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Bayesian spatio-temporal kriging with misspecified black-box

Papa Abdoulaye FAYE, Pierre DRUILHET∗, Nourddine AZZAOUI, Anne-Françoise YAO
Laboratoire de Mathématiques, Université Blaise Pascal, UMR CNRS 6620, Clermont-Ferrand

Abstract

We propose a new algorithm for spatio-temporal prediction. At a given time t, we use a
Bayesian kriging model for spatial prediction. The temporal evolution from t to t+1 is given
by a deterministic black-box which can be a complex numerical code or a partial differential
equation. As often in practice, the black-box is misspecified, in the sense that its parameters
are imprecisely known or may be varying randomly over time. At time t, we use the black-
box to obtain a rough prediction at time t+ 1. When new data are available, the black-box
is used to estimate the hyperparameters of the Bayesian kriging at time t+1 by using Monte
Carlo methods. Through a numerical application, we show that our method improves the
values predicted by the black-box only.
Keywords: spatio-temporal prediction, Monte Carlo methods, Bayesian kriging,
misspecified black-box

1. Introduction

Spatio-temporal modeling is a fundamental step to understand the mechanisms that
govern the evolution of a natural phenomenon. It arises when data are collected across time
as well as space. The spatio-temporal models take into account temporal correlations as
well as spatial correlations of data. It allows to reconstruct a phenomenon over a domain5

from a set of observed values. Such a reconstruction problem occurs in many areas such as
climatology, meteorology, geology, atmospheric sciences, hydrology, environment, geography
etc. For example, it occurs when one aim to predict an atmospheric pollutant from a
monitoring network which provides data that are collected at regular intervals.

There exists many spatio-temporal models in spatial statistic literature, see Banerjee10

et al. (2004) or Cressie and Wikle (2011) for a review. For example Cressie and Wikle
(2006) consider spatio-temporal kriging by using Kalman Filter methods. Irwin et al. (2002)
use spatio-temporal nonlinear filtering based on hierarchical statistical models. Hengl et al.
(2012) propose a procedure to interpolate daily mean temperature over a whole year period
by using time series of auxiliary predictors. Stein (2005) considers a number of properties15

of space-time covariance functions and how these relate to the spatial-temporal interactions

∗Corresponding author
Email address: Pierre.DRUILHET@univ-bpclermont.fr (Pierre DRUILHET)

Preprint submitted to Spatial Statistics October 2, 2015



of the process. Ip and Li (2015) construct valid parametric covariance models which are
computationally estimable for univariate and multivariate spatio-temporal random fields.
Le Gratiet (2013) proposes Bayesian hierarchical multi-fidelity methods with covariates.

The research on spatio-temporal modelling is ongoing to deal with problems that are20

more and more complex. The temporal models are often given by a deterministic black-box
corresponding to the modelization of the studied phenomenon. However, in practice, the
black-box is often misspecified and gives a rough prediction. On the other hand, the new
data give accurate information but only around the sites of observations. In the paper, we
propose to combine these spatial and temporal information.25

At given time t, we use Bayesian kriging to obtain the spatial prediction of phenomenon
of interest. The black-box is used to obtain a first prediction at time t+ 1 and also to derive
new prior distributions of the Bayesian kriging at time t+ 1 . The latter is based on the new
data available at time t+ 1 .

The article is structured as follows: Section 2 provides a description of Bayesian kriging.30

In Section 3, we present our spatio-temporal prediction procedure. In Section 4, we present
a numerical application.

2. Spatial Bayesian kriging

In this section, we give a presentation of Bayesian kriging. Let
(
Z(s) ∈ Rp, s ∈ D ⊂ Rd

)
be a random Gaussian spatial process. Most often d = 1, 2 or 3. The random process35

is observed at a few number of sites and the aim is to predict the values of Z(.) at some
unobserved locations.

We recall that the kriging involves the construction of a linear predictor who takes into
account of the structure covariance of Z(.). Classically, the stochastic model associated with
kriging is defined by:

Z(s) = µ(s) + δ(s) + ε(s), s ∈ D, (1)

where:
- Z(s) is called the regionalized random variable.
- µ(s) := β′ (m(s)) (β′ being the transpose of β), is the deterministic component of Z(s);40

with m(s) ∈ Rp is a vector of a known basis functions and β ∈ Rp is an unknown coefficients
vector to be estimated.
- δ(.) a stationary Gaussian random field with zero mean and correlation function defined
by g(s, s̃) = Cov(δ(s), δ(s̃))/σ2, for s, s̃ ∈ D and σ2 = Var(δ(s)).
- ε(.) = (ε(s), s ∈ D) is a spatial white noise independent of δ(.). For s ∈ D the measurement45

error Var(ε(s)) = τ 2 is called nugget effect.
If δ(.) is isotropic, the correlation function is reduced to the correlogram g(h) = g(s, s̃),

where h = ‖s − s̃‖2 is the euclidean distance between s and s̃. One of the most popular
family of correlogram is the Matérn family defined by:

g(h, α, κ) =
{

2κ−1Γ(κ)
}−1

(
h

α

)κ
Kκ

(
h

α

)
, (2)
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with Kκ(.) denotes the modified Bessel function of order κ (see Gneiting et al. (2010) for
further details). The corresponding variogram is

γ(h) = Var(Z(s+ h)− Z(s)) = τ 2 + σ2 {1− g(h;φ)} .

We denote by φ the correlation parameter, here φ = (κ, α) in (2). In that follows, we assume
that Z(.) is observed at the sites s1, . . . sn in D. Let Y = (Z(s1), . . . , Z(sn)) represents the
corresponding observations.

50

In the Bayesian framework, we put prior distributions on the parameters (φ, τ 2, σ2, β).
One interest is to take into account prior knowledge and uncertainty on the parameters
estimation.

2.1. Prior distribution specification
We first consider the situation where τ 2 = 0, i.e we assume that there is no nugget effect

and that the prior distribution is separable:

π(β, σ2, φ) = π(φ)π(σ2)π(β). (3)

For practical reasons, we choose the following priors

[φ] ∼ Γ(a, b)
[σ2] ∼ X 2

ScI(ν, S2)
[β] ∼ N (e, V )

(4)

where55

- Γ(a, b) is a gamma distribution with shape parameter a and scale parameter b.
- X 2

ScI(ν, S2) is a scale inverse chi-squared distribution with ν represents the number of chi-
squared degrees of freedom and S2 the scaling parameter.
- N (e, V ) is a multivariate Gaussian distribution where e and V respectively represent the
mean and the standardized covariance hyper-parameters for the prior distribution for the60

mean (vector) parameter β.
At starting time, if there is no prior information about the behavior of the phenomenon,

one can use a flat prior π(β) ∝ 1 for the parameter β, which corresponds to the limit case
V −1 = 0 and the Jeffrey’s prior π(σ2) ∝ 1

σ2 , for the parameter σ2, which corresponds to
ν = 0 in (4), e.g. see Gelman et al. (2014); Diggle and Ribeiro (2002); Bernardo (1979);65

Bioche and Druilhet (2015).

2.2. Posterior distribution parameters and predictive distribution of regionalized variable
The posterior distributions for the prior (4) are given by, e.g. see Diggle and Ribeiro

(2007):
[β | σ2, φ, y] ∼ N (ẽ, σ2Ṽ )

[σ2 | φ, y] ∼ X 2
ScI(ν̃, S̃2)

π(φ | y) ∝ π(φ)|Ṽ | 12 |R(φ)|− 1
2 (S2)−

n+ν
2 ,

(5)
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with ν̃ = ν + n, ẽ = Ṽ (V −1e+M ′(R(φ))−1y), Ṽ = (V −1 +M ′(R(φ))M)−1 and

S̃2 = νṼ + e′V −1e+ y′ (R(φ))−1 y − ẽ′Ṽ −1ẽ

ν + n
,

where M = (m(s1), . . . ,m(sn)), R(φ) is the correlation matrix of (s1, . . . , sn), and y is a
realization of Y .
To accommodate a positive nugget variance τ 2 > 0, in practice we use a discrete joint prior
for φ and υ2, where υ2 = τ 2

σ2 . A prior distribution for υ2 can be:

[υ2] ∼ IG(c, d), (6)

where IG(c, d) is an inverse-gamma distribution with shape parameter c and scale parameter
d.
In this case, we replace R(φ) in the equations above by:

V (φ, υ2) = R(φ) + υ2In,

where In is n× n identity matrix, n is the number of observations.
We used the posterior distribution of kriging parameters π(φ, υ2, σ2, β | y) to obtain the

predictive distribution at an unobserved site s:

p (z(s) | y) =
∫
p
(
z(s) | y, φ, υ2, σ2, β

)
π(φ, υ2, σ2, β | y) d(φ, υ2, σ2, β). (7)

This Bayesian predictive distribution is an average of the predictive distributions for fixed
value of (φ, υ2, σ2, β), weighted with respect to the posterior distributions of (φ, υ2, σ2, β).70

In practice, [Z(s) | y] is not easy to obtain analytically, but it can be easily approximated
by Monte Carlo methods. An estimate of Z(s) is given by the mean, median or mode of
[Z(s) | y].

We now address the spatio-time prediction method based on the Bayesian kriging and the75

black-box. Actually, we deal with a process (Zt(s), s ∈ D) which is a stationary Gaussian
process for each time t ∈ R+. As previously, we aim to predict the values of Zt(s) at
unobserved sites s of D.

3. Spatio-temporal modeling including misspecified black-box

A black-box is a tool which allows to follow the temporal evolution of complex dynamic80

systems. For example, in domains such as fluid mechanics, ecology or biology, the black-box
may be an algorithm or a partial differential equation (PDE). For given inputs at time t, the
black-box gives a prediction of the outputs at time t + 1. However, the black-box is often
misspecified, i.e. its parameters are imprecisely known and are often considered as random
variables.85
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We denote byM a mesh ofD,M0 = (s1, . . . , sn) a subset ofM, ZM0
t = (Zt(s1), . . . , Zt(sn)) ,

the observations on M0 at time t and θt = (βt, σ2
t , υ

2
t , φt) the kriging parameter at time t.

The idea is to predict the unobserved values of Zt(.) in the field D by combining Bayesian
kriging with the information brought by the fuzzy temporal model. Now, we present our
spatio-temporal procedure:90

Step 1: Bayesian kriging
At time t, we obtain the predictive distribution of the regionalized variable ZMt =

{Zt(s), s ∈ M} by Bayesian kriging where the prior distributions are obtained from time
t− 1:

p
(
zMt | zM0

t

)
=
∫
p
(
zMt | zM0

t , θt
)
π(θt | zM0

t ) d(θt), (8)

Step 2: temporal prediction maps
From the black-box, denoted by f , and from distribution (8), the prediction distribution

at time t+ 1 of ZMt+1 is given by[
ZMt+1 | zM0

t

]
=
[
f(ZMt ) | zM0

t

]
. (9)

In practice (9) is not accessible explicitly, but it can be easily approximated by using Monte
Carlo methods as follows:

• First, do K simulations of (8) and get K spatial prediction maps zM[i]
t , i = 1, . . . , K.95

• Then, get K temporal prediction maps at time t+1 by ẑM[i]
t+1 = f

(
z
M[i]
t

)
, i = 1, . . . , K.

Step 3: prior distribution specification
Using the K prevision maps, at time t + 1, we can update the hyperparameters of the

prior distribution for the Bayesian kriging at time t + 1. For each map ẑ
M[i]
t+1 , i = 1, . . . , K,

we compute the maximum likelihood estimate θ̂[i]
t+1 =

(
φ̂

[i]
t+1, υ̂

2[i]
t+1, σ̂

2[i]
t+1, β̂

[i]
t+1

)
of θt+1 from100

the kriging model [
ZMt+1 | θt+1

]
∼ N

(
Mt+1βt+1, σ

2
t+1

(
R(φt+1) + υ2

t+1Iq
))
, (10)

with Mt+1 = (mt+1(s1), . . . ,mt+1(sq)), q is the number of points of M, R(φt+1) is the
correlation matrix of M and Iq is q × q identity matrix.

From θ̂
[i]
t+1, i = 1, ..., K we can estimate the hyper-parameters at+1, bt+1, ct+1, dt+1, et+1,

Vt+1, νt+1, S2
t+1 given in (4) and in (6) by moment methods.

- For the correlation parameter φt+1 which follows a gamma prior distribution Γ(at+1, bt+1):
ât+1b̂t+1 = 1

K

K∑
i=1

φ̂
[i]
t+1

ât+1b̂
2
t+1 = 1

K

K∑
i=1

φ̂[i]
t+1 −

K∑
j=1

φ̂
[j]
t+1

2

.
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- For the scale parameter σ2
t+1 which follows a inverse-chi-squared prior distribution X 2

ScI(νt+1, S
2
t+1):

ν̂t+1Ŝ2
t+1

(ν̂t+1 − 2) = 1
K

K∑
i=1

σ̂2[i]
t+1

2ν̂2
t+1Ŝ

22
t+1

(ν̂t+1 − 2)2(ν̂t+1 − 4) = 1
K

K∑
i=1

σ̂2[i]
t+1 −

K∑
j=1

σ̂2[j]
t+1

2

.

- For the relative nugget parameter υ2
t+1 which follows a inverse-gamma prior distribution

IG(ct+1, dt+1): 

d̂t+1

(ĉt+1 − 1) = 1
K

K∑
i=1

υ̂2[i]
t+1

d̂2
t+1

(ĉt+1 − 1)2(ĉt+1 − 2) = 1
K

K∑
i=1

υ̂2[i]
t+1 −

K∑
j=1

υ̂2[j]
t+1

2

.

- For the mean parameter βt+1 which follows a normal prior distribution N (et+1, Vt+1):
êt+1 = 1

K

K∑
i=1

β̂
[i]
t+1

V̂t+1 = 1
K

K∑
i=1

(
β̂

[i]
t+1(β̂[i]

t+1)′ − êt+1(êt+1)′
)

The procedure is summarized in Figure 1.

4. Numerical application105

Here, we consider an application of our procedure in a convection-diffusion modeling
problem which occurs in fluid mechanics such as groundwater pollution problem or flow of
oil from a well’s reservoir, see Dehghan (2005); Efendiev and Durlofsky (2003) or Song and
Wu (2010).

Let D be a square domain (a, b)2 in R2 and (0, T ) be a time interval. Given a function
S = S(x, y, t) ∈ L2(D×(0, T )), we consider the two-dimensional time-dependent convection-
diffusion equation with homogeneous Dirichlet boundary condition.

L(u) := ∂u
∂t
− ν∆u+ ϕ1

∂u
∂x

+ ϕ2
∂u
∂y

= S, in D × (0, T ]
u(x, y, t) = 0 on ∂D × (0, T ]
u(x, y, 0) = u0(x, y) in D

(11)

where u is the state variable to be modelized, ϕ1 and ϕ2 are constants which represent the110

convection coefficients, and ν is the positive diffusion coefficient. As in Song and Wu (2010),
we assume that the above problem admits a unique smooth solution.

The term S, called the source term, represents a source which continually bring a quantity
of pollution in the domain (a, b)2 in the problem of interest of groundwater pollution. The
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Time t

Prior information:

π(θt),Expert,Historical

Posterior information

π(θt | ztM0)
[
ZM
t | ztM0

]

Forecasting of the predictive distribution

and updating prior information for time t + 1:

[
ZM
t+1 | ztM0

]
=

[
f(ZM

t ) | ztM0
]

π
(
θt+1 | [ZM

t+1 | ztM0]
)

t = t + 1

Observations:

zt
M0

f

Black-Box:

and predictive distribution:

at time t + 1

Figure 1: Spatio-temporal procedure

pollution’s level due to S is not uniform in (a, b)2 (higher in some parts of (a, b)2 than in115

others). Once in the domain (a, b)2, the quantity of pollution will change over time owing
to the convection and diffusion phenomenon. Our aim is then to determine the state of the
pollution, u, in (a, b)2 at each time in view of Equation (11). The direction and velocity of
pollution transport will depend on the values of ϕ1 and ϕ2, when the pollution’s dispersion
will depend on ν.120

For our example, we assume that the pollution problem follows the PDE (11) with
(a, b)2 = (0, 1)2, ϕ1 = −0.09, ϕ2 = −0.09, ν = 0.001, S(x, y, t) = (5

4− ((x−0.8)2 +(y− 1
2)2)).

We use a 24× 24 mesh, say M to compute the values u(x, y, t), (x, y) ∈M, and t = 1, ..., 9
which are displayed in Figure 3. We split the mesh points in two sets (see Figure 2): the
set of observation sites, say M0, which correspond to the measurement points in real data125

applications and the set of sites of non-observed values.
Here, the black-box fϕ1,ϕ2,ν is defined by the same PDE (11) but the parameters ϕ1, ϕ2, ν

are imprecisely known and considered as random with

ϕ1, ϕ2 ∼ N (−0.1, (0.01)2) and ν ∼ N (0.006, (0.001)2). (12)
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At the starting time, t = 1, we do a Bayesian kriging (Step 1) with the arbitrary values
for the hyperparameters: a1 = 3, b1 = 2, ν1 = 4, S2

1 = 5, c1 = 3, d1 = 1 and a flat prior
for β1 (see subsection 2.1). The Bayesian kriging was done using the package geoR of the
R software, but an additional programming has been necessary to incorporate the priors130

for correlation and relative nugget parameters specified in (4) and in (6). At Step 2, we
draw K maps U [i]

1 = {u[i](x, y, 1), (x, y) ∈ M} from the Bayesian kriging and K values for
ϕ

[i]
1 , ϕ

[i]
2 and ν [i] according to (12), i = 1, ..., K, with K = 10. Then, we get 10 predictive

maps Û [i]
2 = f

ϕ
[i]
1 ,ϕ

[i]
2 ,ν[i](U

[i]
1 ), i = 1, ..., 10. At Step 3, we use the maps Û [i]

2 , i = 1, .., 10, to
estimate the hyperparameters of the Bayesian kriging that will be done at time t = 2 when135

updated observations will be available.
Recursively, for t = 2, . . . , 9, we follow steps 1 to 3, using the prior distribution obtained

at the previous time.
At time t, after Step 2, we have a first prediction map of u(x, y, t + 1) given by B̂t+1 =

1
10
∑10
i=1 Û

[i]
t+1 from the black-box. At time t + 1, after Step 1, we obtain a second prediction140

map ût+1 obtained by the Bayesian kriging. The prediction errors of each method is evaluated
resp. by |B̂t+1(x, y) − u(x, y, t + 1)| and |ût+1(x, y) − u(x, y, t + 1)|. They are displayed in
Figure 4 and 5, for t = 2, . . . , 9.

These results show that our algorithm outperform the black-box prediction B̂(x, y, t).
Indeed, for any time t = 2, . . . , 9, we see that the prediction errors of our algorithm are145

smaller or equal to those of the misspecified black-box in the domain (0, 1)2. For example in
the subdomain (0, 0.6)× (0, 0.2) the prediction errors of our algorithm are any time smaller
than those of the misspecified black-box. The outperformance of our procedure means that
for t = 2, . . . , 9 the conditions (number of measurement sites, priors) required by Bayesian
kriging are satisfactory to improve the prediction given by the misspecified black-box.150

The code ran in approximately 72 minutes on a laptop computer (Processor: Intel(R)
Core(TM) i5-4200 CPU @ 1.60GHz 2.30Ghz, RAM: 8Go). However, the duration can be
largely reduced by parallelization of the code.
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Figure 2: Mesh of domain (0, 1)2

Figure 3: Evolution of real values of pollution to t = 1 at t = 9

9



Figure 4: ût(x, y): Predicted values by our method, B̂t(x, y): Predicted values by misspecified black-box,
|ût(x, y) − u(x, y, t)| predicted errors by our method, |B̂t(x, y) − u(x, y, t)| predicted errors by misspecified
black-box, t = 2, ..., 5.
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Figure 5: ût(x, y): Predicted values by our method, B̂t(x, y): Predicted values by misspecified black-box,
|ût(x, y) − u(x, y, t)| predicted errors by our method, |B̂t(x, y) − u(x, y, t)| predicted errors by misspecified
black-box, t = 6, ..., 9.

5. Conclusion

We have presented a spatio-temporal prediction algorithm which combines two kind of155

information: the information brought by the temporal model and the information brought

11



by the spatial kriging model. Both informations are fuzzy. The temporal model may be im-
perfect due to the imprecise knowledge of the inputs and/or because the black box represents
a rough approximation of the underlying temporal model, inducing bias or extra-variability.
On the other hand, the kriging model give accurate information locally around the observa-160

tion sites but not on the whole region of interest. Our procedure use the temporal model to
provide the prior information for the spatial model and therefore to combine two informations
of different kind.

We think that this algorithm, or any variant, will find a wide scope of applicability
in environmental science where time forward prediction and monitoring of spatio-temporal165

processes is a main activity, since it is easy to implement. The generality of the algorithm
is due to the fact that the temporal evolution of the deterministic part of any physical
phenomenon can be modelized by a black-box.

An application of our algorithm was done by using a convection-diffusion model which
occurs in many domains of environmental sciences as problem of groundwater pollution. We170

used data simulated with a two-dimensional time-dependent convection-diffusion equation
with homogeneous Dirichlet boundary condition. The black-box use the same equation but
with misspecified coefficients. We have tested the performance of our method by comparing
the prediction map obtained by the black-box at time t+1, before having the new data, with
the one obtained by Bayesian kriging with updated prior once the data are observed.175
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