Survival and ice nucleation activity of bacteria as aerosol in a cloud simulation chamber. - Université Clermont Auvergne Accéder directement au contenu
Article Dans Une Revue Atmospheric Chemistry and Physics Année : 2015

Survival and ice nucleation activity of bacteria as aerosol in a cloud simulation chamber.

Résumé

The residence time of bacterial cells in the atmosphere is predictable by numerical models. However, estimations of their aerial dispersion as living entities are limited by a lack of information concerning survival rates and behavior in relation to atmospheric water. Here we investigate the viability and ice nucleation (IN) activity of typical atmospheric ice nucleation active bacteria (Pseudomonas syringae and P. fluorescens) when airborne in a cloud simulation chamber (AIDA, Karlsruhe, Germany). Cell suspensions were sprayed into the chamber and aerosol samples were collected by impingement at designated times over a total duration of up to 18 h, and at some occasions after dissipation of a cloud formed by depressurization. Aerosol concentration was monitored simultaneously by online instruments. The cultivability of airborne cells decreased exponentially over time with a half-life time of 250 ± 30 min (about 3.5 to 4.5 h). In contrast, IN activity remained unchanged for several hours after aerosolization, demonstrating that IN activity was maintained after cell death. Interestingly, the relative abundance of IN active cells still airborne in the chamber was strongly decreased after cloud formation and dissipation. This illustrates the preferential precipitation of IN active cells by wet processes. Our results indicate that from 106 cells aerosolized from a surface, one would survive the average duration of its atmospheric journey estimated at 3.4 days. Statistically, this corresponds to the emission of 1 cell that achieves dissemination every ~ 33 min m−2 of cultivated crops fields, a strong source of airborne bacteria. Based on the observed survival rates, depending on wind speed, the trajectory endpoint could be situated several hundreds to thousands of kilometers from the emission source. These results should improve the representation of the aerial dissemination of bacteria in numeric models.
Fichier principal
Vignette du fichier
acp-15-6455-2015.pdf (468.99 Ko) Télécharger le fichier
Origine : Fichiers éditeurs autorisés sur une archive ouverte
Loading...

Dates et versions

hal-01206705 , version 1 (18-05-2017)

Identifiants

Citer

Pierre Amato, M. Joly, C. Schaupp, Eléonore Attard, Ottmar Möhler, et al.. Survival and ice nucleation activity of bacteria as aerosol in a cloud simulation chamber.. Atmospheric Chemistry and Physics, 2015, 15 (11), pp.4055-4082. ⟨10.5194/acp-15-6455-2015⟩. ⟨hal-01206705⟩
772 Consultations
293 Téléchargements

Altmetric

Partager

Gmail Facebook X LinkedIn More