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Université de Lorraine, CNRS, INRIA projet Magrit, Campus Scientifique, BP 239, 54506

Vandoeuvre-lès-Nancy Cedex, FRANCE

† corresponding author, tel: +33 4 73 28 80 77, fax: +33 4 73 28 80 27,
michel.grediac@univ-bpclermont.fr

Abstract: The grid method is a technique suitable for the measurement of in-plane dis-
placement and strain components on specimens undergoing a small deformation. It relies
on a regular marking of the surfaces under investigation. Various techniques are proposed
in the literature to retrieve these sought quantities from images of regular markings, but
recent advances show that techniques developed initially to process fringe patterns lead
to the best results. The grid method features a good compromise between measurement
resolution and spatial resolution, thus making it an efficient tool to characterize strain
gradients. Another advantage of this technique is the ability to establish closed-form
expressions between its main metrological characteristics, thus enabling to predict them
within certain limits. In this context, the objective of this paper is to give the state of
the art in the grid method, the information being currently spread out in the literature.
We propose first to recall various techniques which were used in the past to process grid
images, to focus progressively on the one which is the most used in recent examples: the
windowed Fourier transform. From a practical point of view, surfaces under investigation
must be marked with grids, so the techniques available to mark specimens with grids
are presented. Then we gather the information available in the recent literature to syn-
thesise the connection between three important characteristics of full-field measurement
techniques: the spatial resolution, the measurement resolution, and the measurement bias.
Some practical information is then offered to help the readers who discover this technique
to start using it. In particular, programmes used here to process the grid images are
offered to the readers on a dedicated website. We finally present some recent examples
available in the literature to highlight the effectiveness of the grid method for in-plane
displacement and strain measurement in real situations.
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1 Introduction

Full-field measurement techniques are now widespread in the experimental mechanics com-
munity [1, 2]. This is mainly due to the combined effect of the decreasing cost of cameras,
their increasing performance, and the very nature of the quantities they provide: fields of
measurements such as displacements or strains. Indeed this wealth of data can be used
in different ways for a better characterisation of materials and structures. It offers for
instance the possibility to validate the output of numerical models obtained with finite el-
ement calculations, to observe phenomena whose location cannot be predicted in advance,
to help propose suitable constitutive models able to describe and predict these observed
phenomena, and even to identify their governing parameters. Some techniques based on
incoherent light such as moiré [3, 4, 5, 6] have been known for a long time but they require
the use of two gratings: a reference and a deformed one. Others such as electronic speckle
interferometry [7], holographic interferometry [8] and moiré interferometry [9] rely on co-
herent light, so they are somewhat complicated to implement in experimental mechanics
laboratories. Because of their ease of use, white-light techniques have become more pop-
ular in experimental mechanics. In particular, digital image correlation [10] is now widely
accepted, as reflected in the huge body of literature available on this technique or on its
use in experimental mechanics, see for instance the review proposed in [11]. Beside this
well-known technique based on the processing of randomly marked surfaces, a white-light
technique based on the processing of regular patterns, namely the grid method, is also
employed. This latter technique combines three main advantages:

• Like DIC, this is a non-interferometric technique;

• It can potentially take benefit of some efficient and well-established procedures de-
veloped for processing fringes obtained with interferometric techniques;

• It relies on reproducible patterns.

This last feature can be an asset for future standardization of full-field measurement
techniques. The main drawback for the grid method is that the surface must be marked
with a pattern, which must be as regular as possible. However, even optimised random
patterns have been defined for DIC [12], thus depositing a controlled pattern is also an
issue with DIC.

In this context, the main objective of this paper is to focus on the technical charac-
teristics and the metrological performance of this contactless optical method. The paper
is organized as follows. Regularly marked surfaces have been employed for a long time
to measure displacement and strain components, but processing images of these regular
markings can potentially be made with different approaches which are briefly presented
in Section 2. We discuss then the different techniques available to mark surfaces with
grids in practice. This is the aim of Section 3. Section 4 is a reminder on the windowed
Fourier transform (WFT), which is the most commonly technique used to process grid
images. Providing the metrological performance is necessary for any measuring tool, so
Section 5 discusses in depth the performances and limits of the grid method, with a partic-
ular emphasis put on three metrological characteristics which are first defined, namely the
measurement resolution, the bias and the spatial resolution. Then we discuss in Section 6
some practical problems raised when using this technique, before finally presenting in
the last section some recent applications of the grid method for material characterisation
purposes.
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2 The grid method: what are we talking about?

We address here the measurement of in-plane displacement and strain components by
processing images of flat specimens on which a regular marking such as a grid has been
deposited before in-plane deformation. The idea is quite old since it flows from intuition:
considering a regular marking enables us to easily distinguish features such as particular
points on deformed marked surfaces, and thus facilitates tracking them during deforma-
tion. The use of grids to build regular distributions of points by considering either the
intersection of the lines or the dot points located in between is broadly documented in the
literature of the 40’s-60’s, as reported in a survey paper published in the late 60’s [13]. Iso-
lated but regularly distributed points were also employed in the same spirit [14]. At that
time, pictures of deformed grids were processed by hand, by measuring the coordinates of
the points, and deducing the displacement by subtracting the coordinates between current
and reference configurations. Even though the progressive dissemination of affordable dig-
ital cameras and powerful computational resources together with recent advances in image
processing led finding the coordinates of the points automatically and more precisely than
by hand [15], this technique was mainly used for measuring large displacements and strains
like those occurring in composite or metal sheet forming [16, 17, 18, 19, 20, 21]. It is now
only scarcely mentioned in recent papers such as [22, 23, 24], and seems to fall progressively
into disuse. The main cause is the emergence and dissemination of digital image correla-
tion (DIC) in the experimental mechanics community [25, 10]. DIC can potentially process
images of regular markings [26] but this technique mainly relies on randomly marked sur-
faces, which undoubtedly constitutes an advantage from a practical point of view. This
has led this technique to be now widely accepted and employed in experimental mechan-
ics, as illustrated in [27]. Despite the versatility and the user-friendliness of DIC, this
technique suffers from some disadvantages pointed out by experts in the field, for instance
in case of non-homogeneous and small deformation [11]. On the contrary, interferometric
techniques exhibit a better measurement resolution, but they require the use of various
optical components such as mirrors, lasers or beam splitters, which make them difficult to
use in an industrial context. In addition, these techniques are often highly sensitive to vi-
brations. Trying to overcome the disadvantages of DIC without relying on interferometry
has led some researchers to still consider regular grids instead of random patterns, this
time not by tracking the intersecting points between the lines or the dot points located
in between, but by employing numerical tools developed for a similar objective: namely
processing fringes by extracting phase distributions from regular patterns.

It is clear that from a practical point of view, depositing regular patterns may appear
incongruous since this induces an additional problem compared to merely spraying a ran-
dom marking and applying DIC. This is all the truer as grids featuring a frequency of
some lines per millimeter are the most suitable ones for thoroughly analyzing phenomena
which commonly occur at the scale of usual tensile specimens for instance. However such
grids are presently not easily commercially available. This leads users to order specifically
printed grids, and then transfer them on the specimens to be tested, see [28] for instance,
which does not facilitate the dissemination this technique. Despite this relative drawback,
this technique has a big advantage: the possibility to reveal localized phenomena thanks to
its good compromise between spatial resolution and measurement resolution, as illustrated
in the examples shown in Section 7, which makes it an appealing tool.

As a last remark, it is worth mentioning that the grid method is basically suitable for
in-plane measurements, but it has been recently shown that it could be extended to the
simultaneous measurement of out-of-plane displacement [29].
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The grid method would not exist without techniques able to deposit grids on the
surface of specimens, so let us now examine the procedures which can be employed to
deposit grids on the surface of flat specimens.

3 Marking surfaces with grids

As recalled above, grids have been deposited on flat specimens for a long time. In [13,
30, 31], comprehensive lists of techniques available for obtaining grids were given some
decades ago. Some of these techniques are still valid with current printing techniques, but
the pitches reached and the quality of the obtained grids are generally not available. We
thus offer below a state of the art on the techniques employed to mark specimens with
grids, by going from the finest to the largest scales.

The finest grid that has been considered for in-plane deformation measurement seems
to be the atomic lattice of the substrate itself observed with high resolution electron
microscopes (HREM), see Ref. [32, 33, 34], or atomic force microscopes (AFM) [35, 36, 37].
With such natural markings, the grid pitch can be as small as some angströms.

At a higher scale, pitches of some tenths of µm to some µm can be obtained by
various techniques such as nanoimprint lithography [38]. With the so-called electron beam
moiré technique, the lines of the reference grid are ”drawn” on the substrate by using the
electron beam of a scanning electron microscope (SEM) [39, 40, 41, 42], or milled using a
focused ion beam [43, 44, 45, 46]. Microgrids can also be obtained by metal sputtering and
evaporation [26, 47, 48] or by appropriate etching of the specimen [49]. A simple technique
also consists in replicating the negative imprint of a mold grating, see [50, 51, 52, 53, 54] for
instance. In this case, the surface of the specimen is polished, cleaned and gel-coated with
a suitable epoxy resin beforehand. Optical techniques can also be employed. For instance,
photoresist coatings insulated through a mask lead to grid featuring similar pitch values as
in the preceding examples [55, 56]. An interferometric setup can also be used to generate
a regular marking, as described in [57].

Even at this scale, grids can be used to form moiré fringes from which in-plane displace-
ment fields are deduced. The reference grid is typically the SEM monitor [58] in this case,
or a fringe pattern generated by a computer [37], while the deformed grid is that printed
on the specimen. Another technique is based on such microgrids: moiré interferometry. In
this case, the grid deposited on the specimen acts as a diffraction grating and interference
fringes are obtained with two coherent laser beams [9, 59]. Microgrids can also be used to
improve the contrast of the natural surface marking, the images being then processed by
tracking the dot points [26] or by using digital image correlation [60]. Microgrids can also
be considered as regular patterns whose phases are modulated by the displacement, thus
justifying to employ techniques based on Fourier analysis to retrieve the displacement and
strain fields [32, 33, 34, 57, 61] for instance.

Grid frequencies lying between 250 and 2000 lines per inch (thus pitches lying between
102 and 13 µm, respectively) are reported in [62] by evaporation of aluminium through
a mask. In a more recent work, similar grids were obtained by depositing a thin layer
of metallic film onto the specimen surface, which was covered beforehand with a copper
gilder grid acting as a mask. A very thin layer of gold was then sputter-coated onto the
specimen surface. The zone underneath the mesh bars was not coated contrary to the
space inside each grid, thus generating regular arrays of spots. Pitches equal to 12.5 µm
are reported in [22], but other pitch values can potentially be obtained with the same
technique: from 12.5 to 500 µm in [63].

In the preceding cases, the imaging system which captures the grid images is often
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behind a microscope because of the very small pitch size, explaining that all the cor-
responding applications deal with micromechanics. In experimental mechanics however,
most of the tests are performed with conventional tensile machines on specimens which
are much bigger in size. In addition, for the sake of simplicity, experimentalists gener-
ally wish to employ techniques based on white-light illumination, without using any other
imaging system than common camera lenses. Taking into account the usual size of the
specimens and the number of pixels of current digital camera sensors, grids must feature
pitches greater than in the preceding cases when no microscope is used, typically some
hundreds of micrometers (often between 100 and 200 µm). Various techniques have been
proposed in the literature for this range of pitches. In [64] for instance, grids with a
pitch equal to 76.3 µm were obtained by stencilling and painting. Even though such grids
could be processed by Fourier analysis, it seems that only rather large strains could be
measured because of the low quality of the resulting grids, in particular in terms of grid
pitch regularity. In [65], it is proposed to evaporate aluminium through a mask grid to
mark a polymeric specimen with a grid featuring a pitch equal to 125 µm. The main
drawback here is the fact that a vacuum chamber is needed. In [28], grids with a mini-
mum pitch equal to 100µm were obtained by first printing the grid on a soft polymeric
substrate, and then transferring the black ink only onto the tested specimen using a thin
layer of white adhesive. High-resolution photoplotters must be used to insure the lowest
defects as possible in the printed grids. The lithography technique described above for
microgrids can also be employed for higher scales, as reported in [66], where the pitch was
equal to 400 µm. Grids can also be printed directly on decal paper: in [67], grids with a
minimum pitch equal to 250 µm were printed on this type of paper, and then deposited
on the tested specimen. Such a support is cheap and commercially available, see [68] for
instance. A drawback is that the thickness of the layer which is deposited is generally
not negligible, and its strain at failure is much higher than that of current materials used
in mechanical engineering. Furthermore, its adhesion property is reported to be limited
under straining [67]. This leads this solution not to be recommended in the case of crack
for instance, the layer potentially bridging the crack and the apparent strain near the
crack tip being also potentially influenced by the elasticity of the layer. Finally, a transfer
printing technique is described in [69, 70] with grids supplied by Mecanorma. The pitch
was equal to 0.575 mm in this case.

Grids with greater pitches are easier to obtain than the aforementioned ones. Paint
sprayed through a stencil permitted to obtain pitches equal to 800 µm in [71] and 1 mm
in [72], respectively. Pitches equal to 1 mm are even reported to be drawn by a black pen
held in a computerized milling machine in [73]. Grids with a pitch equal to 1 mm can
also be obtained with the transfer printing technique, as reported in [69]. Beyond 1 mm
in pitch, stencilling still works since a pitch equal to 2.5 mm is reported in [66]. Grids can
also be photograved on an adhesive tape which is then bonded on the specimen, as in [74]
where the grid pitch is equal to 2 mm. As already mentioned in the case of decal paper,
such a solution is however not adapted in case of cracks. In large-scale structures, grids
can be painted directly onto the surface, as in [75, 76] where pitches equal to 38.5 mm
were obtained with this simple technique.

All the techniques reported here are generally described for marking flat specimens,
but it is worth mentioning that regular grids can also be deposited directly on curved
ones [77].

As a final remark, it is important to note that the regularity of the pattern is not critical
when tracking either the dot points located between the grid lines, or the intersecting
points between the lines. This is not the case for spectral approaches relying on the phase
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change between current and reference images, a grid image being modeled as a 2D phase-
modulated signal. Possible defects such as spatial fluctuations of the grid pitch or the local
absence of marking may potentially affect the measured phases, and thus the measured
displacement and strain fields. Another point is the fact that the ideal profile of the lines
should be a sine function for spectral methods. This is the optimal solution to limit noise
propagation from camera sensor to final strain maps [78], and to avoid harmonics and
their ensuing issues. Even though such a profile can be obtained using suitable printing
devices (see [79] for instance), the line profile of fine grids obtained with usual printing
techniques do not have a sine profile. In addition, the image grids are spatially sampled
because of the discrete nature of complementary metal oxide semiconductor (CMOS) or
charge-coupled device (CCD) sensors, and quantized by the analog-to-digital converter of
the camera. This also causes an irreversible loss of information.

After marking a specimen surface with a grid and taking images while testing it, it is
necessary to process the images to retrieve the displacement and strain fields, so let us
now examine how to tackle this issue.

4 Processing grid images to extract displacement and strain
fields

In this section, the link between displacement and phase change of a regular surface
marking is first examined, with a special emphasis on the influence of the movement of
the physical points on the final result. We also examine how to retrieve phases from a
grid images. Various techniques are available but we mainly focus on one of the them: the
windowed Fourier transform employed with the nominal frequency of the grid.

4.1 Model

In grid images, assuming that the horizontal and vertical lines of the grid are aligned with
the lines and columns of pixels of the camera sensor, the light intensity s(x, y) at each
point (x, y) is a quasi-periodic signal which can be modelled as follows [80] (in this paper,
vectors are denoted by bold letters and scalars by plain letters)

s(x, y) =
A

2

(
2 + γ · frng(2πfx+ φx(x, y)) + γ · frng(2πfy + φy(x, y))

)
(4.1)

where:

• A is the average global field illumination;

• γ is the contrast of the oscillatory pattern between 0 and 1;

• frng is a real 2π-periodic function with an amplitude equal to 1 and average value
equal to 0;

• f is the frequency of the carrier, defined as the inverse of the pattern pitch p (that
is, the inter-line distance);

• φx(x, y) and φy(x, y) are the carrier phase modulations defined modulo 2π along the
x− and y−axes respectively. This modulation is caused by the displacement which
occurs at any point. In real grids, it is also due to potential grid defects.
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Figure 1: Displacement of a physical point (after [61])

Parameters A and γ are assumed to be constant here but they may slightly change
in practice in actual images. It should also be mentioned that in real grids, the lighting
intensity along dark lines is nearly constant. Pixelation causes however crossing points to
be darker than points of the lines located away from the crossings. This is the reason why
we adopt here a model in which two unidirectional regular line patterns are added, even
though this leads this phenomenon to be more pronounced in the model than in real grid
images.

A slight movement of the grid can be interpreted as a change of its phase, so dis-
placement and phase changes are directly related. The objective of the next section is to
analyse precisely this link.

4.2 Link between displacement and phase change, strain and phase
derivative change

Sections 4.2.1 to 4.2.4 are an adaptation and an extension of [81] which discusses the re-
stricted case of a so-called unidirectional grid (that is, a sine wave along a given direction),
the phase before deformation being assumed to be null.

4.2.1 Link between phases and displacements

Following [81], we introduce the direct displacement field u = (ux, uy) and the inverse
displacement field U = (Ux, Uy). We use this notation to be consistent with our preceding
papers, but the reader should note that in [81], the direct displacement field is noted U
and the inverse displacement field is u. A point of coordinates x = (x, y) before defor-
mation is mapped to the point x + u(x) after deformation (see Figure 1), and a point
of coordinates (x, y) after deformation corresponds to the point of coordinates x+U(x)
before deformation. Both fields are thus linked through the following equations:{

u(x) = −U(x+ u(x))
U(x) = −u(x+U(x))

(4.2)

or, equivalently, component-wise:{
ux(x, y) = −Ux(x+ ux(x, y), y + uy(x, y))
uy(x, y) = −Uy(x+ ux(x, y), y + uy(x, y))

(4.3)

and
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{
Ux(x, y) = −ux(x+ Ux(x, y), y + Uy(x, y))
Uy(x, y) = −uy(x+ Ux(x, y), y + Uy(x, y))

(4.4)

Let s1 and s2 be the grid images before and after deformation, respectively, and φ1x, φ
1
y, φ

2
x, φ

2
y

the corresponding phase modulations along the x- and y-directions.
From (4.1) and (4.2), and assuming that the illumination of the specimen does not

vary during the test, we obtain:

s2(x) = s1 (x+U(x))

=
A

2

(
2 + γ · frng(2πf(x+ Ux(x, y)) + φ1x(x+ Ux(x, y), y + Uy(x, y)))

+ γ · frng(2πf(y + Uy(x, y)) + φ1y(x+ Ux(x, y), y + Uy(x, y)))
) (4.5)

After identification of the phase modulations in s2:{
φ2x(x, y) = 2πfUx(x, y) + φ1x(x+ Ux(x, y), y + Uy(x, y))
φ2y(x, y) = 2πfUy(x, y) + φ1y(x+ Ux(x, y), y + Uy(x, y))

(4.6)

that is

φ2(x) = 2πfU(x) + φ1(x+U(x)) (4.7)

this equation holding modulo 2π. In [81], the grid image before deformation is supposed to
be perfect, in other words, no phase modulation is needed and both φ1x and φ1y are simply
disregarded. It is therefore possible to conclude in this case that the phase modulations
are proportional to the components of the inverse displacement field. In the present model,
which is more realistic since it accounts for the initial phase modulation caused for instance
by grid defects (Section 6.6 below), this conclusion is however no longer true. Moreover, by
plugging (4.3) in φ2(x+u(x)) given by (4.6) and using (4.2), we obtain the link between
the phases φ2x and φ2y in the current configuration, and their counterpart φ1x and φ1y in the
reference configuration. Thus:

φ2(x+u(x)) = 2πfU(x+u(x))+φ1(x+u(x)+U(x+u(x)) = −2πfu(x)+φ1(x) (4.8)

Let us note ∆ the operator which gives field changes, here phase changes, once mapped
in the coordinate system of the grid before deformation. That is,{

∆φx(x, y) = φ2x(x+ ux(x, y), y + uy(x, y))− φ1x(x, y)
∆φy(x, y) = φ2y(x+ ux(x, y), y + uy(x, y))− φ1y(x, y)

(4.9)

We also note ∆̃ the operator which gives field changes once mapped in the coordinate
system of the grid after deformation:{

∆̃φx(x, y) = φ2x(x, y)− φ1x(x+ Ux(x, y), y + Uy(x, y))

∆̃φy(x, y) = φ2y(x, y)− φ1y(x+ Ux(x, y), y + Uy(x, y))
(4.10)

With Equation 4.6, we have

∆̃φ(x) = 2πfU(x) (4.11)

and with Equation 4.8,

∆φ(x) = −2πfu(x) (4.12)
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4.2.2 Estimating the displacement field from the phase change

Looking at Equation 4.9, we can see that u cannot be directly estimated from ∆φ, since
this latter quantity depends itself on u. This property prevents us from using out-of-the-
shelf techniques dedicated to profilometry, in particular those developed after the seminal
work presented in [82, 83, 84]. In profilometry applications, the quantity of interest is
indeed the phase difference φ2 − φ1 calculated at the same point. In this context, two
approaches are possible:

• Procedure 1: the approximate, but one-step approach. The displacement u is sim-
ply estimated as

u(x) = − p

2π

(
φ2(x)− φ1(x)

)
(4.13)

instead of

u(x) = − p

2π

(
φ2(x+ u(x))− φ1(x)

)
(4.14)

This means that the displacement of the physical points is neglected with Equa-
tion 4.13. This rough assumption is observed to be acceptable in real cases for
which the displacement remains small. Directly differentiating the displacement ob-
tained with this approach to deduce the strain components may however become an
issue when the grid features defects, as explained in the following section.

• Procedure 2: the rigorous, but iterative approach. We can see from Equation 4.14
that u is the solution of a fixed-point equation. Assuming that an initial estima-
tion u0 is available (for instance with the preceding procedure), it is possible to
iteratively refine u through a fixed-point algorithm. The sequence un (n ≥ 0) de-
fined by:

un+1(x) = − p

2π

(
φ2(x+ un(x))− φ1(x)

)
(4.15)

converges to the sought displacement u. Indeed, any fixed-point algorithm un+1 =
f(un) is known to converge as soon as the supremum of the derivatives of f (in a
neighbourhood of x containing x0) is bounded by a certain constant K < 1 (in which
case Banach fixed-point theorem is satisfied since f is a contraction) [85]. Moreover,
the error rate of the approximation of x by xn is bounded by O(kn). Here, a bound
of the derivative of f is given by K = p/2π · ||∇φ2||∞, where || · ||∞ denotes the
supremum of a function. In practice, typical values for the phase derivatives are
around 10−3, ensuring the very rapid convergence of the iterative algorithm, one
iteration only being generally sufficient in practice in the case of small strains.

4.2.3 Unequivocal correspondence between phases and coordinates of points

In these procedures, phases are extracted from grid images, for instance by using the
localized spectrum analysis described in Section 4.4.2 below, but the raw phases distri-
butions are known modulo 2π at this stage. It means that discontinuities occur in the
raw phase images as soon as the displacement in a given map has a spatial fluctuation
greater than one grid pitch p. Such a discontinuous distribution is said to be wrapped.
This phenomenon is illustrated in Figure 2. There is a broad literature describing various
tools for automatically unwrapping phases, since the same problem occurs in fringe pro-
cessing, [86, 87, 88, 89, 90, 91, 92, 93, 94, 95] for instance. Since some programmes are
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Figure 2: Illustration of wrapped and unwrapped phase distribution. Left: wrapped
(revealed by several sudden color changes between red and blue); right: unwrapped.

available online on the internet, they are generally directly employed. For instance, the so-
called phase-quality guided path following method and the Goldstein’s branch cut method
described in [90] are available in [96]. The programme corresponding to the procedure
described in [92] is given in [97] and [98].

Phase distributions become spatially continuous after applying unwrapping (regardless
to geometric discontinuities such as cracks or holes). However, they are still defined modulo
2π. Indeed, it can be a problem if the actual displacement of a given point of the specimen
is greater than one grid pitch from one image to another. It means that a certain integer
multiple of 2π, denoted k hereafter, should be added to the phases to be sure that there is
an unequivocal correspondence between the coordinates of any point of the surface under
investigation after deformation, and the grid phases at that point. This can be achieved
by using one of the following procedures:

• the grid is a regular marking but its aspect is slightly impaired by defects or slight
heterogeneities. A procedure simply based on DIC maximisation can thus be per-
formed between reference and current grid images to deduce k. Note that grid defects
are useful here to ensure that minimisation is not trapped by the periodic patterns;

• the displacement of a given feature can be observed to the naked eye between ref-
erence and current phase derivative maps (continuous phase derivative maps can be
obtained in any case, see [99, 80]), and k can be deduced by hand. This procedure
is however laborious because it is not automatic;

• a so-called temporal unwrapping can be performed if a set of images captured during
a test is available. Temporal unwrapping means that a point of the phase maps is
considered, and that phase jumps detected between two consecutive images consid-
ered at this point are then used to correct the whole phase map.
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4.2.4 Estimating the strain components

The quantity of interest is often the linear strain tensor, whose components write:

εij =
1

2

(
∂ui
∂j

+
∂uj
∂i

)
i, j = x, y (4.16)

This quantity can be merely directly estimated by numerically differentiating the dis-
placement field obtained with Procedure 1 (Equation 4.13) or Procedure 2 (Equation 4.14).

If we consider now the closed-form expression of these quantities to see the errors made
by using Procedure 1 instead of Procedure 2 to calculate first the displacement, and then
deduce the strain, we have the following results:

• With displacements calculated with procedure 1:

From Equation 4.13, we obtain

2εij(x, y) = − p

2π
×

(
∂φ2i
∂j

(x, y)− ∂φ1i
∂j

(x, y) +
∂φ2j
∂i

(x, y)−
∂φ1j
∂i

(x, y)

)
i, j = x, y

(4.17)

• With displacements calculated with procedure 2:

From Equation 4.14, in which u is obtained at convergence of Procedure 2, we obtain

2εij = − p

2π

(
∂∆φi
∂j

+
∂∆φj
∂i

)
i, j = x, y (4.18)

Let us compare these two estimations. The phase derivatives involved in Equations 4.18
(and thus in Equation 4.9) can be expressed by applying the chain rule:

∂∆φi
∂j

(x, y) =

(
∂x

∂j
+
∂ux
∂j

(x, y)

)
∂φ2i
∂x

(x+ ux(x, y), y + uy(x, y))

+

(
∂y

∂j
+
∂uy
∂j

(x, y)

)
∂φ2i
∂y

(x+ ux(x, y), y + uy(x, y))

− ∂φ1i
∂j

(x, y) i, j = x, y

(4.19)

To ease the comparison with the results obtained with Procedure 1, we consider the
particular case i = j = x. With Procedure 1, we have

εxx = − p

2π
× ∂∆φx

∂x
(4.20)

and with Procedure 2

εxx(x, y) = − p

2π
×
(

(1 + εxx(x, y))
∂φ2x
∂x

(x+ ux(x, y), y + uy(x, y))

+
∂uy
∂x

(x, y)
∂φ2x
∂y

(x+ ux(x, y), y + uy(x, y))− ∂φ1x
∂x

(x, y)

) (4.21)

By comparing the expressions obtained with Equations 4.20 and 4.21, we can see that
two types of approximations are induced in strain calculation with Procedure 1:
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• the derivatives of ux and uy are not taken into account;

• the subtraction between the phases derivatives is not performed at the same physical
point.

The first approximation does not really induce a significant error as long as the normal
strain remains much lower than one, and the local in-plane rotation is small, which is
generally the case. It is observed in practice that the second approximation is much more
critical in the presence of grid defects such as grid pitch fluctuations or even slight local lack
of ink. Indeed, even with small displacements (lower than the grid pitch), the disturbance
induced in the phase derivative maps is not eliminated by subtracting current and initial
phase derivative distributions. This potentially induces fictitious strain to appear in final
strain maps while the impact on displacement maps is generally negligible. Depending
on the amplitude of the grid defects and the amplitude of the actual and sought strain
components, this can be really a problem, as illustrated in Section 6.6 below.

Note finally that the two preceding assumptions amount to identify u(x, y) and−U(x, y)
in Equation 4.2, yielding:

εij = −1

2

(
∂Ui
∂j

+
∂Uj
∂i

)
i, j = x, y (4.22)

Consequently, with Equation 4.11

2εij = − p

2π

(
∂∆̃φi
∂j

+
∂∆̃φj
∂i

)
i, j = x, y (4.23)

This means that the strain components can also be computed with ∆̃ in this case.

4.2.5 Other techniques used in the literature to calculate strain components

As explained in the preceding section, some assumptions can be reasonably made to sim-
plify the practical calculation of the strain components from Equations 4.18 and 4.19. In
particular, we can simplify Equation 4.19 into

∂∆φi
∂j

= ∆
∂φi
∂j

i, j = x, y (4.24)

which means that the strain components can be inferred from the phase derivative changes
with the following equation

2εij = − p

2π
×
(

∆
∂φi
∂j

+ ∆
∂φj
∂i

)
i, j = x, y (4.25)

This is the procedure employed in [99, 80], in which the ∆ operator (mapping the phase
derivative distributions of the current grid image in the coordinate system of the grid before
deformation) is performed by using the displacement field obtained with Procedure 1 as
described in Equation 4.13. regardless of the procedure employed to retrieve the phase
distributions (several strategies are potentially available) the main merit of this approach
is to perform the subtraction of the phase derivative maps at the same physical points, the
movement between current and reference grid images being compensated. This enables us
to get rid of the consequence of the grid defects in the strain maps, and thus to obtain
a good compromise between strain resolution and spatial resolution (these quantities are
thoroughly defined in Section 5), as illustrated in several examples shown in Section 7.
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Beside this approach for strain calculation and as a general remark, it is worth men-
tioning that approaches based on local displacement smoothing (with polynomials for
instance) are widely employed in photomechanics: displacements are estimated at some
points, which are then considered as the nodes of a mesh built up by the user. The
displacement is then locally smoothed or interpolated by functions which are derived to
provide the strain components.This is a classic approach in subset-based DIC because
of the iterative nature of this technique. This is not a drawback in cases for which the
strain gradients remain ”low” in the actual distribution. The same remarks holds when
constitutive parameters are identified from full-field measurements: these parameters are
in general global and represent mean values over wide regions, often the whole specimen
itself. Consequently, relying on a huge amount of data is not really relevant in this case:
this would only reduce noise issues in the identified parameters. In addition to large com-
putation times, this also potentially leads to huge data files to be stored, handled and
processed, which should obviously be avoided when it is not necessary. When considering
functionally graded materials (thus spatially changing mechanical properties), or cases
for which high strain gradients occur in the tested specimen (e.g. near a crack tip), the
conclusion is obviously different and one should avoid any loss of information. In addition,
assessing the metrological performance of the grid method is much easier if no interpola-
tion is performed, as illustrated in Section 5. No result on the metrological performance
of the grid method with interpolation seems to be available in the literature, even though
recent results obtained in DIC could certainly be adapted [100, 101]. The reader interested
in approaches based on local smoothing to obtain strain fields from full-field measurement
is referred to the broad literature on DIC [10], or to [102, 103, 104] for instance, where the
mesh is adapted to account for strain gradient intensity. Indeed, the displacements can
potentially be obtained with any full-field technique with such procedures. Consequently,
techniques initially developed for DIC for instance are also applicable to displacements
fields obtained with the grid method.

4.3 Retrieving phase and phase derivatives from grid images

The change in phase between reference and current configurations being linked to the
displacement components according to Equation 4.14, it is necessary to retrieve first the
phases from grid images taken in both configurations. This is a problem similar to that of
phase retrieval from fringes obtained in optical metrology using for instance interferomet-
ric setups or fringe projection profilometry. The basic idea is that phase information is
concentrated in (usually spread) spikes in the spectrum of a fringe image. When the spikes
are well separated, the phase can be retrieved with a pass-band filter. Designing this filter
is however not an easy task. There is a broad literature available on this topic and various
tools have been proposed. The main ones are the Fourier Transform (FT) [105, 106], the
WFT [107, 108, 109] and wavelet transform [110, 111, 112]. Local techniques such as the
WFT or wavelet transform permit the user to overcome limitations caused by, for instance,
an uneven illumination of the specimen.

It seems that only the FT and the WFT were employed and adapted to process grid
images. The reason is that wavelet tranform is not adapted here because the frequency of
the carrier is known a priori and is only slightly modulated by straining. The use of the
FT in the particular case of grids is mentioned in [113, 114, 72, 115, 116, 117, 118, 64, 119]
or in [120, 32, 33] for instance. In these last references, this gave birth to the so-called
Geometric Phase Analaysis (GPA) briefly described in Section 4.3. The use of the WFT
in the case of grids in mentioned in [121, 122].

Alternative methods or techniques derived from the above ones also exist. In [123] for
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instance, a correlation function is minimized to estimate the degree of similarity between
real fringes and a suitable mathematical model. More recently, the so-called sampling
moiré was proposed in Ref. [74]. It consists in introducing a fictitious phase shifting by
sub-sampling grid images. So-called ”thinned-out” grid images are obtained after this
procedure, each of them being shifted from the others. The authors propose then to
interpolate these thinned-out grid images to recover the initial pixel density of the grid
images, which induces an approximation. Classic phase extraction from several images
of phase-shifted fringes is then applied. The errors made when using this technique are
discussed in [124].

A comparison of some metrological characteristics of various techniques applied to grid
images processing is given in [125], especially in terms of bias and spatial resolution. A
comparison between FT, WFT and wavelet transform is also proposed in [126] in the case
of profilometry. It is concluded that both the FT and the WFT lead to more robust
algorithms than wavelet transform. For grid image processing, we are in a particular case
for which the frequency carrier is known a priori, so we are only interested in retrieving
the slight modulation of this carrier. Since the grid method is generally used for measuring
”small” strain components, the modulation of the regular grid pattern remains low. This
leads the changes in the regular line network due to straining to be generally much smaller
than those observed in the case of profilometry or interferometry for instance. Compared
to these two techniques, another feature of the grid method is the fact that in practice,
the number of ”fringes” to be processed with grids is much higher since this is directly the
number of the grid lines. For instance, there are often so many lines in a picture that they
are not distinguishable to the naked eye. This is generally not the case with fringe patterns
obtained with the two aforementioned techniques. Finally, it is worth mentioning that two
crossed line patterns must be processed simultaneously in the case of bidirectional grids.

4.4 Fourier and windowed Fourier transforms

4.4.1 General case

Both the FT and the WFT provide a complex number map denoted ŝ(ξ, η) and ŝW (u, v, ξ, η).
Both are defined for a pair of frequencies ξ, η along the x- and y- directions, respectively,
the WFT being defined in addition at a given point of coordinates (u, v). The FT is
defined as follows

ŝ(ξ, η) =

∫ +∞

−∞

∫ +∞

−∞
s(x, y)e−2iπ(ξx+ηy) dx dy (4.26)

The WFT is the local version of the FT, which means that the FT is calculated for
a zone surrounding any point M(u, v) of the image. This zone is defined by the analysis
window g. The WFT is defined as follows

ŝW (u, v, ξ, η) =

∫ +∞

−∞

∫ +∞

−∞
s(x, y)g(u− x, v − y)e−2iπ(ξu+ηv) dx dy (4.27)

The integrands above involve several functions:

1. the signal s to be processed

2. a modulation of frequencies ξ, η along the x- and y- directions, respectively

3. and for the WFT only, a 2D window function g whose width is driven by a parameter
chosen by the user. This function is symmetric, positive, and integrates to 1
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The inverse of each of these transforms is defined as follows:

• for the inverse of the FT (denoted IFT hereafter):

s(x, y) =

∫ +∞

−∞

∫ +∞

−∞
ŝ(ξ, η)e2iπ(ξx+ηy) dξ dη (4.28)

• and for the inverse of the WFT (denoted IWFT hereafter):

s(x, y) =

∫ +∞

−∞

∫ +∞

−∞

∫ +∞

−∞

∫ +∞

−∞
ŝW (u, v, ξ, η)g(x− u, y − v)e2iπ(ξu+ηv) du dv dξ dη

(4.29)

Retrieving the phase distributions (one along the x-direction, one along the y-direction)
of a grid image using the FT consists in calculating the FT of this image, filtering the
corresponding spectrum by considering in turn a zone surrounding the peaks of each of
the first harmonics (f, 0) and (0, f), performing the IFT of each of these zones, and finally
extracting the phase distribution of each result [64, 120, 32, 33, 119]. This procedure
should be applied to both the reference and the current grid images to deduce the phase
change between these two configurations. This is the spirit of the GPA.

Similarly, retrieving the phase of a regular pattern such as fringes [107, 108, 109] or
grids [122] by using the WFT consists first in selecting a zone in the Fourier domain over
which integration is performed. As in the preceding case, this can be done by considering
in turn a zone surrounding the peaks of each of the first harmonics (f, 0) and (0, f).
The preceding procedure is then applied up to phase determination. Compared to the
preceding case, it is applied in turn at any point/pixel of the image, the window g sliding
over the whole image. The integration domain is here much smaller than in the preceding
case since it is bounded by the window. Compared to FT, this WFT-based procedure
takes however much more time, as reported in [122].

Much earlier on (but not cited in [122]), Surrel proposed to apply the WFT with two
sole points in the frequency domain: (f, 0) and (0, f) [121]. This can be considered as a
particular and ultimate case of the more general WFT described in [122]. Even though
other frequencies than the nominal frequency of the grid are not taken into account for
this particular case, this option leads to very good results, as illustrated in the examples
discussed in Section 7. The benefit is also to have a much shorter calculation time since
only one frequency is considered for each of the two directions and, last but not least, the
fact that calculations are tractable to get a priori estimate for the metrological perfor-
mance in terms of spatial resolution, measurement resolution and bias (these quantities
are thoroughly defined below). This point is crucial for future standardisation of full-field
measurement techniques. For all these reasons, we focus now on the WFT in the particular
case (f, 0) and (0, f). This procedure is named the Local Spectrum Analysis (LSA) in the
following to clearly distinguish it from the GPA.

4.4.2 The Local Spectrum Analysis

For (f, 0) and (0, f), the WFT writes as follows
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
along direction x : ŝW (u, v, f, 0) =

∫ +∞

−∞

∫ +∞

−∞
s(x, y)g(u− x, v − y)e−2iπfx dx dy

along direction y : ŝW (u, v, 0, f) =

∫ +∞

−∞

∫ +∞

−∞
s(x, y)g(u− x, v − y)e−2iπfy dx dy

(4.30)
We can see that, g being symmetric, ŝW (u, v, f, 0)) and ŝW (u, v, 0, f)) are the convo-

lution of g with s(x, y)e−2iπfx and s(x, y)e−2iπfy respectively, which is a fast calculation
with the Fast Fourier Transform (FFT) algorithm. The phase distributions φx(x, y) and
φy(x, y) for a grid image are estimated modulo 2π by calculating the arguments of the
complex numbers defined Equation 4.30, which gives [81]

φx(x, y) = arctan

(
Im(ŝW (u, v, f, 0))

Re(ŝW (u, v, f, 0)

)
φy(x, y) = arctan

(
Im(ŝW (u, v, 0, f))

Re(ŝW (u, v, 0, f)

) (4.31)

Concerning the shape of the analysis window g, it is proposed in [121] to employ a
triangle spanning two grid periods. Phase extraction with the discrete version of the WFT
is indeed regarded as a spatial phase shifting in [121]. This procedure is an extension of
the classic phase shifting procedure employed to extract phases from fringes provided for
instance by interferometric setups [127]. In the latter case, a mirror is slightly translated
with a piezoelectric stage. This induces a change in the optical path, thus a delay and
eventually a phase shift. With the spatial version of phase shifting, the pixels surrounding
the pixel at which the phase is calculated are considered as containing all the same phase,

plus a multiple of a constant phase shift equal to
2π

N
, where N is the number of pixels

used to encode one grid period. Considering spatial phase shifting enables one to use or
adapt tools and results obtained with the temporal phase shifting procedure employed to
process fringes, see [127, 128, 81, 129, 121, 130, 131, 132, 133, 134, 135, 136] for instance.
Concerning the phase shifting problem, Ref. [121] mentions that a triangular window
provides an information insensitive to harmonics up to the order N − 2. It also minimizes
the effect of miscalibration, which occurs when N is not exactly an integer value. This
is generally the case in practice because it is not possible to perfectly adjust the number
of pixels per grid period in grid images. In addition, this value slightly changes during
deformation of the grid during a test. For bidirectional grids, it is proposed in [121]
to separate the information between the x- and y-directions by spatially averaging over
a length equal to the pitch of the grid to be eliminated, and then to apply in turn a
unidirectional phase extraction along each direction. For instance, to extract the phase
φx at a given pixel, N consecutive portions of lines of pixels surrounding this pixel are
averaged along direction y. This procedure eliminates the periodicity along direction y
while that along direction x is preserved, which enables phase extraction along x.

In many applications, strain values are needed and they are obtained by spatially
differentiating the phase change measured between reference and current configurations
of the specimen. Phases obtained with the procedure described above being noisy, it is
generally necessary to filter them prior to differentiation. In [99, 80], it is thus proposed
to employ a Gaussian analysis window wider than the triangular one to filter noise more
efficiently while extracting the phase. In addition, a triangle may lead to some issues if the
width of the analysis window is not an integer value [137]. Some authors employ a Gaussian
analysis window on the ground that it minimizes the Heisenberg box [108, 138]. Finally,
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the Gaussian window is derivable, which permits direct extraction of phase derivatives
without calculating the phases if necessary, merely by commuting the derivation from the
signal to the window when calculating the derivatives from Equation 4.30 [80]. This can
be useful in case of phase jumps in the phase distribution but increases the calculation
time.

We propose now to address the metrological performance of the grid method by consid-
ering the WFT localized at (f, 0) and (0, f), and assuming the a Gaussian analysis window
is employed in the WFT, results obtained with other types of windows being discussed
in [137].

5 Metrological performance

5.1 Introduction

An important remark is the fact that we deal here with a measurement issue. However,
despite many efforts on this subject, see [139, 140, 141, 142, 143, 144, 145, 146] for instance,
one standard only: ASTM-E2208 [147] seems to be available to help users estimate the
metrological performance of full-field measurement techniques, as well as a draft standard
for dynamic measurements [148]. Ref. [147] only gives general ideas on this subject,
which illustrates the trickiness of this problem. Assessing the errors made while measuring
displacement or strain components is addressed in several papers on DIC, see [149, 150,
151, 152, 153, 154, 155, 156, 157, 158, 100, 101] for instance. This issue is discussed also
in Refs. [124, 75] concerning the sampling moiré. We propose here an in-depth discussion
on this point. According to [147], sources of errors can be divided into two categories:
those related to the experimental setup and imaging, and those due to the calculation of
the desired quantities from the images. We mainly focus here on the latter, in the case of
phase extraction from grid images by WFT, and in the particular case for which only the
nominal frequency of the grid is considered, calculations being tractable in this case. A
normalised isotropic Gaussian analysis window is used here, as justified above, but similar
expressions could be obtained with other classic windows used in the WFT [137]. This
Gaussian window is defined by

g(x, y) =
1

2πσ2
e

−x2 + y2

2σ2


(5.1)

where σ is the standard deviation of the Gaussian function. The following results are
obtained by extending some metrological properties recently presented in Ref. [78].

5.2 Systematic and random errors

The measurement of displacement and strain components at a given point, denoted here
respectively ui, εij , i, j ∈ (x, y), can be split into three different parts:{

ui = ũi + bui + eui

εij = ε̃ij + bεij + eεij , ∀i, j ∈ {x, y}
(5.2)

where

• ũi, ε̃ij are the reference (and sought) values
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• bui and bεij represent the bias as defined in [159, 160], i.e. the estimate of the system-
atic measurement error

• eui , eεij represent the zero-mean random part of the measurements.

bui + eui and bεij + eεij represent the measurement errors for the displacement and the
strain, respectively. These quantities may change from one component to another. This
is the reason why we employ indices in the notations.

As far as quantitative strain measurements are concerned, the user is seeking ε̃ij , which
means that bij and eij must be correctly estimated to determine an uncertainty range, if
not reducing them by smoothing the data for instance. It is worth mentioning that bij
and eij are not really intrinsic to the measuring method discussed here:

• bij may be due to various causes. In practice a miscalibration of the parameters
driving grid image processing (for instance the value of the pitch of the grid), image
distortions caused by the lens or out-of-plane movements may induce a systematic
error in the maps, which is the case for any in-plane measuring tool [161, 162, 163].
Image distortion is discussed in Section 6.4 below. Concerning the influence of out-
of-plane movement on strain maps, it is shown in [61] that a change δd in the distance

d between specimen and camera induces a parasitic strain equal to ε = −δd
d

. We

do not consider the miscalibration of the parameters, but the bias due to image
processing itself. Thus we will focus only on this last issue in this section. The most
striking point is that this bias depends on the local distribution of the displacement
or the strain itself, more precisely the ”sharpness” of the details in the distribution to
be revealed at a given point. Hence bij depends on the local nature of the measurand:
the bias is signal-dependent, which makes it difficult to assess in practice. In the
general case, this is a spatially changing quantity, and thus not a unique scalar which
would ideally model this property. It is however possible to assess bij in synthetic
cases for which a reference strain field is known a priori, as discussed in Section 5.4.2.

• eij is a random quantity, so statistics must be employed to model and describe it
correctly. It depends on extrinsic parameters such as grid contrast or lighting inten-
sity. Since lighting is often not constant throughout grid images, the characteristics
of this noise, especially its standard deviation, generally evolves throughout strain
maps. Other phenomena induce errors such as thermal effects, convection with am-
biant air, vibrations, lighting flickering or calculating/truncation errors for instance.
They are however difficult to quantify and often neglected or incorporated in the
random part of the error, so they are not considered in the present study.

5.3 Definition of the metrological performance parameters

Following the preceding comments, we will mainly focus here on three important parame-
ters describing the metrological performances of the grid method, namely the measurement
resolution, the bias and the spatial resolution. They are briefly defined or recalled here-
after.

5.3.1 Measurement resolution

In Ref. [159], the measurement resolution is defined by the smallest change in a quantity
being measured that causes a perceptible change in the corresponding indication. More
precisely, it is proposed in [164] to define it as the change in quantity being measured that
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causes a change in the corresponding indication greater than one standard deviation of the
measurement noise, which enables us to quantify it. This definition is quite arbitrary, any
other (reasonable) multiple of the standard deviation being also potentially acceptable,
but the idea is that the resolution quantifies the smallest change not likely to be caused
by measurement noise [164]. We focus here on camera sensor noise which propagates to
the final displacement or strain maps through the image processing procedure which is
employed. This is often the main cause of noise in final displacement and strain maps,
and it is also possible to analyze this noise from a theoretical point of view. Some other
causes of disturbance may occur in practice:

• Quantization also induces a noise, but it is generally lower than the preceding one,
and thus not considered here. The interested reader is referred to [135] for additional
information on this problem.

• Another cause of disturbance is the presence of grid defects. These defects are pitch
fluctuation or local lack of marking. These defects are discussed in Section 6.6 and
it is shown that there impact on the displacement and strain fields can be eliminated
to a large extent, but it is difficult to model the residual which remains after this
correction, and thus to predict their impact on measurements: they can only be
assessed through real experiments.

• Aliasing or a slight moiré phenomenon between grid and camera sensor may also
occur. They cause parasitic fringes to appear, but this phenomenon is difficult to
master and thus even more to model because it depends on various settings and
camera features. This point is discussed in Sections 6.1 and 6.7.

• Finally, the quality of the displacement and strain maps also depends on the pixel
density chosen to encode one grid pitch but again, this point is difficult to model.

In conclusion, we study here the measurement resolution from a theoretical point of
view, so we consider that the camera sensor is the sole cause of random noise in displace-
ment and strain maps.

5.3.2 Measurement bias

As explained above, the bias due to grid image processing depends on the actual distribu-
tion of the quantity to be determined (displacement or strain). A classic way to assess the
bias is to employ a mere synthetic sine function. This bias is then estimated as a function
of the frequency of this sine, as in Ref. [165, 166, 167, 168] for DIC and in [125, 169] for
methods based on phase extraction. The bias is here equal to the loss of amplitude of
this sine function which models the reference distribution. We consider here the quantity
denoted λ defined as the ratio between this loss of amplitude and the amplitude of the
reference sine function itself. This normalised bias, called hereafter bias for the sake of
convenience, is thus a positive number systematically lower than one.

5.3.3 Spatial resolution

We propose here two definitions of the spatial resolution. With the first definition, the
spatial resolution denoted d1j , j ∈ {u, ε} is defined as the shortest distance between two
spatially independent measurements. This definition has been adopted for instance in [78].
Since a window is used in the WFT, the spatial resolution can be defined by the width of
this window. For a triangle, this is the base of the triangle. For a Gaussian window, this
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is a multiple of the standard deviation of the Gaussian window. According to the classic
3−σ rule [170], this width is considered to be equal to 6×σ. This choice is quite arbitrary
and other multiples of the standard deviation could be considered. This definition of the
spatial resolution holds here for the phase, and therefore for the displacement. It also holds
for the phase derivatives and the strain components if no smoothing is performed before
deriving the phases and the displacements, respectively. Otherwise spatial resolution is
all the more impaired as the width of the filter is significant.

We can see that this definition is quite arbitrary in the case of the Gaussian analysis
window. Hence we propose a second definition suggested in [167], after similar defintion
proposed in [165]. The spatial resolution denoted d2j , j ∈ {u, ε} is defined here as the
lowest period of a sinusoidal deformation that the technique is able to reproduce before
losing a certain percentage of amplitude, in other words before the bias reaches a certain
value, which must be chosen a priori. The advantage of the second definition is to not
directly depend on the size of the region surrounding the pixel at which each measurement
is obtained, this size being not always clearly defined. A limitation is the fact that in some
cases, the loss of amplitude is not a monotonic function of the period of the aforementioned
signal, which can potentially lead to ambiguous values for the spatial resolution with this
definition. This is for instance the case of some types of windows different from the
Gaussian one. This point is discussed further in [137].

5.4 Relationship between the parameters

5.4.1 Introduction

It is worth emphasizing that the aforementioned quantities are linked. In addition, since
the bias is linked to the actual value for the strain itself, it is not intrinsic to the mea-
surement technique. Finally, we deal here with a full-field measurement technique. This
causes the spatial resolution to be introduced, which is unusual with classic measuring
tools providing scalar quantities. This is one of the reasons why it is difficult to have a
clear view on the metrological performance of full-field measurement techniques.

The link between these parameters can be illustrated as follows:

• improving the spatial resolution (i.e. reducing the distance between independent
measuring points) leads to impair the measurement resolution (i.e. to increase the
noise level in the measurements). This corresponds to an intuitive result: when
decreasing the size of the window employed in the WFT, the number of pixels em-
ployed to retrieve the phases and their derivatives decreases. Hence we focus on
a zone which decreases in size, which leads theoretically to reveal smaller actual
events that occur in the displacement or strain distribution over the specimen under
consideration. It means that the spatial resolution is improved. At the same time
however, the integrals calculated in the WFT rely on a decreasing number of pix-
els. Since the grey level at each pixel is impacted by sensor noise, the integrals are
all the more affected by noise as the number of pixels involved in their calculation
decreases, impairing the measurement resolution in proportion. It means that the
standard deviation of the eij distribution in Equation 5.2 increases.

• in the same way, improving the spatial resolution (thus reducing the distance between
independent measuring points) leads to decrease the bias: the value given by the
WFT is less suffering from a local ”averaging effect” since the integrals of the WFT
are calculated over smaller zones. Consequently and regardless of the noise, the
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measured value becomes closer to the actual and sought value, and consequently the
bias diminishes and the trueness increases.

A positive point is that for the grid method, these subtle, interconnected but intu-
itive phenomena can be quantified by closed-form equations which are summarized in the
following section.

5.4.2 Link between relative bias and spatial resolution in case of synthetic
sinusoidal distributions

As proposed in other papers dealing with the metrological performance of full-field mea-
suring techniques [165, 167, 169], we propose here to consider independent reference dis-
placement or strain distributions modeled each by a sine function{

ũy(x, y) = Asin (2πf ′x)
ε̃yy(x, y) = Bsin (2πf ′x)

(5.3)

where A,B are any real constants. f ′ is the frequency of the sine functions (f is the
grid frequency). We deal here with a simulation, so no defect impacts the initial phase
distribution, which can thus be considered as null. Consequently, displacement uy linearly
depends on the phase Φy (instead of being proportional to the difference between current

and reference phases), and strain εyy is directly proportional to the phase derivative
dΦy

dy
.

ũy and ε̃y are here completely independent and disconnected, describing each a synthetic
state of displacement/strain: the displacement ensuring a constant strain amplitude in
the second case is ũy = B/(2π)f ′sin (2πf ′x), but it does not exhibit a constant amplitude.
Such reference distributions modulating each a grid, the question is to know how these
signals are returned by the WFT for these two grid images. It has been shown in [171]
that at first approximation and regardless of the pixellation of the actual signal, the phases
extracted with the WFT are equal to their actual counterparts convolved by the window
of the WFT. The same remark holds for the displacement, the phase derivatives and the
strain components. If the image is noisy, a spatially correlated Gaussian noise, whose
covariance can be characterized, must be added to the phase or phase derivative maps.
The variance of this noise is discussed in the following section. In the current case, since
we consider a noiseless reference distribution, we have{

uy = ũy ∗ g
εyy = ε̃yy ∗ g

(5.4)

It means that in the case of an actual displacement or strain distribution modelled
by a sine function, we just have to calculate the convolution of this sine by the analysis
window of the WFT to get the result. This simple calculation, carried out in Ref. [137]
for various windows used in the WFT, shows that the WFT returns a sine distribution
whose amplitude A′ is lower than A since 0 < λ < 1. For instance, for a Gaussian window
of standard deviation σ, we have for the two aforementioned displacement and strain
distributions {

A′ = A× e−2π2σ2f ′2

B′ = B × e−2π2σ2f ′2 (5.5)

The relative bias denoted λ as defined in Section 5.3.1 is therefore equal to:

λ = 1− e−2π2σ2f ′2 (5.6)
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Results obtained with other analysis windows are discussed in [137].
Note that in real configurations, the displacement gradients are in general much less

marked than the strain gradients. It means that for a given size of the analysis window,
the convolution by the analysis window mainly affects in practice strain maps, not really
displacement maps. This is visible to the naked eye by a blur which is much more marked
in actual measured strain maps than in the corresponding measured displacement maps.
Consequently and for the sake of brevity, we mainly focus in the following on strain maps
only, but similar results are obtained with displacement maps.

Equation 5.6 provides the link between the bias λ and the spatial resolution. With the

first definition given in Section 5.3, we just have to substitute σ by σ =
d1ε
6

in Equation 5.6,

and with the second definition, f ′ by
1

d2ε
, where f ′ is the highest frequency of the sine

distribution the method is able to reproduce with a given bias equal to λ. For the first
definition, this leads to

d1ε =
3
√

2

πf ′

√
− log(1− λ),with 0 < λ < 1

or, conversely

λ = 1− e
−
π2f ′2d21ε

18

(5.7)

With the second definition, we deduce from Equation 5.6
d2ε =

√
2πσ√

− log (1− λ)
, with 0 < λ < 1

or, conversely

λ = 1− e
−2π2

σ2

d22ε

(5.8)

f ′ shall be regarded as a parameter in Equations 5.7, and λ, σ as parameters in
Equations 5.8.

We can easily deduce from Equation 5.6 the following link between d1ε, d2ε and λ:

d1ε
d2ε

=
3
√

2

π

√
− log (1− λ), with 0 < λ < 1 (5.9)

The same equation can be written for the link between d1u and d2u. From Equations 5.7
and 5.8, it is worth mentioning that d1ε and d2ε evolve in an opposite way as a function
of λ. This is logical: increasing the bias (thus λ → 1) for a given frequency f ′ means
that the size of the analysis window used in the WFT increases, thus that the distance
between two independent measurements increases too, so d1ε increases with λ. On the
contrary, increasing the bias for a given width of the window means that the frequency of
the signal increases, so that its inverse (which is d2ε according to its definition) decreases.
As a result, the ratio between d1ε and d2ε increases as λ increases, as shown in Figure 3.

The effect of the bias can be visually estimated on the simulation shown in Figure 4.
Figure 4-a shows a simulated phase evolution Φy. It is such that εyy keeps the same
amplitude (here 10−3) over the whole map. For each column, the period of the sine
component along the y-direction is constant while this period gently and linearly increases
from 10 to 150 pixels along the x-direction. Consequently, the amplitude of uy also
changes to insure a constant magnitude of the spatial derivative along y. The displacement
corresponding to this strain distribution distribution serves as a modulation of the grid
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Figure 3: Ratio between d1ε and d2ε given by Equation 5.9. Note that d1ε = d2ε for
λ = 0.422

model given in Equation 4.1 to build a synthetic grid image. The pitch p of this grid is here
equal to 5 pixels, which is a typical value chosen for encoding grids in practice. Figure 4-b
shows the distribution estimated with the WFT, in which a Gaussian window has been
employed. The standard deviation chosen here is the minimum for this quantity [171]:
σ = p = 5 pixels. It can be clearly seen that the estimated strain is smaller than the
reference one, as also illustrated with the difference between the reference strain and the
strain returned by the WFT (see Figure 4-c). The relative bias λ is deduced by dividing
this loss in amplitude by the reference amplitude, thus the value at the cross-section of
the distribution in Figure 4-c at y = 500 pixels, by the reference amplitude. We give the

obtained curve as a function of the period
1

f ′
directly, this quantity being proportional to

x. The bias is all the greater as the period is the smaller (on the left-hand side of the curve,
near λ = 1), as expected. The value for the relative bias obtained from this simulation
(solid line) can be compared with that predicted with Equation 5.6 (dashed line). It can
be checked that both curves are in very good agreement, illustrating the relevance of this
simple predictive formula for the bias. Note that this monotonic evolution of the bias as
a function of the period/frequency of the signal is not observed for some other types of
windows which can be employed in the WFT, see [137].

5.4.3 Link between measurement resolution and spatial resolution

Even though it is possible to perform Monte-Carlo-based approaches to assess the measure-
ment resolution in displacement and strain maps (see [172] for instance), it is of prime im-
portance to have closed-form expressions for this measurement resolution to conveniently
study the influence of various parameters. These expressions are obtained assuming that
a Gaussian white noise affects the grid images (the standard deviation of this noise is a
constant denoted σimage). This is a rough assumption because σimage spatially varies and
depends on the brightness in actual images, but we will in Section 6.5 how to tackle this
issue. After pioneering work by Surrel in the discrete case and considering a triangular
window in the WFT [130], a Gaussian analysis window was employed in [171] and the
covariance matrix characterizing the noise in phase and phase derivative maps was pro-
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vided (results obtained with other types of windows are discussed in [137]). The noise
variances in the phase and phase derivative maps are then easily deduced. Taking into
account the link between changes in phases (resp. phase derivatives) on the one hand, and
displacement (resp. strain) components on the other hand (see Equations 4.12 and 4.25),
the following relationships were proposed in [78] between the measurement resolution and
the first definition of the spatial resolution:

σu × d1u = pCu ×
√

∆x∆y

K
× σimage for displacement and

σε × d21ε = pCε ×
√

∆x∆y

K
× σimage for strain

(5.10)

Note that Equation 5.10-b holds for normal strain components εxx and εyy. For εxy,
the right-hand side term of Equation 5.10 should be divided by

√
2 (see Equation 4.16).

In these equations:

• σu and σε are respectively the standard deviation for the noise in the displacement
and strain maps, so the corresponding measurement resolution according to the
definitions adopted in Section 5.3.1

• p is the pitch of the grid

• Cε and Cu are coefficients depending solely on the nature of the window employed

in the WFT. With a Gaussian analysis window, Cu =
3

2π
3
2

and Cε =
9
√

2

2π
3
2

• ∆x and ∆y represent here the dimensions of one pixel. Hence if all the dimensions
are given in pixel, ∆x = ∆y = 1

• K is the modulus |Ψ| of the WFT of the grid image. The moduli obtained for the
WFT calculated along x or y are theoretically equal [171], so no distinction is made
here in the notation for quantities calculated along x and y. K is theoretically equal
to [78]

K =
|d1|γA

2
(5.11)

where |d1| is the modulus of the coefficient of the first non-constant term in the
Fourier expansion of the frng function which defines the profile of the grid lines in
Equation 4.1 above, and A and γ are as defined in Equation 4.1.

• σimage is the standard deviation of the noise impairing the grid images. In these
equations, it is assumed to be constant for the sake of simplicity, but this assumption
is not really satisfied in real grid images, as discussed in Section 6.5.

We obtain similar equations for the second definition of the spatial resolution by sub-

stituting d1 by d2
3
√

2

π

√
− log (1− λ) thanks to Equation 5.9. This leads to


σu × d2u =

pCuπ

3
√

2
√
− log (1− λ)

×
√

∆x∆y

K
× σimage for displacement and

σε × d22ε = − pCεπ
2

18 log (1− λ)
×
√

∆x∆y

K
× σimage for strain

(5.12)
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, 0 < λ < 1. Products σu × d1u and σε × d21ε,

remain constant when σ changes. Hence increasing d1j , j = u, ε causes σj , i = u, ε to
decrease.

Equations 5.10 and 5.12 directly drive sensor noise propagation from grid images to
displacement and strain maps.

Only one parameter can be changed by the user for a given set of grid images to be
processed: σ (or the width of the analysis window in the WFT). With the first definition
of the spatial resolution, changing this parameter directly impacts the spatial resolution
since σ and spatial resolution are proportional in this case. Equations 5.10 tell us that
both products σu × d1u and σε × d21ε remain constant for a given noise impairing the
grid images and for a given modulus K of the WFT. This result is obtained whatever
the frequency f ′ of the displacement/strain fields modulating the grid. This property is
graphically illustrated in Figure 5-a for displacement and in Figure 5-b for strain. The area
of both rectangles is proportional to the noise intensity in the grid images, and inversely
proportional to the modulus of the WFT, thus to both the lighting intensity and the
contrast of the grid images (see Equation 5.11). This is consistent with intuition. The
area of both rectangles does not depend on σ if i = 1, thus does not depend on d1ε and
d1u. It means that changing the spatial resolution by changing σ only causes the upper
right corner of both rectangles to slide along a curve defined by Equations 5.10-a or -b,
and the shape of these curves does not depend on σ.

With the second definition of the spatial resolution, the area of both rectangles depends
on λ, which is now a parameters chosen the user. Changing only σ and keeping λ constant
leads to the same conclusion as in the preceding case, but this is not the case anymore
when λ changes too.
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5.4.4 3D visualization of the link between strain resolution, spatial resolution
and relative bias in the case of sinusoidal distributions

Measurement resolution, spatial resolution and relative bias being interconnected through
Equations 5.10, 5.12 and 5.6, it is difficult to have a clear view on the metrological per-
formance of the measuring technique in terms of

• sensor noise propagation up to the final maps

• ability to distinguish close features in displacement and strain maps

• ability to provide the true value for the measurement (with the trueness as defined
in [159]).

As explained above, strain maps are much more affected by the bias than displacement
maps, so we focus hereafter on strain maps only. Combining Equation 5.10-b for d1ε (or
Equation 5.12-b for d2ε) and Equation 5.6 leads to the link between the strain resolution
σε, the spatial resolution d1ε (or d2ε) and the relative bias λ. The user generally chooses
the width of the by fixing σ, so for the first definition of the spatial resolution, d1ε is
straightforwardly obtained as a multiple of σ, and the two other parameters are deduced
from this choice. This is more subtle for d2ε since this latter quantity is driven by the bias
λ that the user must choose in addition to σ.

These two sets of links can be modeled each by a 3D plot in the strain resolution / spa-
tial resolution / relative bias space. We propose here a synthetic example which relies on an
ideal grid image, in which representative values for the various parameters involved in the
calculations are considered. More precisely, it is obtained under the following conditions:

• We consider virtual and perfect grid images shot by a virtual 12-bit camera. Gray-
level intensities are however encoded on 16 bits by multiplying the 12-bit camera
output by 24, in order to mimic the raw images given by popular cameras providing
16-bit image files. The whole dynamics of the bit depth is employed at any pixel, so
A = 215 and γ = 1 in Equation 4.1.

• The grid pitch p is encoded with 5 pixels, which is a classic value for this parameter
in practice. We explore values for σ lying between the pitch p of the grid (this is
the minimum value according to [171]), so 5 pixels here, and twice this pitch, thus
10 pixels.

• The line profile is assumed to be an ideal pure sine. In this case, d1 = 0.5 in
Equation 5.11 [78]. In this example, with the values of the parameters given above,
we have K = 213.

• For d1ε, the synthetic phase distribution is a sine wave whose period
1

f ′
lies between

twice the grid pitch and 15 times the grid pitch (with values which are multiples of

the pitch), thus
1

f ′
∈ [10, 75] pixels. This pitch can be considered as a parameter

and we can observe its influence on the bias.

• For d2ε, the bias evolves stepwise from 0.1 to 0.2 (we chose small values because
users generally want a low bias in their measurements), so we have two parameters
influencing the response, σ which lies between 5 and 10 pixels, and λ between 0.1 to
0.2.
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• This value for the standard deviation is similar to that observed on average with
the 16-bit image shot with the CCD camera used in Ref. [78]: σimage = 350 gray
levels (see Section 6.5 to account for the actual response of a camera sensor, which
is signal-dependent).

These parameters represent an ideal case: in real images, γ is lower than one and A
lower than 215. The line profile is not a pure sine function neither, so d1 is lower than
0.5 (see the annex of Ref. [78] for further details). It means that the present simulation
represents the upper bound of the metrological perfomance which can be reached with
this aforementioned virtual camera.

For the first definition of the spatial resolution, Equation 5.10-b and 5.6 become re-
spectively: 

σε =

(
5× (

9
√

2

2π3/2
)× 1

213
× 350

)
1

d21ε
' 0.2441

d21ε

λ ' e−0.5483f ′2d21ε , 10 ≤ 1

f ′
≤ 75 (in pixels)

(5.13)

For the second definition, Equations 5.12-b and 5.6 give


σε '

(
−5× (

9
√

2

2π3/2
)× π2

18 log(1− λ)
× 1

213
× 350

)
1

d22ε
' −0.1339

d22ε log(1− λ)

d2ε =

√
2πσ√

− log(1− λ)
, 5 ≤ σ ≤ 10 (in pixels), 0.1 ≤ λ ≤ 0.2

(5.14)

Both sets of equations represent each a 3D curve in the strain resolution-spatial resolution-
relative bias space, f ′, λ and σ being parameters. These two sets of curves are plotted in
Figure 6 and Figure 7, respectively, along with their projections in the three planes of this
space (see subfigures -b, -c and -d). The following comments can be drawn:

Figure 6:

• in Figure 6-a and 6-b, it is clear that for a given spatial resolution, the bias increases
as the frequency of the signal increases

• it is clearly visible in Figure 6-a that the strain resolution/spatial resolution curves
do not depend on the period of the sine wave which serves as a reference, thus on
the bias. This is confirmed by the top view shown in Figure 6-c

• from a qualitative point of view and as expected, the strain resolution decreases
and the relative bias increases as the spatial resolution increases, see Figure 6-b and
Figure 6-d, respectively

Figure 7:

• all the three parameters are now interconnected, since the strain resolution/spatial
resolution curves now depend on the bias, even if the effect is slight for this set of
parameter values, as can be seen in Figure 7-c

• fixing the value of λ and changing the value of σ leads to a curve. The set of curves
obtained for various values of λ is not plotted along the same vertical direction,
which was the case when considering d1 instead of d2
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• the domain of definition of the strain resolution/spatial resolution equation now
depends on the bias.

• since we considered low values for the bias in this example (0.1 < λ < 0.2), we
can see that d2ε > d1ε, as expected when considering the ratio between these two
quantities shown in Figure 3

• for this set of parameter values, the spatial distribution reaches greater values than
in the preceding case while the strain resolution spans the same interval. This
illustrates on this simple example that the metrological properties must be given
with a clear definition of the parameters involved.

5.4.5 Case of real distributions: towards deconvolution of strain maps

A wide range of frequencies is involved in real displacement and strain maps. The estimate
for λ discussed in the particular case of a sine function can be employed here to see how
real strain maps are corrupted by the bias. According to Equation 4.26, the FT of any
sought noise-free in-plane strain distribution ε̃kl, k, l ∈ x, y is defined by

̂̃εkl(ξ, η) =

∫ +∞

−∞

∫ +∞

−∞
ε̃kl(x, y)e−2iπ(ξx+ηy) dx dy (5.15)

and the IFT of ̂̃εkl (according to Equation 4.28)

ε̃kl(x, y) =

∫ +∞

−∞

∫ +∞

−∞
̂̃εkl(ξ, η)e2iπ(ξx+ηy) dξ dη (5.16)

The discrete FT would be employed in practice to calculate these quantities, but we
use here the continuous approach to be consistent with the results discussed in Section 4.4.
According to Equation 5.5, we know that after applying the LSA with a Gaussian analysis
window of standard deviation σ, the amplitude of any sine wave of frequency f ′ is multi-
plied by a factor equal to e−2π

2σ2f ′2 if a Gaussian window is employed in the WFT. The
Fourier transform being linear, each term in the integral defining the inverse Fourier trans-
form of ̂̃εkl is affected by a weighting factor lower than one, and whose amplitude depends
on the frequency of the harmonic. Consequently, the sought strain field ε̃kl impaired by
the bias writes as follows

ε̃kl(x, y) + bkl(x, y) =

∫ +∞

−∞

∫ +∞

−∞
̂̃εkl(ξ, η)e2iπ(ξx+ηy)e(−2π

2σ2(ξ2+η2)) dξ dη (5.17)

So the bias affecting the strain field εkl is equal to

bkl(x, y) =

∫ +∞

−∞

∫ +∞

−∞
̂̃εkl(ξ, η)e2iπ(ξx+ηy)

(
1− e(−2π2σ2(ξ2+η2))

)
dξ dη (5.18)

We can see that the bias is not constant throughout a strain map since it depends
on its local ”frequential signature”. It is all the greater as the coefficients of the highest
frequencies involved in the Fourier transform of the sought noise-free strain map are high.
Thus, local refined details in strain maps are impaired since they need high frequencies to
be correctly described. The consequence of this phenomenon is that details are blurred.

It is worth mentioning that this weighting function e(−2π
2σ2(ξ2+η2)) rapidly decreases

to zero as the frequencies along x and y increase because of its exponential nature. For
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Figure 8: Cross-section along the u-axis of the weighting function affecting the Fourier
coefficients. M=500 pixels.

instance, considering the cross-section along the ξ-axis of this function defined in the
amplitude spectrum leads to the curve shown in Figure 8, in the particular case M =
1001 pixels (frequencies ξ and η lie between 0 and 0.5 cycle per period in the discrete case).
Three different values for σ are considered, lying from σ = 5, which is a common value
for the standard deviation of the Gaussian analysis window, to σ = 9. It can be observed
that most of the coefficients are multiplied by a factor close to zero, thus nullifying their
influence in the measured strain map and causing blur to appear. Choosing a narrower
analysis window such as a triangular one would lead to a wider weighting function, but
the strain resolution would be impaired, in addition to some specific problems due to such
an analysis window (for instance, the need for an integer value of pixels for the width of
the window) [137].

Another important conclusion is that assessing the bias for a given strain map is not
possible since we measure in practice a strain map εkl which is biased and noisy, and
not the actual, noise-free and unbiased sought distribution ε̃kl. Consequently, dividing
naively the Fourier coefficients of the measured strain distribution by the weighting func-
tion e(−2π

2σ2(ξ2+η2)) to retrieve the Fourier coefficients of the actual strain distribution is
completely unstable. The reason is that away from the center of the amplitude spectrum,
we divide tiny quantities, namely Fourier coefficients mainly due to measurement noise, by
coefficients which are also very close to zero. Retrieving the unbiased distribution from the
measured one is in fact equivalent to deconvolve noisy strain maps. Deconvolution in the
presence of noise, also called restoration, is however a problem as such in the image pro-
cessing community. The reason is that as explained above, the problem becomes ill-posed
in the sense of Hadamard [173], meaning that there is no unique solution. As a general
remark, solving this type of problem requires suitable strategies based on regularization,
and/or the introduction of a priori knowledge on noise or on the sought quantity. A broad
literature on image restoration is available in the image processing community (see [174]
for the general case or Ref. [175] for instance in the representative field of astronomy).
Nevertheless, the main conclusion of an exploratory work on deconvolution of strain maps
published in [169] is that restoration tools suitable for strain maps still remain to be in-
vented, though we are here in the favorable case of non-blind deconvolution. It means that
the so-called Point Spread Function (i.e. the function causing the blur by convolution of
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Figure 9: Typical experimental setup. A: camera, B: lighting, C: direct current trans-
former, D: digital camera, E: two translation stages, F: three-way photographic head.

the actual map) is known a priori.

5.4.6 Conclusion on the metrological performance

In conclusion, the fact that measurements are impaired by systematic (bias) and random
errors shall not be considered as crippling for an effective use of the grid method for in-
plane displacement and strain measurement: even common electrical strain gauges also
feature such a drawback like any other measuring tool. The positive point here is that
some information is available to quantify the main metrological parameters characterizing
the grid method when the WFT is used to process grid images.

6 Some aspects on the practical implementation of the grid
method

We address here briefly some practical aspects of the grid method. This can turn out to
be potentially useful for the reader interested in applying this technique.

6.1 Setting up the grid method

Figure 9 shows a typical experiment carried out with the grid method (here a compression
test). A grid was deposited on the front face of the specimen beforehand (see Section 3
above). In this experiment, the specimen (A) is placed in a conventional tensile machine.
Its front face is illuminated with a steady light (B) to avoid any light flickering. This light
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is supplied by a direct current transformer (C). A digital camera (D) is placed in front of
the specimen to capture grid images while applying the load.

Adjusting the location of the camera must be made carefully to have the camera sensor
as parallel as possible with the front face of the specimen. The camera is therefore mounted
first on two perpendicular translation stages (E) which allows to adjust the location of the
camera in the x-y horizontal plane. It is also possible to move the camera along the z-
direction with the column mechanism of the tripod. A rotation about each of the three
perpendicular axes (front tilt, side tilt and panoramic) is also possible with a suitable
three-way ball head (F), each rotation being adjusted with a separate lever. These six
degrees of freedom permit framing adjustment to have the camera sensor as parallel as
possible with the front face of the specimen.

With a fixed focal lens, the distance between front face of the specimen and camera
influences the number of pixels used to encode one grid pitch. This number must be as
close as possible to an integer when using some types of windows in the WFT [137]. Even
when this is not a strict requirement, this condition should be satisfied with some cameras
whatever the choice of the window. The orientation of the camera is indeed often adjusted
in such a way that the lines of the grid are aligned with the lines and columns of the camera
sensor. In this case, non-integer encoding increases the risk of parasitic fringes in strain
maps due to some slight moiré effect between grid and camera sensor (see Section 6.7),
especially for small strain values. Depositing the grid in such a way that the lines are
inclined with respect to the lines and columns of the camera sensor strongly contributes
to avoid this undesirable phenomenon. This point is discussed in depth in [176], where a
strategy for finding an optimum angle is proposed. Defocusing also limits this phenomenon
by smoothing out the high frequency components of the image and enforcing the Nyquist
sampling condition. This however induces the contrast in images to decrease, thus the
modulus K of the WFT to decrease too, which causes the noise level in final strain maps
to increase according to Equation 5.10-5.12.

At the end and regardless of issues caused by distortion which may occur (see Sec-
tion 6.4), the number of pixels per grid period can be checked in various zones of the grid
images. Possible differences help the user rotate the camera in the right direction.

6.2 Extrinsic and intrinsic parameters, or how to reduce sensor noise
propagation into strain maps?

The user is generally interested in improving the quality of the maps he obtains. It means
that the noise impairing the maps which is due to camera sensor noise propagation must
be as small as possible, especially when small strains are measured. To examine which
setting must be adopted, it is interesting to examine in turn the influence of each quantity
involved in Equations 5.10 and 5.12. This will help the user understand what can be done
in practice to influence the metrological performance in the right direction. Again, we
only consider the second equation which concerns strain. However similar conclusions can
be drawn for displacement.

We propose to rewrite Equations 5.10-b and 5.12-b to distinguish intrinsic and extrinsic
parameters. The first ones represent the signature of the technique itself. They also
depend on the settings which are chosen and mastered by the user, within certain limits.
The second ones mainly depend on external factors, on which the user has only a limited
influence, if not no influence at all. In this spirit, Equation 5.10-b and 5.12-b can be
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rewritten as follows:

σε︸︷︷︸
consequence of
the following
parameters

= ki×
1

d2
iε︸︷︷︸

depends on
the width of

the analysis window
(intrinsic and

user-dependent)

× p︸︷︷︸
depends on

the grid pitch
encoding

(intrinsic and
user-dependent)

× Cε︸︷︷︸
depends on

the nature of
the analysis window

in the WFT
(intrinsic and

user-dependent)

×
√

∆x∆y︸ ︷︷ ︸
=1 for

distances
in pixels

× 1

K︸︷︷︸
following

Equation 5.11,
depends on

lighting, grid
contrast and

line profile
(extrinsic)

× σimage︸ ︷︷ ︸
depends on
the camera
(extrinsic)

(6.1)

where i = 1 for the first definition of the spatial resolution, and i = 2 for the second

definition. k1 = 1 and k2 =
π

3
√
−2 log(1− λ)

, 0 < λ < 1. The following comment can be

drawn on the different parameters:

• d1ε: The spatial resolution is fixed by the user as soon as he chooses the width of
the analysis window employed in the WFT, since both quantities are equal for this
definition of the spatial resolution.

• p: The number of pixels per grid period is also a parameter chosen by the user.
For some types of analysis windows, it is generally recommended to have an integer
number for this quantity [137].

• Cε, Cu: These coefficients solely depend on the type of analysis window employed
in the WFT (see [137] for other types of windows). Obviously, the lower the values
for Cε and Cu, the lower the noise level due to sensor noise in the final maps.

• 1

K
: K is the modulus of the WFT. It is calculated at any pixel. Assuming a perfect

surface marking and according to the grid model in Equation 4.1, this quantity is
defined in Equation 5.11. From the definition of K in Equation 5.11, we can conclude
that the higher amplitude A and contrast γ, the lower the value for K and thus the
lower the noise level caused by sensor noise in the final maps, which is in accordance
with intuition. The highest value for |d1| is obtained with a sine profile: we have
d1 = 0.5 in this case. Any other profile would lead to a lower value. In practice, the
user has a limited influence on these parameters: he can adjust light intensity (thus
adjust A), but this intensity is often heterogeneous over the surface of the grid. Note
that this phenomenon has no real influence on the phase extracted by the WFT as
long as the brightness does not significantly evolves over the surface of the window
employed in the WFT. In the same way, the line profile depends on the quality of
the surface marking, and thus mainly on the quality of the grid which is transferred
or deposited.

• σimage is the equivalent standard deviation of the noise impairing grid images shot
with a CCD camera [78]. It is assumed here to be constant, but the actual value is
a function of pixel intensity, as discussed in Section 6.5.

6.3 Noise pattern impairing retrieved maps, spatially correlated noise

It is worth mentioning that noise in displacement and strain maps is spatially correlated.
It has been shown in Ref. [171] that in phase maps, this spatial correlation manifests itself
by ”blobs” covering several pixels instead of the grainy aspect that would give a noise
impairing the grey level at each pixel independently. This point is also discussed in [177].
This is the consequence of the fact that noise affecting displacement and strain maps
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is spatially correlated. The phenomenon can be assessed with the correlation function
between the noise at two points M1 and M2 in a map. This quantity writes as follows:

Cor(ekij(M1), e
k
ij(M2)) =

Covar(ekij(M1), e
k
ij(M2))√

Var(ekij(M1))Var(ekij(M2))
i, j ∈ {x, y}, k ∈ {u, ε} (6.2)

The whole covariance matrix for the phase and phase derivative in grid images affected
by homoscedastic noise has been established in [171] when a Gaussian analysis window is
used in the WFT. Results obtained with other analysis windows are discussed in [137].
Displacement and strain components being linked through Equations 4.14 and 4.18 with
the phase and the phase derivatives, respectively, we can deduce the correlation function
for these quantities. From the components of the covariance matrices given in [171] and
denoting s = x2 − x1 and t = y2 − y1, this leads to:
for displacement:

Cor(eui (M1), e
u
i (M2)) = e

−(s2 + t2)

4σ2 i, j ∈ {x, y} (6.3)

for strain:

Cor
(
eεij(M1), e

ε
ij(M2)

)
=

1

2

(
2− a1

s2

σ2
− a2

t2

σ2

)
e

−(s2 + t2)

4σ2

with


(a1, a2) = (1, 1) if (i, j) = (x, y)
(a1, a2) = (2, 0) if (i, j) = (x, x)
(a1, a2) = (0, 2) if (i, j) = (y, y)

(6.4)

The second equation is valid only if no additional filtering of the displacement maps is
performed before differentiation to get the strain components. Interestingly, the correlation
between the noise in displacement maps at two different points is a Gaussian function of
the distance between M1 and M2. Its standard deviation is

√
2σ (instead of σ for the

standard deviation of the Gaussian window used in the WFT to extract phases). If we
adopt the classic 3 − σ rule to assess the width of a Gaussian window, it means that
beyond 6

√
2σ in distance, points in displacement maps are nearly not correlated. The

2D Gaussian being isotropic, the global aspect of blobs in displacement maps is isotropic.
This property is illustrated in Figure 10-a, where a circle featuring a diameter equal to
6
√

2σ has been superposed on blobs observed in a typical displacement map. As can be
seen, this assessment is in agreement with what is observed.

For strain maps, the conclusion is slightly different: the same Gaussian function as
above is multiplied by a quadratic function. If i 6= j, the quadratic function is isotropic,
thus leading the blobs to be isotropic on average. The Gaussian distribution being however
multiplied by a function which is lower than one, the average size of the blobs is reduced
in an isotropic manner. It means than the size of the blobs becomes lower than that of the
blobs impairing the displacement maps, the latter being governed by the Gaussian function
alone. This is clearly visible in Figure 10-b, where the blobs for εxy are smaller than in
Figure 10-a for ux. If i = j = x (resp. = y) for instance, this function only depends on the
coordinate along direction x (resp. y), namely s (resp. t). This function being lower than
one, this leads the isotropic Gaussian distribution to be shrunk along direction x (resp. y),
the other dimension being unchanged. This is exactly what is observed in Figures 10-c
(resp. Figure 10-d) where the blobs are clearly shrunk along x (resp. y). Figures 10-e
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Figure 10: Close-ups of typical examples of blob distributions in experimental displacement
and strain maps measured during a translation test. a- blobs in typical displacement maps
are isotropic on average (here ux as an example). They are within a circle of diameter
6
√

2σ. b- blobs in εxy shear strain maps are isotropic on average. Their average dimension
is smaller than those found for the displacement map (to be compared with the size of the
blobs in subfigure a-). c- blobs in εxx strain maps are shrunk along direction x d- blobs in
εyy strain maps are shrunk along direction y. e- correlation function for the random noise
process in εxx. f- correlation function for the random noise process in εyy. All dimensions
in pixels, 1 pixel represents 40 µm on the specimen for subfigures a-, b-, c-, d-.
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and 10-f represent the correlation function for the random noise process in εxx and εyy,
respectively (see Equation 6.4 for the corresponding analytical expression). It is clear that
in terms of shape and size, the corresponding dots are in agreement with those depicted in
Figures 10-c and 10-d. This observation is expected on average, the experimental process
observed here being non-deterministic.

As a final remark, we can note that it would be useful to have a practical decision rule to
discriminate between noise blobs and actual details of a strain field. Interestingly, a similar
problem arises in positron emission tomography (PET) an functional magnetic resonance
imaging (FMRI), also affected by a correlated noise (see for instance [178]). Under white
noise assumption, simple hypothesis testing with Bonferroni correction gives a detection
threshold with a controlled error rate. This approach is, however, too conservative in the
presence of a correlated noise. Instead, approaches based on the random field theory have
been developed [179, 180]. Similar techniques for displacement and strain fields have still
to be developed.

Concerning the size of the blobs, it is also worth noting that increasing σ, thus the
size of the analysis window in the WFT, leads the blobs to be spread out, which is again
observed in practice (not illustrated here). Finally, high strain gradients would certainly
benefit of taking into account the limited resolving power inherent to any optical device,
and possibly to characterize the point spread function (PSF) of the lens.

6.4 Lens artefacts

As any white-light technique such as DIC ([162, 161]) relying on cameras equipped with
lenses, the grid method is prone to lens artifacts such as vignetting and geometric distor-
tion.

Vignetting (or peripheral shading) corresponds to a light fall-off towards the corners of
the grid images. Its effect can be easily understood with Equation 6.1, since light fall-off
causes the modulus K of the output of the WFT to decrease, and thus the noise due to
camera sensor to increase towards the edges of the phase and phase derivative maps, so
the displacement and strain maps since the displacement of the physical point between
current and reference configurations is generally very small in amplitude.

Lenses are also known to be impaired by geometric distortions. Straight lines drawn
on the specimen may not be mapped to straight lines on the sensor, giving for instance
the so-called barrel and pincushion radial distortions, or even more complex distortions
[181]. Of course, distortions affect the estimate of displacement maps based on the phase
modulations of grid images. In Ref. [182] this effect is even proposed to be considered
as a cheap and convenient way to assess this distortion. We focus on the influence of
the most prominent distortions, namely radial distortions, on the displacement and strain
maps since this effect can be easily studied.

Geometric distortions can be modelled by additional phase changes Θx and Θy which
have the same distribution in the images taken before and after deformation. Identifying
the phase modulations as in (4.8) gives:

φ2x(x+ ux(x, y), y + uy(x, y)) + Θx(x+ ux(x, y), y + uy(x, y)) = −2πfux(x, y)
+φ1x(x, y) + Θx(x, y)

φ2y(x+ uy(x, y), y + uy(x, y)) + Θy(x+ uy(x, y), y + uy(x, y)) = −2πfuy(x, y)

+φ1y(x, y) + Θy(x, y)

(6.5)

Geometric distortions thus change the fundamental relation given by (4.12) to

∆φ(x) = −2πfu(x) + Θ(x)−Θ(x+ u(x)) (6.6)
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We can see that geometric distortions give an additional bias in the estimation of the
displacement field. Several parametric models for geometric distortions are available in
the literature, see for instance [183] or [184] where algorithms for parameter estimation
are also proposed. In the simplest model, geometric distortions make a pixel y in the
undistorted image to be mapped to

x = y + k(y − y0)||y − y0||2 (6.7)

where y0 is the principal point, that is, the intersection of the optical axis with the image
plane, || · || is the Euclidean norm, and k is the distortion coefficient (either positive for
pincushion distortion or negative for barrel distortion). The relative distortion k||y−y0||2
is typically below 1%, a value of 5% representing a massive distortion.

Distortion is thus equivalent to a virtual direct displacement u(y) = k(y−y0)||y−y0||2.
Note that u(y0) = 0. Specifying (4.6) to φ2 = Θ and φ1 = 0, we obtain Θ(x) = 2πfU(x),
where U is the inverse displacement associated with u. The bias in (6.6) thus writes as
follows:

Θ(x)−Θ(x+ u(x)) = 2πf
(
U(x)−U(x+ u(x))

)
(6.8)

It is interesting to note that, when the displacement field u(x) is negligible, the phase
difference simply discards the effect of the distortion, even for quite strong distortions
which could affect the corners of the imaged grids. In general, displacement gives however
an additional bias, which is all the larger as the point under consideration is far away from
the principal point. The question is: to what extent does the bias impair the displacement
field?

The derivatives of the smooth function u being small with respect to u, the approxi-
mation U = −u is valid. Consequently,

Θ(x)−Θ(x+ u(x)) = −2πfk
(
(x− y0)||x− y0||2 − (x+ u(x)− y0)||x+ u(x)− y0||2

)
(6.9)

Now, equalling both squared norms in Equation 6.9 (small displacement assumption)
gives the following first-order approximation in u:

Θ(x)−Θ(x+ u(x)) ' 2πfku(x)||x− y0||2 (6.10)

With the typical values for the relative distortion k||x − y0||2 (typically around 1%),
this means that the bias in the displacement measurement can be confidently neglected
in (6.6). Moreover, since the imaged grid and the specimen are very small, fix-focal macro-
lenses are used in practice. Most of the time, these lenses are well designed with respect to
geometric distortions. For instance, the Sigma 105mm macro-lens has a maximal relative
distortion measured below 0.1% with a 36 × 24 mm sensor. Since CCD sensors that are
used in our experimental setting are smaller, the actual relative distortion is even smaller
than 0.1%.

Concerning the phase difference derivatives (which provide the strain components),
(6.10) gives for example:

∂

∂x
(Θ(x)−Θ(x+ u(x))) = 2πfk

∂u

∂x
(x)||x− y0||2 + 4πfk(x− y0)u(x) (6.11)

(x−y0) being the first component of x−y0. The bias induced by geometric distortion
on the strain component estimation has two components. The first one is negligible,
as in the displacement measurement. The second one, however, is proportional to the
displacement and is all the stronger as x is away from the optical center. It means that, if
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the strain is very small but the displacement is quite large (which is the case in a rigid body
motion), then optical distortion is likely to give dubious strain measurements, especially
in the image corners. This was noted in [161] concerning DIC. However, the term k(x−y0)
is at most around 10−5 at a distance of 1000 pixels of the optical center of the above lens,
since the relative distortion k||x− y0||2 is itself below 1%.

It should be noted that, if the geometric distortions cannot be neglected (for exam-
ple in the above-mentioned situation, or in a low cost system with severe distortions),
most image processing software propose an automatic numerical correction which could
be advantageously used, as in [161], but the impact on the metrological performance of
the underlying subpixel interpolation should be assessed in this case.

6.5 Verification of the theoretical prediction for the strain and displace-
ment resolutions

The theoretical predictions given in Equations 5.10 were experimentally verified in [78].
Two specific preprocessing procedures had however to be applied to correctly estimate the
noise in grid images:

1. Camera sensor noise heteroscedasticity. Noise variance stabilization with the Gen-
eralized Anscombe Transform. Equations 5.10 are obtained assuming that the sensor
noise σimage is Gaussian and has a standard deviation which is constant through-
out the image, or at most only gently spatially changes over the surface covered
by the analysis window of the WFT. This assumption is commonly accepted in
the Photomechanics community (see for instance [155] concerning the determination
of the noise in displacement maps obtained by DIC), mainly because calculations
are not tractable if σimage spatially changes. This is however a rough assumption
since actual camera sensor noise is Poisson-Gaussian and heteroscedastic (or signal-
dependent): the higher the brightness, the higher the noise level [185], and noise
variance in images may reasonably be modeled with an affine function of the grey
level [186, 187, 188]. Since we have several grid periods over the surface covered
by the analysis window, σimage significantly changes over this surface, thus making
this assumption of homoscedastic noise not to be rigorously satisfied. It is shown
in [78] that feeding Equations 5.10 with the equivalent standard deviation of the
noise (defined as the square root of the sum of the variances at any pixel of the
images), leads Equations 5.10 to be satisfied from a global point of view only. In
Ref [78], it is proposed to solve this problem by applying the so-called Generalized
Anscombe Tranform, which changes a heteroscedastic Poisson-Gaussian noise into a
homoscedastic Gaussian one [189, 190]. Applying this transform stabilizes the stan-
dard deviation of the noise, and finally makes Equations 5.10 to be satisfied at the
local level. This is a non-linear transform, so a bias is induced by applying it. It is
however assumed to be negligible compared to the other sources of errors. A similar
approach has been applied recently for DIC [100, 101].

2. Influence of micro-movements between camera and specimen on the characterisation
of the noise in grid images Note that assessing the noise level at any pixel by ana-
lyzing a stack of images may be corrupted by micro-movements between camera and
sensor. A specific image processing proposed in Ref. [191] enables us to get rid of
the influence of this movement on the camera sensor noise estimation from a stack
of grid images. Interestingly, it is shown in Ref. [192] that time averaging a stack
of images affected by a micro-movement between grid and camera provides a biased
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estimator of the noiseless grid image, but that phases and phase derivatives (thus
displacements and strains) which are deduced from these ”corrupted” mean grid
images are not affected for magnitudes of movements generally observed in practice
(some µm in amplitude).

6.6 Grid defects

The grid method relies on the use of a spatial carrier and the sought information is
contained in the modulation of this carrier. The modulation may be due to deformation,
but also to printing issues. Grids must indeed be printed, but any printing technique
has certain limits in terms of regularity of the line network. Fluctuations of the grid
pitch throughout grid images may lead to phase and phase derivative fluctuations which
can be interpreted as caused by fictitious strains. Local lacks of ink may also occur,
inducing some ”blobs” to appear in the phase and mainly phase derivative maps. Such
phenomena can be noticed even with high-resolution printing devices. They clearly corrupt
the resulting phase derivative maps if Procedure 2 described in Section 4.2.2 is not applied.
This point is illustrated below through a representative example: the measurement of the
displacement and strain fields around the hole of a open-hole specimen subjected to a
tensile test. Figure 11-a shows the displacement map obtained for an applied loading such
that plasticity occurs between the hole and the specimen border. It is obtained by using
the Procedure 1 in Section 4.2.2 (one-step approach). The displacement field is rather
smooth although the phase is not subtracted at the same physical points, and only slight
localized horizontal ”waves” are detectable to the naked eye (see for instance the arrows
denoted A). These waves are indeed due to grid pitch fluctuations.

Differentiating this displacement field gives the ε strain field shown in Figure 11-b.
Two types of defects are visible to the naked eye here:

• thin horizontal lines: they are caused by slight grid pitch defect due to printing, as
shown in [99] and [80] (for 1D and 2D grids, respectively)

• localized ”blobs” denoted B and C in Figure 11-a). This is the consequence of local
marking defects such as small bubbles or dust which are not really avoidable in
practice when marking the specimen.

These defects are also visible in the phase derivative map, as illustrated in Figure 11-c,

which represents the
∂Φy

∂y
phase derivative map in the reference (on the left-hand side)

and the current (on the right-hand side) configurations. Some defects are the same in
distribution and shape as in Figure 11-b, see for instance blob B. Blob C is not visible.
This is logical since the latter comes from the reference phase derivative map. The pairs of
blobs in Figure 11-b are due the fact that the subtraction between current and reference
phase maps is not performed exactly at the same physical point with the first procedure:
defects are thus not eliminated, but appear twice on the maps and with an opposite sign
due to the subtraction, as clearly visible when comparing Figure 11-b and 11-c. The effect
of the vertical displacement can be seen along the border between the left- and right-hand
side sub-figures in Figure 11-c: the amplitude of the discontinuity along the y-direction is
directly equal to the amplitude of the vertical displacement.

The strain field in Figure 11-d is obtained by using the procedure proposed in [80]. It
is equivalent to Procedure 2 in Equations 4.18 and 4.19, in which the displacement field
has converged after one iteration, the strain components are negligible compared to unity
and the effect of the rotation is also negligible. It can be seen that the defects have almost
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Figure 11: Illustrative example of the impact of grid defects on the displacement and
strain maps, and defect removal by displacement compensation. a- vertical displacement

uy (in micrometer). b-
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∂y

distribution. c-
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distribution. Left: in the reference

configuration. Right: in the current configuration. A slight vertical movement is visible
between the two. d- εyy with displacement compensation. dimensions in pixels, 1 pixel
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completely disappeared. In addition, the borders of the features in the geometry of the
specimens are better resolved. The main benefit is to avoid any classic spatial filtering of
the localized defects visible in Figure 11-b, which is interesting because filtering potentially
impairs the spatial resolution of the measuring technique, and causes actual details in
strain maps to be blurred, as illustrated by the relative bias which increases. The diameter
of the black circle superimposed to the map at the upper left corner of Figure 11-d is equal
to 6σ, in other words to the spatial resolution d1ε of the strain measuring technique. We
have the same value for the spatial resolution as in the preceding maps, thus illustrating
the fact that no loss of spatial resolution is induced when going from Figure 11-b to
Figure 11-d, even though the defects are eliminated.

6.7 Parasitic fringes in strain maps

In certain cases, parasitic low-frequency fringes may appear in the grid images themselves.
Even if they are generally barely visible to the naked eye, they may then induce low-
frequency parasitic fringes in the strain maps when the actual strain amplitude is small.
There are various causes, but the main one seems to be aliasing. Indeed the regular
pattern of the grid is sampled by camera sensor , and this may induce aliasing if the
Nyquist condition is not satisfied in Petersen-Middleton sampling theorem [193] (which is a
generalization to images of the 1D Nyquist-Shannon sampling theorem). This phenomenon
does not always appear, depending for instance on the type of camera and on the focus.
Defocusing, which simulates a low-pass filter enforcing the Nyquist condition, leads these
fringes to disappear or to be drastically limited, but this also reduces the contrast in
the grid images, and thus causes the noise to be higher in the strain maps according to
Equation 6.1.

Figure 12-a illustrates these spurious fringes. We have here a Portevin-Le Chatelier
band which appears in some aluminium specimens subjected to tensile tests. This map is
the strain increment distribution observed between two consecutive images shot during a
tensile test. In this case, the parasitic fringes are not visible on the strain maps themselves
(because of the actual strain amplitude is too high), but on the strain increment maps.
In Ref. [194] it is shown that such parasitic fringes may be removed by filtering in the
frequency domain. The procedure consists first in detecting the peaks corresponding to
these parasitic fringes in the Fourier domain, and then in designing a suitable notch filter
which is used to erase these peaks. Taking the inverse Fourier transform leads to the filtered
map. Figure 12-b shows the filtered distribution of strain increments, and Figure 12-c the
difference between raw and filtered strain increment distributions. Full details on this
procedure are given in [194]. Designing automatically such a notch filter for strain maps
remains an issue while this is not the case for natural images. The reason is that designing
automatically such a filter relies on an assumption concerning the decay of the coefficient
representing the image in the power spectrum: this decay follows a power law model for
natural images but this is generally not the case for strain maps [195]. Finding a model
suitable for strain maps still remains an open= question.

Very recently, it has been proposed in [176] to rotate the grid with respect to the lines
and columns of pixels of the camera sensor. It is shown that this trick strongly limits
this undesirable phenomenon. This procedure is of course recommended to avoid filtering
parasitic fringes in the Fourier domain

43



x

y

 

 

200 400 600 800 1000 1200 1400 1600

100

200

300

400

500

600

700
−1

0

1

2

3
x 10

−3

=

x

y

 

 

200 400 600 800 1000 1200 1400 1600

100

200

300

400

500

600

700
−1

0

1

2

3
x 10

−3

+

x

y

 

 

200 400 600 800 1000 1200 1400 1600

100

200

300

400

500

600

700
−1

0

1

2

3
x 10

−3

Figure 12: Removing parasitic fringes by filtering in the frequency domain, after [194]
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7 Examples

7.1 Introduction

The idea here is to give some examples of use of the grid method in experimental me-
chanics, in situations for which it is relevant to measure displacement and strain fields to
characterize the mechanical properties of materials and structures. Even though grids are
reported to be used as local displacement transducers, see for instance [196] in the case of
large structures such as pipes of power plants or [75, 76] for ceiling traveling cranes, fields
of measurements are generally obtained and analyzed with this technique.

Two main cases must be distinguished, depending on the use of these full-field mea-
surements:

1. full-field measurements can be employed to detect phenomena through strain or dis-
placement heterogeneities in the corresponding maps, to see if ”something happens
somewhere in the specimen”. Qualitative measurements are sufficient in this case.
However, there is often a great temptation to go further by getting quantitative in-
formation concerning the observed phenomenon, by measuring the displacement or
strain amplitude at some points or over some zones. This task is more demanding
than a simple observation since the metrological performance of the system should
be provided along with the output of the measuring system. This is however rarely
the case;

2. in the second case, the idea is to go further by identifying the parameters governing
any relevant model that can describe the observed phenomenon. The most current
case consists in retrieving the parameters governing the constitutive equations of the
tested material.

We propose hereafter to illustrate these two cases through a series of examples pub-
lished in the literature concerning in-plane displacement. The reader interested in plate
bending and/or slope measurement problems is referred to [197, 198], where a technique
similar to the grid method, namely deflectometry, is described and employed in various
cases of material characterisation with plate in bending [199, 200, 201, 202].

7.2 Observing and quantifying heterogeneities in displacement and strain
maps

7.2.1 Tracking crack propagation

The easiest case (in terms of ability to detect a phenomenon causing strain gradients to
appear in a strain map) is when a ”significant” heterogeneity occurs, the ultimate situation
being a discontinuity. A crack in a displacement or strain field matches this definition.
This has led the grid method to be employed in this case. In [69, 204], it was used to
detect the presence of cracks in concrete beams reinforced with composite plates bonded
on their soffit. The crack width was measured along the high of the specimen, while
the strain fields enabled the authors to decompose crack opening in the shear span in
mode I and mode II. A similar study was carried out in [70] where the cracking process
of beams made of a cement-based fibre composite was examined. Beams were tested
in three- and four-point bending and the cracking pattern was deduced in each case,
enabling to analyze the cracking evolution during the test, and establish the link between
the crack pattern and the global response of the tested specimens. An aluminium notched
specimen was tested in [203]. Interestingly, the specimen was tested in an Arcan device
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Figure 13: Strain field near a crack tip in aluminium specimen (see [203]). dimensions in
pixels, 1 pixel represents 40 µm on the specimen. a- shear strain field. b- close-up of zone
A. c- close-up of zone B

beforehand, with a load direction inclined with respect to the normal direction of the
notch, causing a crack to initiate along a direction also inclined with respect to the notch.
The strain and local rotation fields were measured, especially near the crack tip. The
crack tip location was found with a sub-pixel resolution, by finding the crossing point of
different valleys in the strain distribution. A typical example of shear strain map at the
crack tip is first depicted in Figure 13. The crack, which is clearly distinguishable, is
inclined with respect to the horizontal direction. The dimension covered by Figure 13-
a is about 1000 pixels in height and slightly more in width. The height is thus about
4 cm since one pixel correspond to a square which is 40 µm in size. Two successive
close-ups show the high strain gradients that occur near the crack tip, which is located
between the red and blue spots. In particular, the pixelwise distribution is clearly visible
in Figure 13-c, illustrating the fact that no interpolation is performed when calculating
the stain distribution and representing the obtained result. It is worth remembering that
the measured strain gradient, albeit significant, is lower than the actual one since the
measured strain distribution is equal, at first approximation, to the actual one convolved
by the analysis window of the WFT (here a Gaussian window), as explained in Section 5.
The actual strain distribution would be obtained by deconvolving the measured strain
distribution.

The response of wood has also been observed and analyzed with the grid method: the
influence of the orientation of annual rings on the crack propagation in notched beams
was discussed for instance in [205]. The most interesting point here is to observe the
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Figure 14: Transverse strain field εyy near the notch of a cracked notched wood beam
specimen (see [205]). a- Schematic view of the notched beam. b- Strain field near the
notch. dimensions in pixels, 1 pixel represents 20 µm on the specimen
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heterogeneity in the strain field, which is closely related to the very heterogeneous nature
of the material itself (because of the annual rings). Figure 14-a is a schematic view of
the tested beam. It has a notch on the left-hand side, which induces transverse strain
to appear in the current section of the beam, next to the notch, and a crack to initiate
at the right angle because of this transverse normal strain. Figure 14-b shows that it is
possible to analyse this effect with the grid method. In particular, the transverse tensile
strain is clearly visible at the right-hand side of the notch (red spot) while a compressive
zone also appears above the support (blue spot). The most stricking fact is the ability to
distinguish the annual rings of the wood, revealed here by the horizontal ”waves” in the
strain maps. They are caused by the contrast in stiffness between early and late woods.
Finally, it is worth mentioning that the strain map shown here is corrupted by ”blobs”
which did not appear in the preceding example. This is due to the fact that the actual
strain value is lower here than in the preceding cases. It was also not possible to perform
time-averaging to limit the sensor noise influence (the standard deviation of this noise is
theoretically divided by

√
N , where N is the number of frames averaged to provide one grid

image), because crack propagation is a dynamic effect, the crack propagating suddenly and
stepwise as the imposed displacement increases regularly. This example briefly illustrates
the current limit of this strain measuring technique, since analyzing phenomena with lower
strain amplitudes would obviously lead the noise to be more visible with the same settings,
so without impairing the spatial resolution.

7.2.2 Local strain heterogeneities due to the heterogeneous nature of the
material

Significant local strain heterogeneities may be due to the fact that the material itself fea-
tures heterogeneous mechanical properties, caused for instance to the presence of different
phases. This is the case in various examples for which the grid method was employed.
In [207] for instance, the heterogeneous plastic response of an aluminum multicrystal was
revealed through strain maps. This heterogeneity is caused by the difference in orientation
from one grain to another, which also leads to a difference in the slipping system of the
atomic lattice. Shape memory alloys feature peculiar properties which are due, among oth-
ers, to a phase change under stress. This is what is observed in [206], where the appearance
and growth of martensite needle in an austenitic material is revealed during a tensile test
on a Cu-Al-Be monocrystal. The strain intermittency cause by the austenite→martensite
phase transform in the same material was characterized in [208]. Figures 15-a and -b
show two typical εxx strain maps measured during this study (the magnitude of the load
is higher in Figure 15-b). Narrow inclined bands visible on a blue background reveal
the austenite → martensite phase transformation that occurs while loading the specimen.
Inclined martensite needles going through the specimen are also visible. The length of
the gauge section of the specimen is equal here to 17.78 mm and the height of the map
to 53.00 mm. This gives an idea of the size of the features visible in these maps. Fig-
ure 15-c represents the typical shape of the specimen under load: warping (because the
tensile direction is not aligned with one of the symmetry axes of the crystal) occurs in
addition to a vertical stretch. This realistic view of the deformed specimen is obtained by
adding the (magnified) measured displacements to the coordinates of the nodes of a mesh
of the specimen. A warping occurs and localized inclined bands appear. They reveal the
localized aspect of the phase transformation.

In civil engineering, asphalt is by essence a strongly heterogeneous material, since
stiff aggregates are mixed with a soft bitumen matrix. Compressive tests carried out on
such specimens permitted to analyze this heterogeneous nature thanks to the grid method
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Figure 15: Tensile test on a monocrystal of shape memory alloy (see [206]). a- and b-
typical εxx strain fields for different values of the load. c- typical deformed specimen
during the test. dimensions in pixels, 1 pixel represents 40 µm on the specimen

in [209]. The same technique was used in [210] to compare two different asphalt mixes,
and in [211] to study the mechanical response of reclaimed asphalt pavements. Figure 16-a
shows the front face of an asphalt specimen before marking the surface with a grid (full
details in [209]) as well as a typical εyy strain maps measured during a compression test
along the vertical direction. The same pattern as that visible on the front face is distin-
guishable on this strain map in Figure 16-b. For instance, aggregates A and B are clearly
recognizable in the strain map. This is due to the fact that the big difference in stiff-
ness between aggregates and bitumen binder causes high strain gradients to appear. The
principal directions are superimposed to this distribution, with portions of lines propor-
tional to the eigenvalues for the strain (color code: compression in blue, extension in red).
As shown in Figure 16-c, the deformed specimen is barrel-shaped. Its top and bottom
boundaries are not exactly subjected to a uniform vertical displacement while loading, il-
lustrating that real boundary condition may significantly differ from the desired one (this
is due here to the flexibility of the steel plates interposed between specimen and grips of
the testing machine). The displacement of the aggregates is also superimposed as well as
there rotation, which enables then a thorough analysis of the link between global response
of the specimen and local response of the constituents during the test, as discussed in [209].

As already mentioned above, the heterogeneous nature of wood may potentially ap-
pear in heterogeneous strain fields in wood specimens when they are mechanically loaded.
In [212], the heterogeneous hygroscopic response of the hydric transfer phenomenon was
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Figure 16: Asphalt specimen under vertical compression. a- picture of the front face
before applying the grid. b- εyy strain fields for a given value of the load (see [209]).
The correspondence between the two sub-figures is clearly visible. c- deformed specimen.
Dimensions in pixels, 1 pixel represents 40 µm on the specimen
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studied in the same spirit. Displacement and strain fields were analyzed in batteries
in [213] using the sampling moiré technique. Interestingly, the periodic nature of the
material itself was used as natural marking in this case.

Finally, the use of the grid method at the microscopic scale is reported in various pa-
pers, see for instance Refs. [214, 215, 216] for measuring strain near a dislocation, [217] for
observing singularities like disclinations in nanoparticles, [218, 77] for measuring residual
stresses, [219, 220] for measuring deformation near a crack tip. Strain fields were also mea-
sured in many other situations, for instance around low-angle grain boundaries [221], in
silicon transistors [222], in nanowires [223] or in MEMS devices [224]. The geometric phase
analysis (GPA) briefly described in Section 4.4.1 was employed in these last examples.

7.2.3 Local strain heterogeneities due to the geometry of the specimen

Strain fields may also be heterogeneous because of geometrical singularities. Apart from
the ultimate case of cracking already discussed above, strain distributions may spatially
change because of a change in geometry of the tested specimen. In [225] for instance,
heterogeneous strain fields appearing in a cover-plate bolted steel joints were studied. In
this study, the heterogeneous nature of the strain field was caused by the holes drilled in
the plates and the loading applied by the bolts.

7.3 Identification from full-field measurements

The idea here is to go beyond strain measurements to identify parameters governing con-
stitutive equations or the phenomena observed with full-field measurements. Heteroge-
neous strain fields involve a greater number of constitutive parameters than homogeneous
strain fields. If a suitable identification procedure is employed, these parameters can be
retrieved. Compared to the classic situation for which homogeneous strain fields are em-
ployed to identify parameters (as in the case of the usual tensile test on parallelepipedic
specimens) the benefit is to retrieve a greater number of parameters at the same time,
thus potentially reducing the number of tests to be performed. Processing heterogeneous
strain is even unavoidable in the case of heterogeneous materials.

Identification methods suited to the case of full-field measurements have been presented
in a review paper [226]. However, whatever the method used, retrieving reliable values of
constitutive parameters means that the strain fields considered as input for the identifi-
cation procedure are reliable too. As mentioned above, some mechanical characteristics
such as the bias are signal-dependent. When considering average values for the sought pa-
rameters, this is however not really an issue: strain values are potentially underestimated
in some zones (sharp peaks in the strain distribution), but this can be globally counter-
balanced by the strain values which are overestimated in other zones (narrow valleys in
the strain distribution).

The grid method has been successfully employed in various cases of constitutive pa-
rameters in the literature. Within the framework of linear elasticity, let us mention the
case of wood [227, 228] and composite [229, 230]. Damage can be considered as a mere ex-
tension in some cases [231, 232]. Plasticity involves higher strain levels, see [233, 234, 235].
Even though specific problems are raised by dynamics measurements [236], the use of the
grid method is reported is recent papers [237, 238, 239, 240] in this particular case.
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8 Conclusion

The main features of the grid method were given in this paper. We mainly focused on
its history, on the technique which seems the most efficient to process grid images, and
on practical problems which may occur when using this measuring technique. Special
emphasis was put on the metrological performance of the grid method, defined here by
the measurement resolution, the measurement bias and the spatial resolution. The mea-
surement resolution considered here is only that caused by sensor noise propagation, other
sources such as grids defects being more difficult to assess. Various examples were fi-
nally shown in cases for which significant strain gradients occur in the tested specimen, a
situation which is very challenging for full-field measuring systems.

At the moment, the dissemination of this technique is hindered by two main factors.
First, the surface under investigation must be regularly marked by simple marking pro-
cedures, which are not really easily available. Second, grid image processing relies, in
recent applications, on the windowed Fourier transform, a tool which is not really very
common in the experimental mechanics community. This is however not the case in both
the optics and the image processing communities. This leads to a wide literature available
on this subject which could certainly be advantageously considered for measuring reliable
displacement and strain fields in experimental mechanics. The main strengths of this tech-
nique are i- from a practical point of view and bearing in mind that this is a white-light
technique, the good compromise between measurement resolution and spatial resolution,
ii- from a theoretical point of view, the fact that simple closed-form expressions are avail-
able between spatial resolution, measurement resolution and measurement bias when the
WFT is performed for a frequency equal to the nominal pitch of the grid. Thus, depend-
ing on the goal the user wants to reach and the nature of the phenomenon he wants to
characterize, the tradeoff between the three aforementioned metrological characteristics
can be adjusted at best. All these features make the grid method a simple but efficient
technique to measure 2D displacement and strain distributions which occur in deformed
flat specimens, as illustrated in the examples shown at the end of this paper.

Programmes

Various programmes dedicated to grid image processing are available on the following web-
site: www.thegridmethod.net, along with some information on the grid method. Readers
interested in using by themselves this measurement technique are invited to download
these programmes.
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[9] D. Post. Moiré interferometry: advances and applications. Experimental Mechanics,
31(3):276–280, 1991. Society for Experimental Mechanics.

[10] M. Sutton, J.J. Orteu, and H. Schreier. Image Correlation for Shape, Motion and De-
formation Measurements. Basic Concepts,Theory and Applications. Springer, 2009.
ISBN: 978-0-387-78746-6, 317 pages.

[11] B. Pan, K. Qian, H. Xie, and A. Asundi. Two-dimensional digital image correlation
for in-plane displacement and strain measurement: a review. Measurement Science
and Technology, 20:062001, 2009.

[12] S. Bossuyt. Optimized patterns for digital image correlation. In Proceedings of
the 2012 Annual Conference on Experimental and Applied Mechanics. Volume 3:
Imaging Methods for Novel Materials and Challenging Applications, 2013.

[13] V. J. Parks. The grid method. Experimental Mechanics, 9(7):27N–33N, 1969.

[14] P. S. Merill. Photogrid investigation of plastic-strain patterns in flat sheets with a
hole. Experimental Mechanics, 1(8):73–80, 1961.

[15] R. W. Fail and C. E. Taylor. An application of pattern mapping to plane motion.
Experimental Mechanics, 30(4):404–410, 1990.

[16] R. A. Ayres, E.G. Brewer, and S.W. Holland. Grid circle analyzer - computer aided
measurement of deformation. SAE Technical Paper, 1979. Paper 790741.

[17] R. Sowerby, E. Chu, and J. L. Duncan. Determination of large strains in metal
forming. The Journal of Strain Analysis for Engineering Design, 17(2):95–101, 1982.

53



[18] E. Schedin and A. Melander. The evaluation of large strains from industrial sheet
metal stampings with a square grid. Journal of Applied Metalworking, 4(2):143–156,
1986.

[19] J. H.Vogel and D. Lee. The automated measurement of strains from three dimen-
sional deformed surfaces. The Journal of The Minerals, Metals and Materials Soci-
ety, 42(2):8–13, 1990.

[20] D. W. Manthey and D. Lee. Vision based surface strain measurement system. The
Journal of The Minerals, Metals and Materials Society, 47(7):46–49, 1990.

[21] T.A. Martin, G.R. Christie, and D. Bhattacharyya. Grid strain analysis and its
application in composite sheet forming, volume 11. Composite Sheet Forming, chap-
ter 6, pages 217–245. Elsevier, 1997. Composite Materials Series.

[22] H. Jin, S. Haldar, H.A. Bruck, and W.-Y. Lu. Grid method for microscale discon-
tinuous deformation measurement. Experimental Mechanics, 51(4):565–574, 2011.

[23] X. Du, B. W. Anthony, and N. C. Kojimoto. Grid-based matching for full-field large-
area deformation measurement. Optics and Lasers in Engineering, 66:307–319, 2015.

[24] W. Oliferuk, M. Maj, and K. Zembrzycki. Determination of the energy storage
rate distribution in the area of strain localization using infrared and visible imaging.
Experimental Mechanics, 55(4):53–760, 2015.

[25] T.C. Chu, W.F. Ranson, M.A. Sutton, and W.H. Peters. Applications of digital
image correlation techniques to experimental mechanics. Experimental Mechanics,
25(3):232–244, 1983.

[26] L. Allais, M. Bornert, T. Bretheau, and D. Caldemaison. Characterization of the
local strain field in a heterogeneous elastoplastic material. Acta Metallurgica et
Materialia, 42(11):3865–3880, 1994.

[27] Experimental Mechanics. Special Issue: DIC Methods and Applications. 2015. 55(1).
22 articles, 311 pages, edited and prefaced by M. Sutton and F. Hild.
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[33] M. J. Hÿtch and T. Plamann. Imaging conditions for reliable measurement of dis-
placement and strain from high-resolution electron microscope images. Ultrami-
croscopy, 87:199–212, 2001.

54
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moiré method and its phase shifting technique. Measuring Science and Technology,
15:716–721, 2004.

[38] M. Tang, H. Xie, J. Zhu, X. Li, and Y. Li. Study of moiré grating fabrication on
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and FIB moiré technique for strain analysis in MEMS/NEMS structures and devices.
In Proceedings of the IEEE Sixteenth Annual International Conference on Micro
Electro Mechanical Systems, pages 674–677, 2003.

[45] Y.J. Li, H.M. Xie, B.Q. Guo, Q. Luo, C.Z. Gu, and M.Q. Xu. Fabrication of high-
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bution in heterogeneous materials. Mécanique et Industries, 4:607–617, 2003.

[61] J. Molimard and Y. Surrel. Grid method, moiré and deflectometry. In M. Grédiac
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[71] S. Sun, M. Grédiac, E. Toussaint, J.M. Mathias, and N. Mati-Baouche. Apply-
ing a full-field measurement technique to characterize the mechanical response of a
sunflower-based biocomposite. Experimental Mechanics, 55(5):917–934, 2015.

[72] Y. Morimoto, Y. Seguchi, and T. Higashi. Strain analysis by mismatch moiré method
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moiré interferometry. Transactions of the Japan Society for Mechanical Engineers
Series A, 31(1):122–127, 1987.

[114] Y. Morimoto, Y. Seguchi, and T. Higashi. Two-dimensional moiré method and grid
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[115] F. Brémand, J.-C. Dupré, and A. Lagarde. Non-contact non-disturbing local
strain measurement method. I- principle. European Journal of Mechanics A/Solids,
11(3):349–366, 1992.
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[209] M. Grédiac and E. Toussaint. Studying the mechanical behaviour of asphalt mixtures
with the grid method. Strain, 49(1):1–15, 2013.
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Studying the influence of reclaimed asphalt pavement on local deformation properties
of mixtures. 2016. Submitted.

[212] D. Dang, E. Toussaint, R. Moutou-Pitti, and M. Grédiac. Investigation of hydric
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[222] F. Hüe, M.J. Hÿtch, H. Bender, F. Houdellier, and A. Claverie. Direct mapping of
strain in a strained silicon transistor by highresolution electron microscopy. Physical
Review Letters, 100:156602, 2008.
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