(x;X)), but contains no extremity of C, then we say that l

is tangent to X in N

v

(x).

These four cases are mutually exclusive and represent all possible con�gurations of loops.

We are now going to analyze more precisely the contribution of x to the Euler characteristic

of loops. We shall classify the con�gurations of a loop which is incident to x 2 X with respect

to the two surfels of l which are e�adjacent to x. We shall also link each con�guration with

the classi�cation of loops given above.

Lemma 1 Let l be a loop of L

�

(x). We consider x

1

and x

2

the two surfels of l which are

e�adjacent to x. One of the three following cases occurs:

1. If x

1

2 X and x

2

2 X.

(a) If x

1

and x

2

are e�connected in l \ (X n fxg) then we have card(C

n

(l \ X)) =

card(C

n

(l \ (X n fxg))) = 1, thus �

0

n

(X; l; x) = 0. The loop l is n�interior to X.

(b) If x

1

and x

2

are not e�connected in l\(X nfxg) then l\X has one less e�connected

component than l \ (X n fxg). Notice that x

1

and x

2

are always v�connected in

l n fxg. Hence,

i. if n = e: �

0

e

(X; l; x) = �1 and the loop contains an n�connected component in

C

x

n

(G

n

(x;X)).

ii. if n = v: �

0

v

(X; l; x) = 0 and the loop is n�interior to X.

2. If x

1

=2 X and x

2

=2 X.

(a) If l \ (X n fxg) = ; then �

0

n

(X; l; x) = 1 and the loop tangent to X .

(b) If l \ (X n fxg) 6= ; then we have:

i. if n = e: �

0

e

(X; l; x) = 1 and the loop is tangent to X.

ii. if n = v: �

0

v

(X; l; x) = 0 and the loop contains an extremity of G

n

(x;X).

3. If x

1

=2 X and x

2

2 X or x

1

2 X and x

2

=2 X. Then �

0

n

(X; l; x) = 0. The loop contains

an extremity of G

n

(x;X).

Lemma 2 The value of the contribution �

n

(X;x) of x to the Euler n�characteristics of X

is:

� equal to 1 if x is an n�isolated or an n�interior surfel of X;

� equal to 0 if x is a simple surfel of X;

� strictly negative otherwise.

8



Proof: In any case, from X to X n fxg, one surfel is removed: �

2

n

(X;x) = 1. We distinguish

three cases:

First case: x is an n�isolated surfel in X. For any � of the 4 edgels incident to x we have

�

1

n

(X; �; x) = �1. Hence �

1

n

(X;x) = �4. Concerning any l of the 4 loops incident to x, if

n = e, we are in Case 2a or Case 2(b)i of Lemma 1, and if n = v we can only be in Case 2a.

In both subcases we have �

0

n

(X; l; x) = 1, so that �

0

n

(X;x) = 4. Finally, �

n

(X;x) = 1.

Second case: x is an n�interior surfel. For any edgel � incident to x we have�

1

n

(X; �; x) = 0,

so that �

1

n

(X;x) = 0. For any l 2 L

�

(x) we are in one of the subcases of Case 1 of Lemma 1.

If n = v we can be in Case 1a or in Case 1(b)ii, and if n = e we are in Case 1a. In both

subcases we have : �

0

n

(X; l; x) = 0, so that �

0

n

(X;x) = 0. Finally, �

n

(X;x) = 1.

Third case: x is neither n�isolated nor n�interior. Let k = card(C

x

n

(G

n

(x;X))). Let us

prove that �

n

(X;x) = 1� k. We consider C 2 C

x

n

(G

n

(x;X)). We also consider the �size� of C

as the number of loops it intersects, and we distinguish two subcases:

� If C intersects only one single loop l. This case may happen only whenever n = v. Then

l contains C and we are in Case 1(b)i of Lemma 1, so that �

0

n

(X; l; x) = �1. Moreover,

no edgel is incident to both x and a surfel of C.

� If C intersects more than one loop. Let j be this number of loops intersecting C. These

loops are consecutive and their union contains j � 1 edgels which are incident to both

x and C. For any � of these edgels, we have �

1

n

(X; �; x) = �1. We see that among

the j considered loops, exactly two loops contain exactly one extremity of C, and for l

any of these two loops we must be in Case 2(b)ii or in Case 3, so that �

0

n

(X; l; x) = 0.

Furthermore, for any l of the j � 2 other loops, l is tangent to X in N

v

(x), hence we

must be in Case 2a or in Case 2(b)i, so that �

0

n

(X; l; x) = 1. Therefore, the sum of

the contributions of x to the elementary Euler characteristic of the cells with dimension

0 and 1 incident to both x and C is equal to �1, since the contribution of x to the

elementary Euler n�characteristics of any of the j � 2 loops which are tangent to X in

N

v

(x) is equal to 1, the contribution of x to the elementary Euler n�characteristics of

any of the j � 1 edgels is equal to �1, and the contribution of x to the elementary Euler

n�characteristics of the 2 loops containing an extremity of C is equal to 0.

In the two previous subcases, the sum of the contributions of x to the elementary Euler

n�characteristics of cells of dimension 0 and 1 incident to both x and C is equal to �1. More-

over, if a loop intersects two elements C, C

0

of C

x

n

(G

n

(x;X)), this loop contains an extremity

of

e

C and of

e

C

0

so that, as we noticed above, the contribution of x to the elementary Euler

n�characteristics of this loop is equal to 0. Now let us also consider the loops and edgels

which do not intersect any element of C

x

n

(G

n

(x;X)) (i.e. loops which are n�interior to X in

N

v

(x)): the contribution of x to their Euler n�characteristics is 0 (see Lemma 1 the cases 1a

and 1(b)ii for the loops). Consequently, the sum of the contributions of x to the elementary

Euler n�characteristics of all 0�cells and 1�cells incident to x is equal to �k. Now, taking into

account the 2�cell fxg, the contribution of x to the Euler characteristic is 1�k. Consequently,

it is 0 if the surfel is simple (k = 1), and strictly negative if k > 1. 2

Remark 5 Lemma 2 establishes another local characterization of n�simple surfels.

9



Proof of Theorem 1: 1) 2: follows directly from Lemma 2.

2 ) 1: Our proof is constructive: we give a method which, without using the de�nition of

simple surfels, �nds them in the border of X. If Y 6= X, let B be an n�connected component

of Y such that B contains a surfel s 2 X. From Property 2, let y be a surfel of B \X and let

� be an n�path in B from s to y. The last surfel of � which is in X is a point of X \ Y and

is n�adjacent to X. Let us consider the set F of all surfels of X n Y which are n�adjacent to

X. We have just shown that F was non empty. The n�adjacency graph naturally induces a

distance on X, by means of the shortest n�path from a surfel to another. Let us choose x one

of the surfels of F whose distance to Y in the n�adjacency graph of X is maximal.

We denote X

1

= X n fxg. Because of the maximality of the distance from x to Y in

the n�adjacency graph of X, the set X

1

is n�connected. The surfel x is obviously neither

n�isolated (it is n�connected to Y ) nor n�interior (it is n�adjacent to X). Moreover, the

condition on the n�connected components of X and Y still hold for X

1

and Y . At last, using

Lemma 2 we obtain �

n

(X) � �

n

(X

1

).

We can iteratively apply this selection-deletion process producing X

i+1

from X

i

until X

i

=

Y . Then, we see from Lemma 2 that we have only deleted n�simple surfels at each step, since

otherwise we would have �

n

(X) < �

n

(Y ), which contradicts the hypothesis: �

n

(X) = �

n

(Y ).

2

Remark 6 Under the hypothesis and notations of Theorem 1, we assume that Property 1 is

satis�ed. Then the order in which we remove simple points from X is not important: if x is

an n�simple point in X which does not belong to Y , then Y is n�homotopic to Xnfxg.

4 Fundamental Group and Topology Preservation

4.1 The Digital Fundamental Group

First, if � and � are two n�paths such that the extremity of � is equal to the origin of �, we

denote by � � � the concatenation of the two n�paths � and �.

Now we need to introduce the n�homotopy relation between n�paths. Let us considerX �

�. First we introduce the notion of an elementary deformation. Two closed n�paths � and

�

0

in X having the same extremities are said to be the same up to an elementary deformation

(with �xed extremities) in X if they are of the form � = �

1

� 
 � �

2

and �

0

= �

1

� 


0

� �

2

, the

n�paths 
 and 


0

having the same extremities and being both contained in a common loop.

Now, the two n�paths � and �

0

are said to be n�homotopic (with �xed extremities) in X if

there exists a �nite sequence of n�paths � = �

0

; : : : ; �

m

= �

0

such that for i = 1; : : : ;m the

n�paths �

i�1

and �

i

are the same up to an elementary deformation (with �xed extremities).

Let B 2 X be a �xed surfel called the base surfel. We denote by A

n

B

(X) the set of all

closed n�paths � = (x

0

; : : : ; x

p

) which are contained in X and such that x

0

= x

p

= B. The

n�homotopy relation is an equivalence relation on A

n

B

(X), and we denote by �

n

1

(X) the set

of equivalence classes of this equivalence relation. The concatenation of closed n�paths is

compatible with the n�homotopy relation, hence it de�nes an operation on �

n

1

(X), which

associates the class of ��� to the class of � and the class of �. This operation provides �

n

1

(X)
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with a group structure. We call this group the n�fundamental group of X. The n�fundamental

group de�ned using a point B

0

as base point is isomorphic to the n�fundamental group de�ned

using a point B as base point if X is n�connected.

Now we consider Y � X � � and B 2 Y a base point. A closed n�path in Y is a particular

case of a closed n�path in X. Furthermore, if two closed n�paths of Y are n�homotopic

(with �xed extremities) in Y , they are n�homotopic (with �xed extremities) in X. These

two properties enable us to de�ne a canonical morphism i

�

: �

n

1

(Y ) �! �

n

1

(X), which we call

the morphism induced by the inclusion map i : Y �! X. To the class of a closed n�path

� 2 A

n

B

(Y ) in �

n

1

(Y ) the morphism i

�

associates the class of the same n�path in �

n

1

(X).

4.2 A third Characterization of Homotopy of Sets

Lemma 3 Let Y � �, let B 2 X and x 2 X an n�simple point distinct from B. Then any

n�path c of A

n

B

(X) is n�homotopic (with �xed extremities) to an n�path contained in Xnfxg.

Proof: First, if c = (x

0

; : : : ; x

p

) is an n�path in X such that x

0

6= x and x

p

6= x, we de�ne

an n�path P (c) as follows: For any maximal sequence � = (x

k

; : : : ; x

l

) with 0 � k � l � p

of points of c such that for i = k; : : : ; l we have x

i

6= x, we de�ne c(�) = �. For any maximal

sequence � = (x

k

; : : : ; x

l

) with 1 � k � l < p of points of c such that for i = k; : : : ; l we have

x

i

= x, we de�ne c(�) as equal to the shortest n�path in N

v

(x) \X from x

l�1

to x

k+1

. Now,

P (c) is the concatenation of all c(�) for all maximal sequences � = (x

k

; : : : ; x

l

) of points of c

such that either for i = k; : : : ; l we have x

i

6= x or for i = k; : : : ; l we have x

i

= x.

It is easily seen that c is n�homotopic (with �xed extremities) to P (c). 2

Lemma 4 Let X � � and x be an n�simple surfel in X. We consider two n�paths � and �

0

having the same extremities, � and �

0

both being contained in N

v

(x) \ X. Then � and �

0

are

n�homotopic with �xed extremities in Xnfxg.

Proof: We prove that � = (x

0

; : : : ; x

p

) (similarly �

0

) is n�homotopic with �xed extremities

to the shortest n�path in N

v

(x) \X between its extremities (note that this shortest n�path

is unique). This is done by iteratively deleting in �, through an elementary deformation, the

point x

i

each time x

i+1

is n�adjacent or equal to x

i�1

until we obtain the desired shortest

n�path. 2

Lemma 5 Let X � �, let B 2 X and x 2 X an n�simple surfel which is distinct from B.

Then if two closed n�paths � and �

0

of A

n

B

(Xnfxg) are n�homotopic (with �xed extremities)

in X, they are n�homotopic in Xnfxg.

Proof: Let P (�) and P (�

0

) be the n�paths as de�ned in the proof of Lemma 3. Now,

it is su�cient to prove that if � and �

0

are the same up to an elementary deformation, the

two n�paths P (�) and P (�

0

) are n�homotopic. Hence we assume � and �

0

are of the form

� = �

1

� 
 � �

2

and �

0

= �

1

� 


0

� �

2

, the n�paths 
 and 


0

having the same extremities and

both being contained in a common loop l. Without loss of generality, we assume that x 2 l.

Note that the construction of P (c) for c = �

1

makes sense if we agree to only considering

the portion of �

1

from its origin to the last point of �

1

which is di�erent from x. Of course, a

11



similar construction makes sense for �

2

. Now, P (�) is of the form P (�) = P (�

1

) � � � P (�

2

),

with � contained in N

v

(x)\X. Similarly, P (�

0

) is of the form P (�

0

) = P (�

1

) � �

0

�P (�

2

), with

�

0

contained in N

v

(x) \X. From Lemma 4, the two n�paths � and �

0

are n�homotopic with

�xed extremities. Hence P (�) and P (�

0

) are also n�homotopic (with �xed extremities). 2

Lemma 6 Let X � �, and let x 2 X be an n�simple point of X. The morphism i

�

:

�

n

1

(Xnfxg) �! �

n

1

(X) induced by the inclusion map is a group isomorphism.

Proof: Lemma 3 implies that i

�

is onto, and Lemma 5 implies that i

�

is one to one. 2

Lemma 7 Let X � � be n�connected. Let x 2 X, and let C be a connected component of

G

n

(x;X) which is n�adjacent to x. Given � = (x

0

; : : : ; x

p

) a closed n�path in X, we consider

�(�; x;C) the number of times there are in � successive points of the form (x

i

2 C; x

i+1

= x)

minus the number of times there are in � successive points of the form (x

i

= x; x

i+1

2 C). Then

the number �(�) is invariant when � ranges within a given n�homotopy (with �xed extremities)

class of closed n�paths of X.

Proof: We consider two closed n�paths � and �

0

inX which are the same up to an elementary

deformation, and we prove that �(�; x;C) = �(�

0

; x; C). Let us consider l the elementary cycle

in which the deformation is e�ective. It is su�cient to treat the case when x 2 l. Let

� = 


1

� " � 


2

and �

0

= 


1

� "

0

� 


2

with " and "

0

both included in l and having the same

extremities a and b. We distinguish three case:

First case : fa; bg � C or fa; bg\C = ;. In this case, the number of times " enters into C

(necessarily through x) is equal to the number of times it gets out of C (necessarily through

x). Since we can make the same observation for "

0

, we have �(�; x;C) = �(�

0

; x; C).

Second case : a 2 C and b 62 C. In this case, the number of times " enters into C (necessarily

through x) is equal to the number of times it gets out of C (necessarily through x) minus one.

Since we can make the same observation for "

0

, we have �(�; x;C) = �(�

0

; x; C).

Third case : a 62 C and b 2 C. In this case, the number of times " (respectively "

0

) enters

into C (necessarily through x) is equal to the number of times it gets out of C (necessarily

through x) plus one. 2

Lemma 8 Let Y � Z � X � � be n�connected sets such that ZnY is equal to the intersection

of X with an n-connected component of Y , and the morphism i

�

: �

n

1

(Y ) �! �

n

1

(X) induced

by the inclusion map i : Y �! X is an isomorphism. We assume that there exists a surfel

x 2 ZnY which is n�adjacent to a surfel of X.

Then there exists a point of Z which is n�simple in X and which does not belong to Y .

Proof: We consider the point x of ZnY n�adjacent to X and whose distance to Y in the

n�adjacency graph of Z is maximal among all surfels of Z which are n�adjacent to X. (indeed,

for y 2 Z, since Z is n�connected, the distance from y to Y in the n�adjacency graph of Z is

well de�ned). Let us prove that x is n�simple in X.

We assume by contraposition that x is not n�simple in X. Since x is neither isolated nor

interior to X, we consider two distinct connected components C

1

and C

2

in G

n

(x;X) which are

n�adjacent to x. The connected components C

1

and C

2

are both n�adjacent to X \N

v

(x).
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The set C

1

contains either a surfel of Y , or a surfel of Z which is n�adjacent ofX, Therefore,

by maximality of the distance from x to Y in the n�adjacency graph of Z, there exists in any

case an n�path in Z which does not contain the point x from a point of C

1

(and similarly for

C

2

) to a point of Y . Moreover, we may assume that this n�path intersects C

1

only once at its

extremity.

Using the existence of these two n�paths and the n�connectedness of Y , we can easily

construct a closed n�path � such that the number �(�; x;C

1

) introduced in Lemma 7 is equal

to 1. From Lemma 7, this closed n�path � cannot be n�homotopic to a closed n�path �

0

contained in Y . Indeed in this case we would have �(�

0

; x; C) = 0 since �

0

could not contain

the point x. This contradicts the fact that i

�

is onto. 2

Theorem 2 Let Y � X � � be n�connected sets. Then the two following properties are

equivalent:

1. The set Y is n�homotopic to X.

2. The morphism i

�

: �

n

1

(Y ) �! �

n

1

(X) induced by the inclusion map i : Y �! X is an

isomorphism and each n�connected component of Y contains a point of X.

Proof: The fact that the �rst property implies the second one is a direct consequence of

Lemma 6. We prove that the second property implies the �rst one.

Let A be any non-empty intersection of X with an n�connected component C of Y . We

set Z = Y [ A. Since C contains a surfel y of X, some surfel of ZnY is n�adjacent to X .

Indeed, the last surfel which belongs to Z of any n�path in C from a point of C \Z to y must

be n�adjacent to X. Hence, from Lemma 8, the set Z contains an n�simple surfel x which

does not belong to Y .

We set X

1

= Xnfxg. Then, since the morphism i

0

�

: �

n

1

(X

1

) �! �

n

1

(X) induced by the in-

clusion map is an isomorphism, and so is the morphism i

�

, The morphism i

00

�

: �

n

1

(Y ) �!

�

n

1

(X

1

), which is equal to (i

0

�

)

�1

� i

�

, is also an isomorphism. Moreover, obviously any

n�connected component of Y must contain a point of X

1

. Hence we can prove again that

if X

1

6= Y , then X

1

contains an n�simple point which is not in Y . By induction, we obtain

that Y is n�homotopic to X. 2

5 An Application to Topological Thinning

To extract the loci cortical sulci of a human brain, we �rst considered the surface of the brain

as a classical 2D gray level image where the gray level is the mean curvature (Figure 2(a)),

which was computed with a previously de�ned method ([7]). Then, we extracted the negative

mean curvature part of the surface. Then, using our characterization of topology preservation,

we obtained skeletons of these regions, and �nally we �ltered the result to remove insigni�cant

branches (see Figure 2(b)).

To understand this method, let us consider the simpler arti�cial example of Figure 3. In

this example, we have kept only the part of the surface with positive mean curvature.
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(a) Mean curvature �eld on the surface of

a brain (in light gray, the higher mean cur-

vature surfels)

(b) After �ltering the parts of the surface of

negative mean curvature, we have extracted

their center lines

Figure 2: Application of topological thinning.

The advantage of this method is that it uses the surface of an object as data. Such methods

should to be developed since working on the surface of an object instead of on a volume saves

memory and very often reduces the complexity of methods since the number of surfels of a

surface is generally less than the number of voxels of a volume. Moreover, dealing with 2D

objects, such as surfaces, is generally simpler than dealing with 3D objects.

Conclusion

We have provided three equivalent characterizations of topology preservation in a digital sur-

face, and we have applied the notions thus obtained to topological thinning. We have made

the assumption that loops are topological disks. This assumption is not too restrictive. In

any case note that, in opposition to the characterization of n�simple surfels of De�nition 3,

the characterization of Lemma 2 seems to work also when we do not assume that loops are

topological disks. It is probable that, using this general characterization of n�simple points in

De�nition 4 instead of that of De�nition 3, we obtain a result similar to Theorem 1 without

the assumption that loops are topological disks. Note that these results can be generalized to

the case of the combinatorial surfaces de�ned in [2]. Several questions remain:

- The question of parallel thinning within a digital surface.

- In [8], we construct an explicit isomorphism from the fundamental group of any connected

2D object onto a free group. Furthermore, in [9] we give an algorithm to compute an alge-

braic presentation of the fundamental group of a subset of a digital surface. Finding e�cient

algorithms for the word problem and the isomorphism problem in this context is still an open

question.
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(a) Mean curvature �eld on

the surface of the complement

of a ball in a cube

(b) Subset of the surface com-

posed of surfels with positive

mean curvature

(c) After the thinning algo-

rithm, the skeleton

Figure 3: An arti�cial example.
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