
HAL Id: hal-01170133
https://uca.hal.science/hal-01170133v1

Submitted on 17 Nov 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution - NonCommercial 4.0 International License

MeMoVolc consensual document: a review of
cross-disciplinary approaches to characterizing small

explosive magmatic eruptions
Lucia Gurioli, D. Andronico, Patrick Bachèlery, Hélène Balcone-Boissard,

Jean Battaglia, G. Boudon, Alain Burgisser, M. Burton, Katharine Cashman,
Sarah B. Cichy, et al.

To cite this version:
Lucia Gurioli, D. Andronico, Patrick Bachèlery, Hélène Balcone-Boissard, Jean Battaglia, et al..
MeMoVolc consensual document: a review of cross-disciplinary approaches to characterizing small
explosive magmatic eruptions. Bulletin of Volcanology, 2015, 77, pp.49. �10.1007/s00445-015-0935-x�.
�hal-01170133�

https://uca.hal.science/hal-01170133v1
http://creativecommons.org/licenses/by-nc/4.0/
http://creativecommons.org/licenses/by-nc/4.0/
https://hal.archives-ouvertes.fr


1 
 

MeMoVolc consensual document: a review of cross-disciplinary 1 

approaches to characterizing small explosive magmatic eruptions  2 

 3 

L. Gurioli1, D. Andronico2, P. Bachelery1, H. Balcone-Boissard3, J. Battaglia1, G. 4 

Boudon4, A. Burgisser5, S.B. M.R. Burton6, K. Cashman7, S. Cichy1, R. Cioni8, 5 

A. Di Muro9, L. Dominguez10, C. D’Oriano6, T. Druitt1, A.J.L Harris1, M. Hort11, 6 

K. Kelfoun1, J.C. Komorowski4, U. Kueppers12, J.L. Le Pennec1, T. Menand1, R. 7 

Paris1, L. Pioli10, M. Pistolesi13, M. Polacci6, M. Pompilio6, M. Ripepe8, O. 8 

Roche1, E. Rose-Koga1, A. Rust7, F. Schiavi1, L. Sharff11, R. Sulpizio14, J. 9 

Taddeucci15, T. Thordarson16 10 

 11 

1 Laboratoire Magmas et Volcans, Université Blaise Pascal - CNRS - IRD, OPGC, 5 rue Kessler, 63038 12 
Clermont Ferrand, France 13 
2 INGV, Osservatorio Etneo, Sezione di Catania, 95125 Catania, Italy 14 
3 Sorbonne Universités, UPMC Univ Paris 06, UMR 7193, Institut des Sciences de la Terre 15 
Paris (iSTeP) and CNRS, F-75005 Paris, France 16 
4 Institut de Physique du Globe (IPGP), Sorbonne Paris-Cité, Université Paris Diderot, CNRS 17 
UMR-7154, 1 rue Jussieu, 75238 Paris Cedex 05, France 18 
5 ISTerre Université de Savoie CNRS, 73376 Le Bourget du lac, France 19 
6 INGV, Sezione di Pisa, 56126 Pisa, Italy 20 
7 School of Earth Sciences, University of Bristol, United Kingdom 21 
8 Dipartimento di Scienze della Terra, Università degli Studi di Firenze, 50121 Florence, Italy 22 
9 Institut de Physique du Globe (IPGP), Sorbonne Paris-Cité, CNRS UMR-7154, Université 23 
Paris Diderot, Observatoire Volcanologique du Piton de la Fournaise (OVPF), Bourg Murat, 24 
France 25 
10 Département de Minéralogie, Université de Genève, Switzerland 26 
11 Klimacampus, CEN, University of Hamburg, Germany 27 
12 Ludwig-Maximilians-Universitaet (LMU), Munich, Germany 28 
13  Dipartimento Scienze della Terra, Università degli Studi di Pisa, Italy 29 
14 Dipartimento di Scienze della Terra e Geo-Ambientali, Università degli Studi di Bari, Italy 30 
15 INGV, Sezione di Roma, 00143 Roma, Italy 31 
16 Institute of Earth Sciences (IES), University of Iceland, Reykjavík, Iceland 32 

 33 

Abstract A workshop entitled “Tracking and understanding volcanic emissions through 34 

cross-disciplinary integration: A textural working group.” was held at the Université Blaise 35 

Pascal (Clermont-Ferrand, France) on the 6-7 November 2012. This workshop was supported 36 

by the European Science Foundation (ESF). The main objective of the workshop was to 37 
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establish an initial advisory group to begin to define measurements, methods, formats and 38 

standards to be applied in the integration of geophysical, physical and textural data collected 39 

during volcanic eruptions. This would homogenize procedures to be applied and integrated 40 

during both past and ongoing events. The workshop comprised a total of 35 scientists from six 41 

countries (France, Italy, Great Britain, Germany, Switzerland and Iceland). The four main 42 

aims were to discuss and define: 43 

 Standards, precision and measurement protocols for textural analysis 44 

 Identification of textural, field deposit, chemistry and geophysical parameters that can 45 

best be measured and combined 46 

 The best delivery formats so that data can be shared between, and easily used by 47 

different groups; 48 

 Multi-disciplinary sampling and measurement routines currently used, and 49 

measurement standards applied, by each community 50 

The group agreed that community-wide, cross-disciplinary integration, centered on defining 51 

those measurements and formats that can be best combined, is an attainable and key global 52 

focus. Consequently, we prepared this paper to present our initial conclusions and 53 

recommendations, along with a review of the current state of the art in this field that 54 

supported our discussions. 55 

 56 

Introduction 57 

 58 

A major goal of modern volcanology is to relate conditions of magma ascent to the resulting 59 

eruption style using information preserved in volcanic deposits. Because it is impossible to 60 

directly observe magma ascent, vesiculation and fragmentation, one way to obtain 61 

quantitative information on magma-ascent dynamics is through textural quantification of the 62 

sampled particles. Textural quantification involves full description of the vesicle and crystal 63 

properties of erupted products (e.g., Sparks 1978; Sparks and Brazier 1982; Whitham and 64 

Sparks 1986; Houghton and Wilson 1989; Marsh 1988, 1998; Cashman and Marsh 1988, 65 

Toramaru 1989, 1990; Cashman and Mangan 1994; Higgins 2000; 2006; Blower et al. 2002; 66 

Burgisser and Gardner 2005; Shea et al. 2010a; Rust and Cashman 2011; Baker et al. 2012 67 

and references therein). Magma viscosity, ascent rate, vesiculation processes, fragmentation 68 

style and explosion dynamics all imprint characteristic and measurable properties on the 69 

textures of volcanic particles, as shown by theoretical and experimental studies (e.g., Rust and 70 
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Cashman 2011; Gonnerman and Houghton 2012; Degruyter et al. 2012; Nguyen et al. 2013 71 

and references therein). The main assumption is that most of the pyroclast properties are 72 

acquired during ascent in the conduit, with few changes occurring after fragmentation or in 73 

the atmosphere, if the pyroclasts are lapilli size or smaller (e.g., Houghton and Wilson 1989; 74 

Nguyen et al. 2013). Specifically, the textural parameters of the pyroclastic components can 75 

yield insights into the dynamics of explosive eruptions, as reviewed in Table 1. 76 

However, the physical characteristics of individual pyroclasts must not be considered in 77 

isolation from detailed studies of (i) the deposits from which they were collected, (ii) their 78 

chemical properties, (iii) geophysical signatures of the related explosive event, or (iv) 79 

petrological and/or analogue experiments. Indeed, attempts to understand eruption dynamics 80 

have been increasingly coupled to traditional fieldwork and geophysical measurements made 81 

synchronously with sample collection. In 2004, a special issue of the Journal of Volcanology 82 

and Geothermal Research (Volume 137) focused on multidisciplinary approaches, proposing 83 

“simultaneous collection of multiple geophysical data sets, such as seismic, infrasonic, 84 

thermal and deformation data, as well as sampling of ejecta and detailed mapping”. The 85 

argument was that “complete constraint of a volcanic system is not possible using one data 86 

set, so that an integrated multiparametric approach involving simultaneous collection of 87 

multiple geophysical and petrological data sets will increase our ability to reach tightly 88 

constrained and confident conclusions regarding the mechanics and dynamics of volcanic 89 

systems and eruptions” (Harris et al. 2004). Since 2004, numerous studies have borne these 90 

predictions out, combining textural data with: 91 

i. Field deposits (e.g., Polacci et al. 2006a; Rust and Cashman 2007; 2011; Mattsson 92 

2010); 93 

ii. Petrological data (e.g., Larsen 2008; Shea et al. 2009; 2010b; Burgisser et al. 2010; 94 

Bai et al. 2011); 95 

iii. Chemical analyses (e.g., Piochi et al. 2005, 2008; Shimano and Nakada 2006; 96 

Noguchi et al. 2006; Costantini et al. 2010; Schipper et al. 2010a; b; c; 2011; 2012; 97 

2013; Balcone-Boissard et al. 2010, 2011, 2012; Shea et al. 2012; 2014) 98 

iv. Geophysical measurements (e.g., Burton et al. 2007; Gurioli et al. 2008, 2013; 99 

2014; Polacci et al. 2009b; Andronico et al. 2008; 2009a; 2009b; 2013a, 2013b; 100 

Miwa et al. 2009; Miwa and Toramaru 2013; Colò et al. 2010; Landi et al. 2011; 101 

Pistolesi et al. 2011; Leduc et al. 2015) 102 

Together, these studies have delivered complete pictures of explosive eruptions and their 103 

dynamics (Fig. 1).  104 
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Despite this progress, we remain far from establishing the best protocols for sampling 105 

pyroclasts and for correlating and comparing the many parameters that can be measured using 106 

individual clasts and field deposits. Only a few papers address some of these issues (e.g., 107 

Bonadonna et al 2013; Engwell et al. 2013; Klawon et al. 2014). In addition, no study has yet 108 

attempted to correlate all derivable textural parameters with the full range of multidisciplinary 109 

data available. To partially resolve these issues, a working group funded by the European 110 

Science Foundation, through the MeMoVolc program (http://www.memovolc.fr/), was set up. 111 

The group was composed of experts actively working on integration of textural, deposit and 112 

geophysical data, equally balanced between four theme areas: (i) particle-texture studies, (ii) 113 

deposit analysis, (iii) chemistry and (iv) geophysics. The priorities of the meeting were 114 

discussion and definition of: 115 

 Improved standards, precision and measurement protocols needed by the particle-116 

texture studies. 117 

 Best practices for particle-texture studies in order to have comparable datasets from 118 

different types of eruptions. 119 

 Parameters obtained from particle-texture, deposit, geochemical and geophysical data 120 

that need to be measured, and the best delivery format if each discipline’s output is to 121 

be of use to all workers. 122 

 Multi-disciplinary sampling and measurement routines, as well as measurement 123 

standards. 124 

The core communal issues to be explored were agreed on: 125 

1.  What are the best sampling and measurement strategies for the quantification of 126 

pyroclast textural features, and what are their precision and uncertainty? 127 

2. What are the best sampling and measurement strategies for pyroclastic deposits to 128 

allow textural characterization of their particles?  129 

3. How can we link chemistry and particle-texture properties? 130 

4. How can we link geophysical data and the particle-texture quantification? 131 

5. What is the best multi-disciplinary strategy for combining output from each field in a 132 

meaningful way? 133 

The paper reviews these topics in the light of a workshop consensus. Because of the time 134 

constraints and the complexity of the arguments, the paper focuses only on the study of 135 

explosive subaerial magmatic eruptions that generate sustained columns or fountains, and the 136 

associated fallout deposits (Fig. 1). Further workshop or working groups should be organized 137 
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to synthesise and integrate all work in progress, and already completed, in the areas of 138 

phreatic, phreatomagmatic and submarine explosions, as well as pyroclastic density current 139 

and lava flow deposits (Table 1). .  140 

The final objective of this paper is to ensure that data collected in the field and laboratory 141 

can be shared effectively and ingested in a multi-disciplinary sense into experiments, 142 

modeling and monitoring. In the longer term, the objective is to publish and update standards, 143 

as well as to propose, support and organize field meetings to test integrated collection 144 

methodologies. The ultimate aim is to increase the number of open-access data-bases of 145 

standard and community-accepted quality, thereby increasing resources available for cross-146 

disciplinary correlations. 147 

 148 

Sampling of pyroclasts and quantification of their textural features  149 

 150 

(i) Representative samples 151 

 152 

Pyroclasts reflect degassing of the parent magma, from the conduit to the plume. Part of the 153 

textural signature is assumed to reflect the fragmentation (or explosion) zone. Consequently, 154 

texture can be used as an indicator of magma properties (composition, porosity, connectivity, 155 

permeability, vesicle and crystal content, size, shape and distribution) at that time (Table 1). 156 

This assumption has two requirements: 157 

i. The textural signature that was quenched immediately at the fragmentation level can 158 

be distinguished from the textural effects of post-fragmentation processes, including 159 

microlite formation and bubble nucleation, expansion, collapse, coalescence and 160 

Ostwald ripening that will change clast vesicularity or vesicle size and shapes once the 161 

pyroclast has been formed (e.g., Thomas et al. 1994; Cashman et al. 1994; Herd and 162 

Pinkerton 1997; Larsen and Gardner 2000; Gurioli et al. 2008; Costantini et al. 2010; 163 

Stovall et al. 2011, 2012). The time window for post-fragmentation changes depends 164 

on magma composition, viscosity and fragmentation depth. 165 

ii. Because clast density is also a function of clast size (Houghton and Wilson 1989), only 166 

clasts of similar sizes must be used in order to avoid non-uniform grain-size effects on 167 

textural parameters. 168 

We thus recommend choosing samples that are representative of the studied explosion, or 169 

unit, in terms of: 170 
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i. Timing: This requires sampling of narrow stratigraphic intervals (Houghton and 171 

Wilson 1989) in which juvenile clasts of similar dimensions can be assumed to 172 

represent those parts of the magma fragmented at a particular time (n.b. conduit 173 

processes can change over short timescales);  174 

ii. Distribution: This requires selection of more than one outcrop for each event; 175 

iii. Degree of fragmentation: This requires selection of a sampling methods that is 176 

appropriate for the the full range of grain sizes in the deposit; 177 

iv. Componentry: If the juvenile fraction is heterogeneous, then sampling should be done 178 

based on preliminary componentry analysis of the clasts analyzed (e.g., Wright et al. 179 

2011, Eychenne et al 2015) 180 

In previous studies, only clast sizes of 16-32 mm, i.e. coarse lapilli (White and Houghton 181 

2006) have been considered for textural purposes. Such clasts were considered to be large 182 

enough to be easily sampled and studied, while being fully representative of the density 183 

variation of the majority of erupted pyroclasts and unaffected by significant post-184 

fragmentation phenomena (Houghton and Wilson 1989). These requirements are not always 185 

met. In basaltic magma, post-fragmentation effects can be a complication even for these sizes 186 

(e.g., Cashman et al. 1994; Szramek et al. 2006; Costantini et al. 2010; Gurioli et al. 2008; 187 

Pioli et al. 2014; Pistolesi et al. 2008; 2011; Stovall et al. 2011; 2012). In these cases, the 188 

challenge is to identify, quantify and remove post-fragmentation effects in order to isolate 189 

textures preserved across the fragmentation zone. For example, the original shapes of vesicles 190 

may be reconstructed by de-coalescencing large vesicles using the presence of broken, or 191 

partially retracted, glassy septa.  192 

However, if we study an ash-dominated or a bomb-dominated event, particle-texture 193 

analyses must be performed on the fine or coarse juvenile fragments, respectively. Ash size 194 

particles (<2 mm) have been investigated recently in terms of vesicle and crystal size 195 

distributions (Taddeucci et al. 2002, 2004; Cioni et al. 2008; D’Oriano et al. 2011a, b; Miwa 196 

et al. 2009; 2013; Miwa and Toramaro 2013; Proussevitch et al. 2011; Genareau et al. 2012; 197 

2013; Colucci et al. 2013, Schipper et al. 2013), and an extensive work has been done in the 198 

last 40 years in characterizing ash morphology and deposit componentry (Table 1). For the 199 

ash fraction, post-fragmentation expansion can be excluded (e.g., Proussevitch et al. 2011; 200 

Genareau et al. 2012; 2013; Colucci et al. 2013). Consequently, analyses allow comparison 201 

between morphological and textural features of clasts sampled in proximal and distal areas. 202 

Ash particles can record most of the information related to magma ascent dynamics (e.g., 203 

decompression-driven microlite crystallization) and fragmentation (Cioni et al. 2008; 204 
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D’Oriano et al. 2005; D’Oriano et al. 2011a, b; Proussevitch et al. 2011; Genareau et al. 2012; 205 

2013; Colucci et al. 2013). Advantages of studying ash are that it can also be statistically more 206 

representative of the variability of the magma properties and is less affected by density-driven 207 

settling within the plume. However, ash fragments record only small-scale vesicularity. The 208 

integration of observations made on the external shapes of clasts may give information about 209 

the presence and importance of a coarser vesicularity which drives magma fragmentation 210 

(e.g., Proussevitch et al. 2011; Genareau et al. 2012; 2013; Colucci et al. 2013). However, 211 

they cannot provide complete information about the abundance and size of the full vesicle 212 

population, if the magma included bubbles larger than the ash particles. Furthermore, ash 213 

particles are not suitable for permeability studies, as they are often smaller than the bubbles 214 

forming the permeability network. However, the presence of coalesced vesicles in a preferred 215 

direction, and an abundance of ash clasts with an elongate shape, have been interpreted as an 216 

indication of the development of a permeable bubble network (D’Oriano et al. 2011a).  217 

Bombs may provide a plethora of information regarding pre-eruptive degassing and ascent 218 

rate (e.g. Hoblitt and Harmon 1993; Wright et al. 2007), timing and degree of thermal 219 

interaction of magma with wall-rock material prior to ejection (Rosseel et al. 2006; Sottili et 220 

al. 2009; 2010), post-fragmentation changes due to bubble growth, coalescence or shape 221 

changes (e.g. Herd and Pinkerton 1997, Shin et al. 2005) and mingling between stagnant and 222 

fresh magma (Gurioli et al. 2014; Leduc et al. 2015).  223 

 224 

(ii) Bulk measurements of particle characteristics 225 

 226 

The fastest and most straightforward textural measurement of individual pyroclasts is density 227 

(vesicularity), which provides basic information on processes related to gas exsolution and 228 

escape (Houghton and Wilson 1989). The densities of lapilli and small bombs can be 229 

determined by comparing their weights in water and air following the Archimedes principle. 230 

Clasts can be made impermeable with silicone waterproofing spray, by immersion in cellulose 231 

acetate, or by using ParafilmTM wax. This technique is fairly rapid and yields large arrays of 232 

data with a reproducibility within 10-30 kg m-3 and accuracy within 30 kg m-3 (Barker et al. 233 

2012). Quicker, more timely and precise, density measurements can now be performed using 234 

a commercial envelope-density measurement device (http://www.micromeritics.com/Product-235 

Showcase/GeoPyc-1360-Envelope-Density-Analyzer.aspx). Following the same principles, a 236 

battery-powered device has been used to vacuum-seal pumice or scoria in plastic bags in the 237 

field (Kueppers et al. 2005).  238 
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For pyroclasts characterized by fine vesiculation (with largest vesicles smaller than 2-3 239 

mm), the density can be measured with the glass-bead method (Nakamura et al. 2008) that 240 

allows the calculation of the density as well as the volume of an object of irregular size. For 241 

large bombs (from 15 to 40 cm in diameter), a "natural waterproofing" effect was exploited 242 

(Gurioli et al. 2013). Extensive tests showed that decimetric size bombs collected at Stromboli 243 

acquired a "natural waterproofing" from their quenched margins and thus could be weighed in 244 

water without waterproofing. This represents an easy, precise and fast strategy for large 245 

bombs. 246 

The derived density distributions, coupled with external morphology variation, can be 247 

used as filters to select a few clasts, representative of the low, modal and high density values, 248 

from each subpopulation observed (e.g., Shea et al. 2010a). Selected clasts are then used for 249 

textural quantification.  250 

Other bulk particle-texture measurements include vesicle connectivity, permeability (Klug 251 

and Cashman 1996; Klug et al. 2002; Formenti and Druitt 2003; Rust and Cashman 2004; and 252 

references in Table 1) and electrical conductivity (Le Pennec et al. 2001; Bernard et al. 2007; 253 

Wright et al. 2009; Wright and Cashman 2014). The connectivity measurements are mostly 254 

performed using gas-displacement helium pycnometers, and they deliver first-order 255 

information on the outgassing capacity (i.e., potential for gas loss) of the magma near 256 

fragmentation (Klug et al. 2002; Formenti and Druitt 2003; Giachetti et al. 2010; Shea et al. 257 

2011; 2012). Permeability controls the rate at which magma outgases during decompression. 258 

Several methods exist for permeability measurements in volcanology. Rust and Cashman 259 

(2004) used a commercial permeameter to perform systematic steady-state gas-flow 260 

experiments using porous samples, and the relationship between flow rate and pressure 261 

gradient was determined. They also introduced the Forchheimer equation into volcanology, 262 

which is a modified form of Darcy's law that includes the inertial effect of gas flow, and 263 

specified the importance of this effect in volcanic degassing processes. Mueller et al. (2005) 264 

used gas-pressure decay with time after sudden decompression in a fragmentation bomb for 265 

the permeability measurements, without measuring gas-flow rate. A falling head permeameter 266 

developed by Burbié and Zinszner (1985) has also been used to measure the permeability of 267 

volcanic porous materials (Jouniaux et al. 2000; Bernard et al. 2007). Recently, a low-cost gas 268 

permeameter was developed (Takeuchi and Nakashima, 2005) and improved (Takeuchi et al., 269 

2008), to measure permeability of natural samples and experimental products. Finally, 270 

electrical conductivity measures how well a material transports electric charge. Rocks, in 271 

general, are poor conductors, whereas ionic fluids are good conductors. Therefore a 272 
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measurement of conduction through fluid-saturated rocks provides information about the 273 

connected pore pathway through the sample. Although the influence of pathway tortuosity 274 

and pore shape on permeability is useful for numerical simulations on gas percolation, it has 275 

been the object of only a few studies (Table 1). 276 

 277 

(iii) Comparison between 2D and 3D particle-texture measurements  278 

 279 

Two different methods are currently available for extracting vesicle and crystal sizes, shapes 280 

and distributions in pyroclasts. The first is by conversion of 2D data from a planar surface 281 

(such as a thin section or photograph) to 3D data through stereology. The second method 282 

derives 3D data directly from X-ray tomographic reconstructions and visualization of clast 283 

textures without the need of stereological conversions (Song et al. 2001; Shin et al. 2005; 284 

Polacci et al. 2006b; 2008; 2009a, b; 2010; Degruyter et al. 2010b; Gualda et al. 2010; 285 

Giachetti et al. 2011; Baker et al. 2012), using computer software especially developed for 286 

geo-textural purposes (e.g. Ketcham and Carlson 2001; Ketcham 2005; Friese et al. 2013). 287 

Other 3D methods include serial sectioning (e.g. Bryon et al. 1995), serial focusing with 288 

optical microscope (Manga 1998), serial grinding (e.g., Marschallinger 1998a, b, c; Mock and 289 

Jerram 2005), and constructing digital elevation models of individual ash grains to calculate 290 

vesicle volume (Proussevitch et al. 2011). Two-D and 3D observations have different 291 

limitations and potential, and the two methods are becoming complementary, not competitive 292 

(e.g., Giachetti et al. 2011; Baker et al. 2011). 293 

 294 

2D method  295 

Standard procedures for the 2D method have been recently published for vesicles (Shea et al. 296 

2010a) and crystals (Higgins 2000; 2006). Two-D techniques can yield high-quality data and 297 

account for both vesicle and crystal sizes in the sample and can be applied to particles ranging 298 

in size from bombs (e.g., Gurioli et al. 2014, Leduc et al. 2015) to ash (Miwa et al. 2009; 299 

2013; Miwa and Toramaru 2013). These measurements are best used when there is a broad 300 

size distribution to be measured. The main limitation of the method is that is based on the 301 

assumption of spherical shape of the textural objects, following Sahagian and Proussevitch 302 

(1998). When this conversion is simply obtained by dividing the number of vesicles per unit 303 

area by the median value of diameter of each size class (Cheng and Lemlich 1983), no shape 304 

assumption is made. However, the 3D conversion is more precise when a shape is defined. 305 

Empirical corrections are commonly used for crystal analyses (Higgins 2000 and 2006), but 306 
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for vesicles, whose shapes are less uniform, they risk introducing systematic, uncontrolled 307 

errors in the data (Sahagian and Proussevitch 1998; Proussevitch et al. 2007a; 2007b).  308 

 309 

3D method 310 

X-ray-computed microtomography is the only available high-resolution, non-invasive 3D 311 

technique that allows reconstruction, visualization and processing of samples. Data 312 

acquisition is generally relatively straightforward, and several scales can be examined and 313 

combined, ranging from centimeters to <1 micron, depending on the resolution (Giachetti et 314 

al. 2011). In addition, the so-called ‘local area’ tomography technique (e.g., Lak et al. 2008) 315 

enables high resolutions to be attained, even with samples larger than the field of view of the 316 

camera. However, 3D quantification of textures can also be labor intensive, depending on the 317 

size of the volume that needs to be analyzed and on the textural parameters required. The 318 

results show the internal structures of samples, highlighting how objects and apertures are 319 

linked together. This information provides an excellent suite of data for studies of vesicle size, 320 

shape and distribution, collapse, deformation, coalescence, permeability, and tortuosity, as 321 

well as for determining crystal volume, size and distribution and visualizing crystal 322 

aggregates in 3D (Polacci et al. 2009a, b; 2012; Bai et al. 2010, 2011; Degruyter et al. 2010a, 323 

b; Zandomeneghi et al. 2010; Gualda 2010a, b; Baker et al. 2012; Castro et al. 2012; 324 

Okumura et al. 2013). Vesicles with complex shapes are easily identified, while in a 2D 325 

section they might be interpreted as two or more vesicles, thus biasing vesicle size distribution 326 

(VSD) and vesicle number density (Nv) (e.g. Giachetti et al. 2011). The 3D method is 327 

particularly effective for determining Nv if the study is focused on a specific size range; 328 

vesicle number densities over a wide range of sizes is achieved with nested studies in which a 329 

series of scans are done at different sizes and resolutions (e.g. Giachetti et al. 2011; Pardo et 330 

al. 2014b). However, the resolution of the reconstruction is still critical. Klug et al. (2002) 331 

showed that vesicle walls may be as thin as 0.1µm. To achieve this sort of spatial resolution 332 

using tomography requires very small samples. When the attained resolution is 5-15 µm, thin 333 

vesicle walls are not resolved.  334 

There is currently no unique protocol for 3D measurements of different types of 335 

pyroclastic (or lava) samples; however the SYRMEP group of the Elettra Synchrotron Light 336 

Source (Trieste, Italy), together with researchers at McGill University of Montreal and INGV 337 

Pisa (M. Polacci), are developing protocols for volcanic samples of different vesicularities 338 

and crystallinities. 339 

 340 
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(iv) Crystal size distribution 341 

 342 

Crystal size distribution (CSD) is a well-established tool for interpreting the physical 343 

processes and environmental variables that drive differentiation and crystallization in magma 344 

chambers and conduits (e.g., Marsh 1988; Cashman and Marsh 1988; Cashman 1992; 345 

Hammer et al. 1999; Cashman and McConnell 2005, Armienti 2008; also see references in 346 

Table 1). CSD, coupled with vesicle distribution data, yield deeper insights into the physical 347 

processes operating in the conduit (e.g., Gurioli et al. 2005; D’Oriano et al. 2005; Piochi et al. 348 

2005; 2008; Noguchi et al. 2006; Giachetti et al. 2010; D’Oriano et al. 2011a; Vinkler et al. 349 

2012). The CSD method has been well tested and widely applied (Table 1), so that it is now 350 

quite straightforward to quantify CSD (Higgins 2000; 2006; and references in Table 1).  351 

However, we must keep in mind that crystals are commonly anisotropic, and therefore 352 

shape cannot be ignored. Most studies use the Higgins technique to account for shape. 353 

However, the Higgins method assumes that all crystals are the same shape. This is clearly not 354 

true, as small crystals are often more anisotropic than large crystals. Treating all crystals in the 355 

same way can introduce artifacts (see Castro et al. 2003). In addition, there are still resolution 356 

issues for microlites, as well as problems in both back-scattered electron (BSE) and cathode 357 

ray tube (CRT) analyses when the crystals have a density (Z number) near that of the glass. 358 

Several methods can be used to facilitate the extraction and quantification of crystals. CSDs 359 

of larger crystals (phenocrysts, antecrysts, etc.) can be measured from transmitted light 360 

microscopy images of thin sections and analyzed with digital image analysis to automate and 361 

hence speed up the quantification process (e.g., Armienti et al. 1994; Launeau et al. 1994; 362 

Lumbreras and Serrat 1996; Goodchild and Fueten 1998; Launeau and Cruden 1998; De 363 

Keyser 1999; Heilbronner 2000; Armienti and Tarquini 2002; Boorman et al. 2004). Tarquini 364 

and Favalli (2010) used a slide scanner to acquire input imagery in transmitted light from thin 365 

sections and GIS software to analyze the data. 366 

Crystals can also be identified using a scanner and a polarizing filter placed at different 367 

angles (Pioli et al. 2014). Three pictures are then combined, and their correlation allows the 368 

individual grains to be classified by their characteristic orientation. To measure smaller 369 

crystals (microphenocrysts and microlites), a scanning electron microscope is commonly used 370 

in backscattered electron (BSE) mode (Cashman 1992; Hammer et al. 1999; Cashman and 371 

McConnell 2005; Nakamura 2006; Ishibashi and Sato 2007; Salisbury et al. 2008; Blundy and 372 

Cashman 2008; Wright et al. 2012). Development of rapid x-ray mapping techniques now 373 

allows CSD analysis of x-ray element maps, which provide information on crystal 374 
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compositions, textures (crystal size, orientation, shape) and modes of minerals (e.g., Muir et 375 

al. 2012; Leduc et al 2015). Another new technique uses an electron backscatter diffraction 376 

detector (EBSD) attached to the SEM to obtain crystal orientations, which can provide 377 

insights into shearing, accumulation and degassing processes (Prior 1999; Prior et al. 1999; 378 

Hammer et al. 2010). Chemical mapping is now routinely and widely used (e.g., Leduc et al. 379 

2015). In contrast, EBSD is more difficult to use and interpreting the data is harder than the 380 

chemical maps. As described in the references cited, it produces a wealth of information on 381 

various minerals, although the monocline structure of the feldspar can be problematic. 382 

Crystal size distribution can also be obtained directly in 3D via X-ray computed 383 

microtomography. Using this approach, it is possible to obtain the total crystal volume, as 384 

well as the crystal volume of each mineral phase present: crystallinity, crystal size and crystal 385 

shape (e.g., Zandomeneghi et al. 2010; Voltolini et al. 2011). Again, resolution can be a 386 

problem. First, crystals may span a large size range, which requires imaging at several 387 

different resolutions (e.g., Pamukcu et al. 2010; 2012). Additionally, as in BSE analysis, the 388 

compositional similarity between some crystal phases, such as alkali feldspars, and silicic 389 

matrix glass can make automated analysis challenging (e.g., Baker et al. 2012). However, 390 

excellent results can be obtained by working in phase-contrast tomographic mode (Polacci et 391 

al. 2010), and applying a procedure known as phase retrieval to the reconstructed sample 392 

volumes (Arzilli et al. 2013).  393 

 394 

(v) Errors in particle-texture analyses  395 

 396 

Uncertainties in textural analysis are due to several factors. Any textural parameter, such as 397 

porosity or crystal size, has intrinsic measurement errors. These are linked to the apparatus 398 

used and are generally easy to quantify using standards. A good practice, when a new method 399 

is introduced, is to assess its intrinsic error with synthetic samples of well-known particles, 400 

having textural components (e.g. crystals, vesicles/voids) with known size and distribution 401 

(e.g., see review of Rust and Cashman 2004 for permeability, and Baker et al. 2011 for 3D 402 

data from X-ray microtomography). Another type of uncertainty is linked to natural 403 

variability, which is generally approached by using the concept of Representative Elementary 404 

Volume (REV, Bear 1972). Parameters measured in small, neighboring, regions within a 405 

sample have a large variability. As the analyzed regions become larger, this variability 406 

decreases until a steady value is reached at the REV size. One complication is that the REV 407 

should be significantly smaller than the sample (not guaranteed for ash, or even lapilli, 408 
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particles), and that some parameters have an REV at the deposit scale, which means that many 409 

clasts have to be analyzed. If the sample location is such that eruptive parameters were steady 410 

during deposition, application of REV at the deposit scale allows analysis of magma at the 411 

point of fragmentation in the conduit. Taking porosity as an example, one 2D SEM image will 412 

yield one porosity measurement with a typically small (~1 %) intrinsic error due to 413 

thresholding of the grayscale values that represent vesicles. Several 2D images of the same 414 

sample taken at different locations and/or different resolutions (larger than the REV) typically 415 

yield larger (~10 %) uncertainties that are caused by small-scale spatial heterogeneity. Finally, 416 

if we assume that – or if we have a – very well sorted deposit, then the density distribution of 417 

all clasts at that location indicates the variability of porosity at the conduit scale, which can be 418 

quite large (e.g., Houghton and Wilson 1998). The situation is more complex with poorly 419 

sorted deposits in which particles range from bombs through lapilli to ash.  420 

Raw data in terms of size (area, long axis, short axis, perimeter) and orientation of crystals 421 

and vesicles yield negligible intrinsic errors, because they are computed with programs on 2D 422 

binary images with high resolution (>106 pixels). In this phase, the uncertainty is due to the 423 

image clean-up process, which is generally unquantified (because it takes too long to have 424 

four people complete the task independently and then take the average for every image). 425 

The greatest source of intrinsic error here is thresholding, which is set by the operator 426 

(Baker et al. 2011). When converting 2D data to a 3D projection, however, the error depends 427 

on the stereological model used (i.e. particle shapes have to be assumed, Cashman 1988) and 428 

is thus harder to estimate. 429 

Most 2D textural parameters have well-established techniques and protocols to quantify 430 

intrinsic errors, including: 431 

 VSD (Toramaru 1990; Mangan et al. 1993; Klug and Cashman 1994; 1996; Klug 432 

et al. 2002; Adams et al. 2006b; Shea et al. 2010a), 433 

 CSD (Higgins 2006), fabric indicators (Launeau et al. 1990), 434 

 vesicle shape (Moitra et al. 2013), 435 

 clast shape (Marshall 1987; Capaccioni and Sarocchi 1996; Dellino and Liotino 436 

2002; Riley et al. 2003; Ersoy et al. 2006). 437 

However, conversion from 2D to 3D distributions introduces errors linked to stereological 438 

assumptions. The Cheng and Lemlich (1983) method does not involve assumptions of object 439 

shape, but it does not take into account a truncation effect (e.g. Pickering et al. 1995). 440 

Truncation is related to the sensitivity of the measurement process; smaller objects are 441 
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increasingly difficult to detect. On the other hand, large-scale truncation occurs under several 442 

circumstances related to sample-size (volume and area) limitations. The Sahagian and 443 

Proussevitch (1998) conversion assumes spherical shapes and corrects for the cut effect (this 444 

being the effect induced by rarely cutting a spherical object through its exact center). 445 

Giachetti et al. (2011) found that Nv obtained by 2D and 3D methods for the same lapilli 446 

agreed within 15 %, and that VSD were also very similar. They recommended the Cheng and 447 

Lemlich (1983) method for 2D vesicle analysis, as the Sahagian and Proussevitch (1998) 448 

method may generate negative values for some size classes. 449 

In terms of parameters that we can derive from textural analyses, decompression rate is 450 

probably one of the most important to quantify due to its implications for eruption dynamics. 451 

To achieve this, microlite shape, Nv and size distribution have been used in combination with 452 

experimental data for low-mass flux and effusive eruptions (Couch et al. 2003; Cashman and 453 

McConnell 2005; Szramek et al. 2006; Clarke et al. 2007; Martel 2012; Wright et al. 2012). 454 

Martel et al. (2006) consider this approach to be highly reliable, because different generations 455 

of microlites (nucleated pre-eruptively in the reservoir or syn-eruptively in the conduit) can be 456 

distinguished on the basis of chemical composition. Decompression rates deduced from Nv 457 

(e.g., Toramaru 2006), however, tend to be maximum estimates, because there could be more 458 

nucleation events during ascent that add to the signature left by decompression. Maximum 459 

decompression rates associated with the final, rapid, stages of ascent could be calculated 460 

directly from the smallest bubbles formed during the final fragmentation event (Giachetti et 461 

al. 2010; Shea et al. 2011; 2012). Another developing method is to use chemical gradients of 462 

volatiles in melt inclusions in crystal embayments to infer rise rates (Ferguson et al. 2013).  463 

However, the relationships between bubble shape, nucleation, coalescence, deformation 464 

and/or fragmentation are not well established yet. 465 

 466 

Quantification and sampling of pyroclastic deposits for the textural characterization of 467 

their components  468 

 469 

(i) Preliminary field studies and sampling strategy  470 

 471 

Field-based studies of pyroclastic deposits aim to relate both the whole-deposit characteristics 472 

(thickness and grain size) and the physical properties of the constituent particles to the 473 

eruption conditions. Particle-texture studies are time consuming, especially when they provide 474 

complete size distributions of the vesicle and crystal population. For these measurements, the 475 
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choice of a limited number of “representative” clasts selected for the analysis is critical, 476 

particularly when using these data to model eruption processes and their variability in time 477 

and space. Obtaining such clasts requires a cautious sampling strategy with well-defined 478 

scientific goals during field work. These studies are best performed only on well-documented 479 

deposits, supported by a robust stratigraphic reconstruction and correlation, as well as an 480 

accurate compositional stratigraphic framework. When not familiar with the deposit, a 481 

preliminary survey at different locations is useful to evaluate the significance of the outcrops 482 

used for detailed analysis. Well-defined sublayers (or units) should be identified in the deposit 483 

on the basis of clear, unequivocal lithologic and sedimentologic features and cross-correlated 484 

over the whole dispersal area of the deposit. Stratigraphic data are critical for placing each 485 

studied layer within an appropriate temporal framework within the stratigraphic sequence.  486 

Pyroclasts can be collected after the eruption, from fall deposits of old (unobserved) or 487 

recent (observed) eruptions, for which sampling is done preferably within hours to days of the 488 

event (e.g., Gurioli et al. 2008; 2013). Sampling may also take place during eruptive activity, 489 

with samples collected using sampling device placed inside the fallout field. Three simple 490 

collection methods that can be applied to active fallout, as currently used, are: (1) the hand 491 

collection method involves collecting (and quenching) bombs or lapilli as they fall out of the 492 

plume by people standing in the active fallout field (e.g., Lautze and Houghton, 2007, 2008; 493 

Gurioli et al. 2014); (2) the “clean surface” strategy, whereby plastic sheets are laid out close 494 

to the vent, or a preexisting surface is cleaned before the eruption. In both cases the pyroclasts 495 

falling in a known area are collected (e.g., Rose et al. 2008; Andronico et al. 2009a; 2013a 496 

and b; Eychenne et al. 2012; Houghton et al. 2013, Harris et al. 2013b, Schipper et al. 2013); 497 

(3) the bucket strategy, in which a large number of buckets are distributed across a discrete 498 

area of fallout for a certain period of time (e.g., Yoshimoto et al. 2005; Swanson et al. 2009; 499 

Bustillos and Mothes 2010). When possible, the aims are to collect a sufficient number of 500 

samples to estimate the magnitude of the event through the mass load per unit area; and to 501 

obtain a sufficient number of clasts for chemical and textural characterization. Other 502 

promising methods are just coming on-line, such as automatic ash sampling collectors (e.g., 503 

Bernard 2013; Shimano et al. 2013, Marchetti et al. 2013).  504 

 505 

(ii) Definition of essential, basic physical properties of the deposit to the study 506 

 507 

Most particle and deposit texture studies aim at characterizing magma heterogeneity and 508 

ascent dynamics, and at understanding the fragmentation process, beginning with the size, 509 
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morphology and componentry  of the particles (Table 1). Clasts selected for particle-texture 510 

analysisare usually sampled in a deposit at a single location (reference section). Lateral 511 

variability across the deposit is filtered by transport and sedimentation processes, which 512 

primarily depend on eruption intensity, along with related plume dynamics and other dynamic 513 

effects such as wind direction and velocity and rainfall. Therefore, clast properties can differ 514 

both in time (from the base to the top of a vertical sequence) and in space (from the main axis 515 

of dispersal to lateral outcrops at the edge of the fallout zone across the cloud, and from 516 

proximal to distal sites). Volcanic plumes (and clouds) are thus complex systems, the 517 

properties of which do not vary linearly with the main eruption parameters. They are also 518 

affected by external variables, such as wind direction and velocity. The external variables add 519 

additional complexity to the clast-type distribution. For this reason, the deposit should be 520 

preliminarily characterized at least in terms of stratigraphy, dispersal, thickness variation and 521 

volume before more detailed study is initiated (e.g., Fisher and Schmincke 1984; Cas and 522 

Wright 1987; Thordarson et al. 2009; Cioni et al. 2011). Estimation of plume height, eruption 523 

duration, volume and magma eruption rate can then also be derived for past eruptions from 524 

such analyses (e.g., Carey and Sparks 1986; Pyle 1989; Fierstein and Nathenson 1992; Sparks 525 

et al. 1997; Bonadonna et al. 1998; Freundt and Rosi 1998; Bonadonna and Costa 2012; 526 

Fagents et al. 2013).  527 

 528 

(iii) Selecting the outcrop 529 

 530 

There are three basic criteria for sample outcrop selection. First: minimize the effect of wind 531 

dispersal. Outcrops located along the main dispersal axis are preferred to lateral exposures, 532 

unless the effect of wind is the target of study. If wind direction or eruption intensity changes 533 

during different phases of the same eruption, it is more appropriate to sample each tephra 534 

layer at different ‘equivalent’ locations rather than to collect all samples at a single type 535 

outcrop. If sampling is restricted to a single location, the inferred dispersal pattern and 536 

distance from the main dispersal axis of each layer should be noted and taken into account 537 

when analyzing clast variability among different layers. 538 

A second criterion for selecting the outcrop is that clear textural variations among the 539 

juvenile clasts, in terms of color, general morphology, vesicularity, vesicle shape, and 540 

crystallinity should be evaluated in the preliminary field survey, so that any lateral and 541 

vertical variability within the deposit is already defined following field reconnaissance. This 542 
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ensures that, when clast types are chosen in the laboratory, the main textural types are easily 543 

identified and separated. 544 

The third criterion for outcrop selection, if one of the goals of the study is quantification 545 

of the proportion of distinct textural clast types, is to remember that sedimentation from the 546 

volcanic plume is affected by clast density, shape and size (Bonadonna et al. 1998; Pfeiffer et 547 

al. 2005; Barsotti et al. 2008; Eychenne et al. 2013, and references therein). This is especially 548 

relevant when a single explosion produces a juvenile population with a wide range of textural 549 

and other physical features: their relative proportions within the deposit can vary laterally in 550 

the deposit as well as with distance from the vent. Thus, at any single site, the sample is not 551 

necessarily representative of the abundance within the eruption mixture. This is especially 552 

true in the case of small plumes and mid-intensity eruptions (e.g., Rose et al. 2008; Cioni et 553 

al. 2008; 2011; D’Oriano et al. 2011a; Andronico et al. 2013a and references therein). While 554 

the textural features of the different clast types can be studied at a single outcrop, the relative 555 

proportions between clast types need to be determined across the whole deposit by integrating 556 

componentry data on samples collected at outcrops at differing azimuths and distances from 557 

the source. 558 

 559 

(iv) Sampling  560 

 561 

After identification of the outcrops where the deposit shows the best and most complete 562 

exposure, a suitable approach is random collection of a statistically relevant number of clasts 563 

from a single layer. Several techniques can be used, ranging from sieving in the field to find 564 

the dominant clast size (for coarse clasts), or sampling the bulk deposit for later clast selection 565 

in the laboratory (for small clasts). In the case of fine-grained deposits, it can be useful to 566 

apply sampling techniques that preserve structural and textural characteristics of the whole 567 

deposit. Samples can be retrieved using tubes or boxes manually pressed into the deposits, or 568 

carfully carved out and surround-wrapped deposit blocks. In situ and/or laboratory 569 

impregnation techniques of deposits exist for a broad range of grain sizes and compositions 570 

(Bouma 1969), some of which are applicable to fragile or loose volcanic deposits (e.g. Fiske 571 

et al 2009). The applicability of such techniques to fine-to-medium grained volcanic deposits 572 

should be tested, since they would allow both 2D (e.g., X-ray radiography and thin section 573 

analysis) and 3D analysis (X-ray tomography and anisotropy of magnetic susceptibility) to be 574 

applied to deposits, rather than single pyroclasts; these, techniques are frequently used for 575 

hard rocks (e.g., Lanza and Meloni 2006). 576 
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The number of samples should be defined depending on the purpose of the study. 577 

Fixing the number of samples per stratigraphic layer based on the layer characteristics (e.g., 578 

extent of zoning/fluctuations in grain-size, componentry, etc.) for characterizing eruption 579 

dynamics, or focusing on the layer thickness for conduit dynamic characterizations, are two 580 

examples of such pre-selection decisions. Before selecting clasts, basic grain-size studies 581 

(when the bulk deposit is collected) on each sampled layer (median and sorting of grain-size 582 

distribution) and componentry analysis should be carried out to ensure effective sub-sampling 583 

for textural studies. Following White and Houghton (2006) componentry analysis is the 584 

subdivision of the sample into three broad components: juvenile, non-juvenile particles and 585 

composite clasts. The juvenile components are vesicular or dense fragments, as well as 586 

crystals, that represent the primary magma involved in the eruption; non-juvenile material 587 

includes accessory and accidental fragments, as well as crystals, that predate the eruption 588 

from which they are deposited. Finally, the composite clasts are mechanical mixtures of 589 

juvenile and non-juvenile (and/or recycled juvenile) clasts. More-detailed componentry can 590 

subdivide the juvenile and non-juvenile materials into subpopulations that have important 591 

dynamic meanings (e.g., Eychenne et al. 2015).  592 

Finally, after choosing the size intervals of the clasts for physical and textural 593 

measurements (i.e., bulk and solid density, vesicularity, microtextures, permeability), it is 594 

useful to compare the grain-size distribution of each interval with the total grain-size 595 

distribution of the sampled layers, especially when the grain-size distribution is highly 596 

variable within the sampled stratigraphy. This strategy allows checking of sample 597 

representativeness. For example, sampling may be from (i) bimodal or complex multimodal 598 

distributions, or (ii) anomalous, poorly sorted deposits. In the second case, sampling should 599 

avoid features that can be indicative of contamination from other sources, such as ballistic 600 

components, elutriated ash from pyroclastic density currents or from reworking (e.g., Fierstein 601 

et al. 1997, Eychenne et al. 2012). It is useful, whenever possible, to show variance, or 602 

invariance, of the textural features by comparing data collected in the selected size class with 603 

textural data for different size classes. This should, at least, be carried out for a few selected 604 

samples. 605 

 606 

How to link petrological, geochemistry and textural quantifications 607 

 608 

(1) Initial parameters and conduit processes 609 

 610 
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Geochemical and petrological analysis of pyroclastic products can constrain the initial 611 

conditions in the shallow crustal holding chamber through to the surface via the conduit 612 

system (Fig. 1). In transit through this system, the textural features are imprinted on the 613 

pyroclasts quenched upon eruption. The geochemical and petrologic analysis can help: 614 

 Define pre-eruptive P-T storage conditions from mineral-melt equilibria or 615 

disequilibria (e.g., Rutherford et al. 1985; Scaillet and Evans 1999; Pichavant et al. 616 

2002; Blundy and Cashman 2008; Schipper et al. 2010b); 617 

 Assess initial viscosity, temperature, melt composition and volatile budget, including 618 

input of gases from deeper sources (e.g., Wallace 2001; Blundy and Cashman 2008; 619 

Métrich et al. 2010); 620 

 Define the evolution of volatile contents (specifically CI, F, S, H2O, CO2) using 621 

electron probe, ion probe (SIMS), Raman and FTIR in melt inclusions and host 622 

minerals, while combining results with vesiculation studies and gas release 623 

measurements (e.g., Wallace 2005; Métrich and Wallace 2008, Schipper et al. 2010c). 624 

In such a way we can determine whether the magma was saturated, over-saturated or 625 

under-saturated at a certain depth, and how these conditions affect vesiculation in the 626 

conduit (e.g., Anderson 1991; Hurwitz and Navon 1994; Dixon 1997; Roggensack et 627 

al. 1997; Schipper et al. 2012); 628 

 Measure residual volatiles in glasses and bulk-rock samples to reveal how degassed 629 

the magma is (Newman et al. 1988; Villemant and Boudon 1998; Shea et al. 2014); 630 

 Provide variable diffusion of stable elements (6Li, 7Li, H/D, 10B, 11B) or radiogenic 631 

isotopes (210Pb-226Ra), which are used as tracers for melt degassing and interaction 632 

with hydrothermal fluids (e.g., Berlo et al. 2004; Kent et al. 2007; Humphreys et al. 633 

2008b; Schiavi et al. 2010; Berlo and Turner 2010; Vlastélic et al. 2011); 634 

 Measure mineral diffusion profiles and derive pre-eruptive residence times, ascent 635 

rates and cooling rates (e.g., Kahl et al. 2011); 636 

 Provide crystal shapes, zoning schemes, and dissolution stages, while determining 637 

which magmatic process and physical parameters control crystal shape/zoning (e.g., 638 

Hammer and Rutherford 2002; Rutherford and Devine 2003; Blundy et al. 2006; Costa 639 

et al. 2008; Streck 2008); 640 

In addition, laboratory petrological investigations can provide: 641 



20 
 

- Experimental observations on phase equilibria (mineral-melt-vapor), crystallization 642 

paths and liquid line of descent (e.g., Hammer and Rutherford 2002; Couch et al. 643 

2003; Blundy et al. 2006; Hammer 2008); 644 

- Calibration of decompression rates. While this has been carried out for rhyolitic 645 

systems (e.g., Mourtada-Bonnefoi and Laporte 2002, 2004; Mangan and Sisson 2005; 646 

Gardner 2007; Cichy et al. 2011; Cluzel et al. 2008) and phonolitic systems (e.g., 647 

Larsen 2008; Shea et al. 2010b), there are ongoing studies on basaltic systems (Bai et 648 

al. 2008; Lesne et al. 2011; Pichavant et al. 2013); 649 

- Diffusion coefficients of relevant chemical elements, including volatiles, to improve 650 

kinetic modeling (Dohmen et al. 2007; Chakraborty 2008); 651 

- Relationships between crystal morphologies, cooling rates and degree of undercooling 652 

(e.g., growth of crystals with hopper and swallow tail shapes experiencing rapid late-653 

stage crystallization; Faure et al. 2003, 2007); 654 

- Surface flux of volatiles (i.e. what leaves the system; see reviews by Fischer 2008; 655 

Pyle and Mather 2009) compared with melt inclusion data (i.e. what is in the system 656 

initially; e.g., Le Voyer et al. 2010; Rose-Koga et al. 2012; Schiavi et al. 2012). 657 

 658 

2) Where geochemistry can help textural study  659 

 660 

Measurements of volatile contents in quenched, phenocryst-hosted melt inclusions provide 661 

estimates of initial (shallow crustal) values (e.g., Kent 2008). These are minimum estimates, 662 

because H2O can leak from melt inclusions during ascent by intracrystalline diffusion as the 663 

far-field environment of the crystal evolves (Chen et al. 2011, 2013). Melt inclusion volatile 664 

contents can be inverted to equivalent saturation pressures using multi-species (e.g., H2O-665 

CO2; H2O-Cl) solubility laws (using, for example, VOLATILCALC, Newman and 666 

Lowenstern 2002; MELTS, Ghiorso and Sack 1995; Asimow and Ghiorso 1998). These, in 667 

turn, can be used to calculate total pressures (and hence depth) by assuming volatile 668 

saturation, or minimum pressures if the sample is under-saturated in volatiles. Progressive 669 

closure of melt inclusion networks in growing phenocrysts can result in zone-dependent melt 670 

inclusion volatile contents that record the evolution of pressure conditions as magmas migrate 671 

from depth (Blundy and Cashman 2008, and references therein). Combining major element 672 

and volatile compositions of the melt with phenocryst contents allows calculation of initial 673 

magma physical properties (viscosity, density, surface tension, and others). Derivations of 674 
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such parameters are necessary for modeling magma ascent, vesiculation and groundmass 675 

crystallization.  676 

Pre-ascent storage conditions can also be inferred from phase-equilibria studies of natural 677 

compositions. Comparison of natural and experimental phase abundances and compositions, 678 

combined with constraints of volatile content (from melt inclusions) and temperature (from 679 

e.g., Fe-Ti oxides) allows estimation of total pressure if the degree of volatile saturation is 680 

established through use of mixed-volatile experiments (Pichavant et al. 2007; Cadoux et al. 681 

2014). 682 

Residual volatile content (e.g., H2O, CO2, SO2, Cl, F) measured in the glass or directly 683 

from gases emitted at the vent can be correlated with textures (e.g., Piochi et al. 2005; 2008; 684 

Schipper et al. 2010a; Balcone-Boissard et al. 2011, 2012; Shea et al. 2012, 2014; Burton et 685 

al. 2007; Polacci et al. 2009b; Miwa and Toramaru 2013). The residual volatile contents can 686 

also be compared with pre-eruptive volatile contents obtained from melt inclusion to evaluate 687 

both the extent and efficiency of syn-eruptive degassing (e.g., Shimano and Nakada 2006; 688 

Noguchi et al. 2006, Métrich et al. 2001; 2010). Residual water content or Cl content (when 689 

Cl partitions into a H2O vapor phase, so that it can thus be used as an indicator of degassing 690 

processes; Balcone-Boissard et al. 2010) is typically plotted against Vg/Vl, where Vg is the 691 

volume of vesicles corrected for phenocrysts and Vl is the volume of melt and microlites 692 

(Villemant and Boudon 1998, Balcone-Boissard et al. 2011, 2012). An important issue is to 693 

assess the extent of post-eruption hydration. Recently, thermal gravimetric studies have 694 

proved to be quite effective in allowing this correction based on oxygen or hydrogen isotopic 695 

compositions (e.g., Giachetti and Gonnerman 2013; Shea et al. 2014). Studies of hydrogen 696 

isotopes, correlated with SEM glass textures, permit distinction of magmatic water from 697 

meteoric water generated by re-hydratation (Kyser and O’Neil 1984). Hydration can also be 698 

assessed from the ratio of water species (molecular H2O vs. OH) in residual glass, as 699 

determined by FTIR data or Raman analyses (Hammer et al. 1999; Le Losq et al. 2012). 700 

Ascent and decompression in the conduit can result in chemical changes that can be 701 

quantified by a range of microbeam analytical techniques (e.g., EPMA, LA-ICPMS, FTIR, µ-702 

Raman). As the pressure drops, H2O will migrate out of melt inclusions and crystals (Le 703 

Voyer et al 2010; Hamada et al 2010), and light elements (Li, B) will try to re-establish 704 

equilibrium between crystals, host melt and any vapor or brine phase present (Berlo et al. 705 

2004). At the same time, H2O and CO2 migrating out of melt inclusions will become apparent 706 

as re-entrant tubes at the edges of crystals (Liu et al. 2007; Humphreys et al. 2008a). Each of 707 

these processes will establish diffusive gradients frozen into the pyroclast that can be 708 
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measured and modelled using experimentally determined kinetic laws to infer decompression 709 

rates during ascent (e.g. Gonnermann and Manga 2013). These decompression rates can then 710 

be compared with values derived from other approaches, including those based on analyses of 711 

microlite sizes and shapes, vesicle number densities, and hornblende-breakdown reactions 712 

(e.g., Martel 2012; Cluzel et al. 2008; Giachetti et al 2010; Shea et al. 2011). 713 

 714 

3) Contentious points 715 

 716 

Care needs to be taken when converting decompression rate to magma ascent rate, and 717 

especially when comparing decompression rates obtained using different methods. Pressure 718 

gradients in conduits are highly nonlinear due to the strong effect of dissolved H2O on magma 719 

viscosity, particularly at low H2O contents (Gonnermann and Manga 2013). Moreover, 720 

different processes will likely record different decompression rates, according to the time 721 

available for the process to take place. For example, microlite growth is relatively slow, so 722 

that microlite size and shape distributions are likely to record an average decompression rate 723 

during ascent (Martel 2012). Bubble nucleation and growth, on the other hand, can occur very 724 

rapidly, so that Nv may record just the peak decompression rate immediately beneath the 725 

fragmentation zone (Cluzel et al. 2008; Giachetti et al 2010). Comparison of rate calculations 726 

from different methods therefore requires caution. However, integration of decompression 727 

rates as obtained from different textural and chemical characterizations, when combined with 728 

mass eruption rate estimation from deposit analysis or direct observations, can provide 729 

quantitative insights into the processes involved in magma ascent from the deep source to the 730 

surface. 731 

Another outstanding issue is the role of dense clasts. That is, did they originate (i) from 732 

magma quenched at depth prior vesiculation, (ii) by vesicle collapse in an originally vesicular 733 

clast, (iii) from volatile-poor magma or from reciclying? It is important to provide a correct 734 

interpretation, because the three conclusions relate to very different mechanisms. In several 735 

eruptions it has been found that the densest clasts were depleted in water through syneruptive 736 

bubble collapse and coalescence (Rust and Cashman 2007; Piochi et al. 2008, Shea et al. 737 

2014). In Plinian eruptions at Vesuvius (Pompeii and Avellino), the densest clasts have been 738 

interpreted as magma that lost water during transition from closed-to open-system degassing 739 

(Balcone-Boissard et al. 2011; 2012). Water depletion can also result from syn-eruptive 740 

processes, such as clast recycling at magmatic temperature (Gurioli et al. 2014) and intrinsic 741 

magmatic redox conditions, as shown by the experiments of D’Oriano et al. (2012). No study 742 
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has yet have demonstrated that dense clasts retain all of their original gas and were quenched 743 

at great pressure. 744 

Another key question is whether the measured compositions (including volatile content) 745 

of bulk rock, glass, or minerals represent equilibrium or disequilibrium processes, and if 746 

equilibrium or disequilibrium conditions pertain to local subsystems or to the whole magmatic 747 

body under investigation (see for example Pichavant et al. 2007). Chemical species with 748 

different diffusivities, for example, record equilibrium or non-equilibrium conditions in the 749 

same sample (e.g. De Campos et al. 2008; Schipper et al. 2012). Equilibrium kinetics is also 750 

composition-dependent, because it is dictated in part by melt viscosity which is itself related 751 

to viscosity. This issue will generally affect silicic to intermediate magmas more than basaltic 752 

magmas. However, we note that even for basaltic systems crystal-fluid-bubble magma 753 

mixtures can achieve apparent viscosities that range over six orders of magnitude, up to 106 754 

Pa s (e.g., Gurioli et al. 2014), depending on the degree of cooling, degassing and 755 

crystallization. Such rheological variation even within a single composition, and its effect on 756 

eruption mechanisms, deserves increased attention.  757 

 758 

How to link the geophysical data with pyroclast textural quantification 759 

 760 

A wide array of remote sensing and geophysical approaches can be used to parameterize an 761 

explosive event, both within and outside the conduit (Fig. 1). Geophysical signals are 762 

generated by fluid and gas flow in the magma-filled part of the conduit and during 763 

fragmentation. Magma-gas ascent dynamics and conduit conditions extracted from 764 

geophysical data for this part of the system are particularly difficult to validate because the 765 

system cannot be directly observed. They are thus effectively “invisible” to direct observation. 766 

Measurements outside the conduit can be made of the emitted mixture of gas and particles as 767 

it (i) exits the vent, (ii) ascends above the vent as a plume, and then (iii) drifts away from the 768 

vent as the cloud. Models and dynamic parameters extracted for geophysical and remote 769 

sensing data outside the conduit are a little easier to validate because they can be directly 770 

observed.  771 

The invisible part of the system is the realm of studies using seismic, pressure 772 

(infrasonic), and deformation data. All three data sets have long been shown capable of 773 

detecting the geophysical signature of explosive events spanning weakly explosive Hawaiian-774 

to-Strombolian through Plinian events. Seismic data sets are available, for example, for gas-775 

pistoning events, puffing, fountains, and strombolian eruptions at mafic systems (e.g., 776 
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Goldstein and Chouet 1994; Ripepe et al. 1996; Sciotto et al. 2011; Ripepe and Braun 1994), 777 

as well as for events that generate somewhat larger plumes during silicic eruptions, as at 778 

Santiaguito, Soufriere Hills, and Redoubt. Associated pressure impulses (typically recorded 779 

by infrasound and barometers) have long been recorded for such energetic events, famous 780 

examples including the pressure response to the 1883 eruption of Krakatoa and the 1967 781 

caldera-forming eruption of Fernandina (Simkin and Howard 1970). Magma-gas ascent has 782 

also been shown to generate rapid, but recordable, deformation signals detected by tiltmeters 783 

(Aoyama and Oshima 2008; Genco and Ripepe 2010; Iguchi et al. 2008; Zobin et al 2007).  784 

Velocities, masses and size distributions of particles leaving the vent have typically been 785 

measured by visible and thermal video (e.g., Chouet et al. 1974; Ripepe et al. 1993; Harris et 786 

al. 2012; Delle Donne and Ripepe 2012; Taddeucci et al. 2012; Bombrun et al. 2014; Gaudin 787 

et al., 2014a, b) and Doppler radar (e.g., Dubosclard et al 1999; Hort and Seyfried 1998; Vöge 788 

et al 2005; Gouhier and Donnadieu 2008; 2011; Gerst et al 2013). Infrasonic array methods 789 

are also available to locate the emission in x,y space (Ripepe and Marchetti 2002). Plume 790 

front velocities, density and entrainment rates have also been successfully tracked using 791 

visible and thermal cameras, as well as radiometers, for a few stronger, ash-rich, buoyant 792 

plumes at Stromboli, Santiaguito and Eyjafjallajökull (Patrick 2007; Sahetapy-Engel and 793 

Harris 2009; Bjornsson et al. 2013; Valade et al. 2014); See Chapter 9 of Harris (2013) for 794 

review.  795 

Satellite remote sensing has long been used to track and measure properties of the 796 

eruption cloud as it drifts and disperses. These data are available for all cloud sizes, from 797 

those associated with small Strombolian and fountaining events (e.g., Heiken and Pitts 1975; 798 

Dehn et al. 2000; 2002) to sub-Plinian and Plinian events (e.g., Holasek and Self 1995; 799 

Koyaguchi and Tokuno 1993; Holasek et al. 1996). Cloud dispersion dynamics are especially 800 

well revealed by geostationary satellite data with nominal imaging of one image every 15 801 

minutes and higher. Basic cloud properties that can be measured by satellite data include 802 

cloud dimensions, drift velocity and height (e.g., Robock and Matson 1982; Denniss et al. 803 

1998; Aloisi et al. 2002; Zakšek et al 2013). Prata (1989) and Wen and Rose (1994) 804 

introduced a method to potentially extract particle size distribution and mass from “split 805 

window” (10-12 µm) thermal data. While specially modified ground-based thermal cameras 806 

were adapted to extract ash particle size and plume mass (Prata and Bernardo 2009), newly 807 

available technology such as LiDAR and PLUDIX were shown of value in detecting, tracking 808 

and measuring fine particles in the Eyjafjallajökull cloud (e.g., Bonadonna et al. 2011). 809 

Disdrometers and ash collectors, however, currently show greater potential for measuring 810 
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particle size and terminal velocity (Marchetti et al. 2013; Shimano et al. 2013) than PLUDIX, 811 

which was designed more for meteorological applications (Caracciolo et al. 2006; Prodi et al.  812 

2011). 813 

For the gas content of the cloud, satellite-based sensors such as TOMS, AIRS, OMI, 814 

MODIS, GOME and IASI have been used to obtain the SO2 content in the far field, once the 815 

gas cloud has decoupled from the ash cloud (e.g., Krueger et al. 1990; Carn et al. 2003; 2005; 816 

Watson et al. 2004; Yang et al. 2007; Thomas et al. 2011; Rix et al. 2012; Walker et al. 2012). 817 

Ground-based sensors, such as COSPEC, FLYSPEC and DOAS (e.g., Caltabiano et al. 1994; 818 

Horton et al. 2005; Oppenheimer et al. 2011), have been used to measure SO2 fluxes relatively 819 

close to the source; see Williams-Jones et al (2008) for full review. These approaches have 820 

been recently supplemented by SO2 camera systems, which allow 2D images of SO2 821 

concentrations to be collected at ~1 Hz rates (Mori and Burton 2006). Such studies have, 822 

though, tended to focus on passive degassing and gas-puffing systems, because the presence 823 

of ash interferes with UV-light transmission on which the technique relies, making 824 

measurements problematic. Recently, SO2 cameras have been used to measure the gas masses 825 

and fluxes involved in discrete explosive events (Mori and Burton 2009; Holland et al 2011; 826 

Barnie et al. 2014). 827 

However, none of these remote sensing techniques directly collects or makes contact with 828 

the magma or particles they measure. Thus the need exists for quality ground-truth data to 829 

validate particle velocities and sizes extracted from what is, basically, an electronic response, 830 

as well as to test the assumptions and models used to convert received “power” to a more 831 

meaningful and useful parameter (such as mass). At the same time, any single data set can be 832 

inverted to support a conduit or plume dynamic model; but results need to fall within 833 

constraints provided by ground-truth data. In this case, ground truth is provided by analyses of 834 

the magma and particles themselves to extract parameters such as magma temperature, 835 

chemistry, density, crystallinity and vesicle content, as well as vesicle shape and size and 836 

particle density, size, shape and roughness. Magma ascent, explosion-source and 837 

fragmentation models based on geophysical data likewise need to be consistent with 838 

independent measurements made for physical volcanology for the same processes if they are 839 

to be valid. We explore below these needs, mostly focusing on weakly explosive, basaltic 840 

cases, the usual targets because they provide a reliable and easy-to-measure source for testing 841 

new technology, methods and algorithms for ground-based geophysical enquiry. 842 

 843 

The basic need: Realistic assumptions and validation 844 
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The basic response of a remote sensing instrument is a voltage which, through calibration, can 845 

be converted at higher level physical value, such as spectral radiant intensity or power. The 846 

conversion of this value to higher level and more volcanologically useful parameters (such as 847 

particle-size distribution, mass flux or plume density) requires an increasingly complex 848 

system of assumption stacking. Thus, to adequately reduce geophysical data, a number of 849 

input parameters are required and many assumptions need to be made, all of which can be 850 

provided by the physical volcanological community. Data sets from this community, 851 

especially if provided simultaneously with geophysical data collection during an active event, 852 

or provided as a library typical of that event, can also be used to “ground truth” or check the 853 

precision and reality of the geophysically applied input or generated output.  854 

Seismic signals that accompany explosions are primarily short period (SP; high frequency 855 

> 1 Hz) signals which are typically termed “explosion quakes”. These usually have high 856 

amplitudes and mostly include frequencies up to a few hertz, with a possible higher frequency 857 

acoustic phase (McNutt 1986, Mori et al. 1989, Braun and Ripepe, 1993). Below these 858 

frequencies, short period (SP) signals are often hidden by very-long period (VLP) components 859 

with much lower amplitudes (Neuberg et al. 1994; Kaneshima et al. 1996). In-spite of an 860 

enormous amount of work, it remains unclear as to how we can explain the VLP seismic 861 

component, which itself is only one part of the seismic signal. It also remains unclear as to 862 

whether, and/or how, SP and VLP components are related to the magnitude and intensity of an 863 

explosion, although attempts have been made using tremor (Brodsky et al. 1999; Nishimura 864 

and McNutt 2008; Prejean and Brodsky 2011). Clearly, better coupling with the physical 865 

volcanology community could help narrow down much uncertainty and allow progress 866 

towards better models to untangle the seismic signal associated with discrete explosive events. 867 

Delay times in the arrival of seismic, infrasonic and thermal signals have been commonly 868 

used to assess the depth at which various physical processes occur in explosive basaltic 869 

systems (e.g., Ripepe and Braun 1994; Ripepe et al. 2001; 2002; Harris and Ripepe 2007). 870 

However, the sound speed in the conduit needs to be assumed if, for example, the thermal-871 

infrasound delay is to be used to obtain the fragmentation depth. This will vary strongly with 872 

conditions in the empty portion of the conduit, including mixture density, gas-to-particle ratio, 873 

and temperature of the mixture through which the sound is propagating. Thus we need to 874 

know these variables if we are to provide a realistic sound speed value and hence infer a 875 

plausible depth. We thus need to constrain two fundamental parameters to strengthen 876 

geophysical modelling of the shallow explosion mechanism and depth. First, the magma 877 

crystal and bubble content (as well as size, shape and distribution), plus fluid chemistry and 878 
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temperature, are needed to define magma rheology properties and bubble ascent dynamics. 879 

Second, the exact proportions and character of the mixture of gas and particles that ascends 880 

the final section of the conduit to exit the vent and feed the emission must be known. 881 

Velocities, mass fluxes and particle size distributions (PSDs) for lapilli through bomb-size 882 

particles have been derived from high spatial and temporal resolution video data obtained 883 

using both near-infrared and thermal cameras (Chouet et al. 1974; Ripepe et al. 1993; Harris 884 

et al. 2012; Delle Donne and Ripepe 2012; Bombrun et al. 2014). 885 

Generally, these studies have focused on Stromboli. For such camera data, the lower limit 886 

of a particle size that can be extracted is limited by pixel size. This is typically about one 887 

centimeter in dimension, depending on the detector's instantaneous field of view and distance 888 

to the target (Harris 2013). A pixel-mixture model can be applied to obtain the size of a sub-889 

pixel particle, but it needs to assume a temperature for the particle and then uses the pixel-890 

integrated temperature to solve for the pixel portion occupied by that particle (Harris et al. 891 

2013a). Symmetry then needs to be assumed to convert from particle area to particle volume, 892 

and a density needs to be assumed to derive particle mass (Bombrun et al. 2014). For ash-rich 893 

plumes, methods have been applied to extract total plume mass and air entrainment properties 894 

from ascent dynamics of buoyant thermals (Wilson and Self 1980; Patrick 2007; Valade et al. 895 

2014). However, all methods need particle shape, particle density, plume density and/or size 896 

distribution data to: (i) determine whether the input assumptions are valid; and (ii) ground 897 

truth the remote-sensing-data-derived size and mass data (Harris et al. 2013a and b). The 898 

advantage is, if a validated method can be developed, particle size distribution, mass and mass 899 

flux data for the plume leaving the vent can potentially be provided multiple times per second 900 

using camera data (e.g., Taddeucci et al. 2012; Bombrun et al. 2014).  901 

Deducing the erupted mass from Doppler radar data requires the assumption of a particle 902 

size distribution for the eruption. Because this distribution is unknown, an average particle 903 

size can be constrained from the Doppler radar measurement, typically using the eruption 904 

velocities themselves deduced from either terminal fall velocities (Hort et al 2003) or by 905 

discriminating between lapilli (larger than a few millimeters or 1 cm, depending on the radar 906 

wavelength) and fine ash particles (<1 mm) using their temporal velocity evolution (Valade 907 

and Donnadieu 2011). Both methods can be used to obtain an estimate for the erupted mass of 908 

ballistics. We thus need to know whether the constrained average particle size can be used for 909 

mass calculation, whether the assumption is a good approximation, and what the difference 910 

between the derived value and true value is. 911 
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The radar is able to measure particles of all sizes, provided enough particles are available 912 

to return a signal. The relationship between particle size and number of particles required for 913 

a signal that exceeds the noise level is not linear, however. It also depends on the radar 914 

wavelength and the distance between the radar and target. The smaller the radar wavelength, 915 

and/or the smaller the distance between the radar and target, the smaller the number of fine 916 

particles needed for a return signal. For particles <1 mm, halving the particle size increases 917 

the number of required particles by a factor of 64. Doubling the size of particles to >1 cm 918 

means that only ¼ of the number of particles is needed to return the same signal amplitude. In 919 

addition, radar can measure at points (gates) across the entire plume thickness. Currently, 920 

radar’s best role is to provide radial velocity measurements, with well-stated limits as to the 921 

particle size to which these data relate, through the entire plume thickness. 922 

 923 

Questions, points and issues 924 

The main question from the geophysical community to the textural community is:  “What 925 

does the magma look like at the point of fragmentation?” Geophysical analysts need to know 926 

everything possible about the fragments physically in order to reduce and model the data 927 

correctly. To help with this, we concluded that: 928 

- Measurements of basic geophysical parameters (such as seismic energy, acoustic 929 

energy, energy partitioning, spectral radiance, and radar power) are the most 930 

straightforward to consider for correlations with parameters derived from physical 931 

volcanology. 932 

- Multi-disciplinary correlations lead to improved understanding of explosion dynamics, 933 

and only a complete set of measurements can enable a complete and well-constrained 934 

understanding of the system (e.g., Gurioli et al. 2013; 2014; Leduc et al 2015).  935 

- A wealth of textural and geophysical data exist for Strombolian events, and some data 936 

for larger events. They have been used to define the characteristic geophysical and 937 

textural signatures that allow distinguishing each event type (e.g. Patrick et al. 2007; 938 

Leduc et al 2015). Focus on such relatively low energy events is appropriate, because 939 

they are frequent and approachable (Harris and Ripepe 2007). 940 

- There is an unfortunate, but understandable, lack of multi-disciplinary data for larger 941 

(Vulcanian-to-Plinian) events; because they are rare. With multi-disciplinary 942 

approaches becoming more routine, this situation is improving.   943 

Thermal and SO2 sensor arrays are becoming increasingly common components of permanent 944 

monitoring arrays at many persistently active sites (Harris 2013). However, such technology 945 
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will probably never be installed on every potentially active volcano, all of which give seismic 946 

and pressure signals detectable by distant stations. From a practical point of view, it is more 947 

realistic to push forward with operational correlations between seismic-infrasonic metrics and 948 

deposit and particle textural deliverables to understand the ongoing progression of global 949 

volcanic events. In doing so, we must remember that many geophysical signals tend to be 950 

time-averages (e.g., tremor amplitude). We need to consider, however, geophysical 951 

measurements that describe single, discrete explosions if we are to reasonably compare the 952 

data with textural variations between many individual emission events, or emission phases, 953 

that characterize the total eruption total energy is one prime example (e.g., Marchetti et al 954 

2009).  955 

We are at an exciting point in our ability to track and understand explosive volcanic 956 

emissions through true cross-disciplinary integration of deposit, geochemical, textural and 957 

geophysical data. Studies are increasingly bringing together multiple approaches in the field 958 

(e.g., Rosi et al. 2006), in the laboratory (Clarke et al. 2009), at large-scale experiments 959 

(Sonder et al. 2013) and during field deployments (Harris et al. 2013b). As a community, we 960 

appear to be converging on the correct, multi-disciplinary approach. We are at the beginning 961 

of a new age, one which links particle texture to seismology (Miwa et al. 2009; Miwa and 962 

Toramaru 2013; Gurioli et al. 2014; Leduc et al. 2015) and infrasound (Colò et al. 2010, 963 

Landi et al. 2011); as well as petrology to geophysics (Saunders et al. 2012; Martí et al. 2013). 964 

Continuation of this trajectory can be aided by further support for pan-disciplinary workshops, 965 

meetings and working groups, the objectives of which are to totally understand the system and 966 

to constrain measurements with the least uncertainty. 967 

 968 

Questions, needs and recommendations 969 

 970 

Tables 2–4 summarize the main results from the previous discussions. Table 2 is the summary 971 

of major conclusions to date from cross-disciplinary approaches. Table 3 suggests 972 

improvements to methods to facilitate cross-disciplinary approaches. Finally, Table 4 groups 973 

outstanding questions that might be addressed if the recommended methods are used. 974 

The list of key issues and questions defined allows us to distil the following community-975 

wide points and initiatives as priorities: 976 

1. We need to define, and adhere to, standard sampling, data collection, experimental and 977 

methodological procedures to allow full integration of the four disciplines; 978 
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2. In doing this, we need to understand each other's needs, and then follow each other’s 979 

well-recognized sampling etiquette in order to work together as a truly integrated 980 

team; 981 

3. We should aim to collate all data and measurements that can be provided by each 982 

discipline at some central host site and evaluate whether we need more from each 983 

field; 984 

4. Quantification and statement of the precision of the measurements must always be 985 

made, and a set of standards must be produced to allow data quality control has to be 986 

followed; 987 

5. The community needs to explore and discuss the best means to improve the quality of 988 

the measurements and the amount of data available; 989 

6. Guidelines should be agreed on regarding essential key parameters that need to be 990 

extracted, versus those that are less important. Common standards need to be 991 

established that allow these key parameters to be shared by all groups;  992 

7.  Central to this is creation of an open access data bank to support essential 993 

geophysical, deposit, textural and geochemical data integration and sharing. This 994 

means creation of a repository of data grouped by eruptive style and/or geographic 995 

location into which members can make deposits and withdrawals;  996 

8. All of this should ideally be integrated into a GIS platform to allow for easy cross-997 

correlation and comparison of different types of parameters. 998 

 999 

DynVolc: an integrated database 1000 

 1001 

Inspired by this effort, a database – DynVolc (Dynamics of Volcanoes) – is now operative 1002 

at http://wwwobs.univ-bpclermont.fr/SO/televolc/dynvolc/index.php. This database is part of 1003 

an observation system within the services provided by Observatoire de Physique du Globe de 1004 

Clermont-Ferrand (OPGC). It is an attempt to provide an integrated and accessible library for 1005 

all multi-disciplinary data sets for explosive eruptive events. This database is an integrated 1006 

collection of data from physical and geophysical observations of dynamic volcanic processes. 1007 

DynVolc database spans the full range of explosive and effusive activity. Its intent is to 1008 

provide a library of standards for eruptive styles, for each of which the data base provides: 1009 

 field data (i.e., results of field mapping, outcrop and sample descriptions) 1010 

 key deposit features (thickness, areal dispersion, sedimentary structure, grain size) 1011 

 clast characterization (componentry, morphology, density, porosity, permeability) 1012 
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 clast texture (connectivity, vesicle and crystal size and size distributions) 1013 

 chemical analyses of samples (bulk and glass chemistry 1014 

 associated geophysical measurements (e.g., fragmentation depth, ejection and ascent 1015 

velocity, fragment and gas mass, seismic and acoustic energies) 1016 

Integration of these data allows improved, better constrained, insights into the dynamics 1017 

driving each eruptive style. It also allows improved definition of the rheological and 1018 

degassing conditions associated with each activity style. At the same time it provides a library 1019 

of key physical parameters that need to be assumed by geophysical data reduction methods, as 1020 

well as during model-based enquiry. 1021 

Central to this initiative will be the transformation of this database into a communal 1022 

databank, involving a web-based GIS platform to allow huge amounts of cross-correlationand 1023 

comparison between parameters relating to different processes and cross-correlation of 1024 

different datasets obtained for the same eruption. It is intended as an open database into which 1025 

anyone can input, and withdraw, citable cross-disciplinary information for scientific analysis. 1026 

At the same time, through this library, we can provide cross-community time series, baseline 1027 

and monitoring data for the full range volcanic activity. 1028 
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Table 1 Quantification of explosive dynamics from textural parameters of the pyroclast 

components 
Textural parameters Quantification References 

Clast shape,  morphology 

and size 

Discriminate between different fragmentation mechanisms 

Wohletz 1983; 1986; 1987;  

Heiken and Wohletz 1985;  

Sheridan and Marshall 1983; 1987; 

Dellino and La Volpe 1996a; b;  

Palladino and Taddeucci 1998;  

Büttner et al. 1999; 2002; 

Kueppers et al. 2006; 

Dellino et al. 2001; 2012; 

Zimanowski et al. 2003  

Németh 2010 

Pardo et al. 2014a 

Conduit stratigraphy and processes 

Taddeucci et al. 2002;  

D’Oriano et al. 2005;  

Cioni et al. 2011; 

Perugini et al. 2011; 

Andronico et al. 2009b; 2013a; 

Lautze et al. 2012; 2013; 

Perugini et al. 2002;2007 

State of the magma at the fragmentation 

Carey et al. 2000;  

Dellino and Liotino 2002;  

Maria and Carey 2002; 2007;  

D’Oriano et al. 2011;  

Ruth and Calder 2014 

Link between vesicularity and particle morphology, and particle 

morphology with cloud dispersal and sedimentation 

Wilson and Huang 1979; 

Dellino et al. 2005; 

Mattsson 2010 

Alfano et al. 2011; 

Mele et al. 2011 

Clast density and 

vesicularity 

Lateral variability of magma within the conduit 

Houghton and Wilson 1989; 

Kennedy et al. 2005; 

Kueppers et al. 2005; 

Mueller et al. 2011; 

Barker et al. 2012 

Dense juvenile   

Presence of outgassed magma 

Sable et al. 2006;  

Lautze and Houghton 2005; 2007; 

2008; 

Polacci et al. 2008; 2009a; b; 2012;  

Gurioli et al. 2005; 2014;  

Shea et al. 2011; 2012; 2014; 

Cimarelli et al. 2010 

Presence of a plug 

Hoblitt and Harmon 1993; 

D’Oriano et al. 2005;  

Sable et al. 2009;  

Adams et al. 2006a; 2006b; 

Giachetti et al. 2010;  

Barker et al. 2012;  

Lavallée et al. 2012 

Clast permeability and 

connectivity 
Degassing history experienced by the magma 

Eichelberger et al. 1986; 

Klug and Cashman 1996; 

Saar and Manga 1999;  

Jouniaux et al. 2000; 

Blower 2001a, b; 

Klug et al. 2002; 

Melnik and Sparks 2002;  

Rust and Cashman 2004; 2011;  

Mueller et al. 2005; 2008; 

Wright et al. 2006; 2007; 2009;  

Plats et al. 2007; 

Bernard et al. 2007; 

Takeuchi et al. 2008; 

Nakamura et al. 2008;  

Bouvet de Maisonneuve et al. 2009;  

Yokoyama and Takeuchi 2009;  

Bai et al. 2010; 2011;  

Degruyter et al. 2010a; 2010b; 2012 



Vinkler et al. 2012; 

Polacci et al. 2012; 2014; 

Nguyen et al. 2014; 

Pioli et al. 2008; 

Formenti and Druitt 2003;  

Giachetti et al. 2010;  

Shea et al. 2011; 2012 

Clast conductivity Input parameters for numerical percolation simulations 

Le Pennec et al; 2001; 

Bernard et al. 2007; 

Wright et al. 2009; 

Wright et Cashman 2014 

Vesicle shape and size 

Bubble coalescence, ripening or collapse signatures 

Klug and Cashman 1996;  

Mangan and Cashmann 1996;  

Gurioli et al. 2005;  

Shin et al. 2005; 

Sable et al. 2006;  

Polacci et al. 2008;  

Castro et al. 2012 

Shear conditions in the conduit 

Convection in the conduit 

Marti et al. 1999; 

Polacci et al. 2001; 2003;  

Rust et al. 2003;  

Okumura et al. 2006; 2008;  

Bouvet de Maisonneuve et al. 2009;  

Wright and Weinberg 2009;  

Laumonier et al. 2011;  

Shea et al. 2011; 2012 

Carey et al. 2013 

Eruptive style Moitra et al. 2013 

Vesicle size distributions 

(VSDs) 

Vesicle nucleation processes and growth in magmas 

Klug and Cashman 1994;  

Shea et al 2010a;  

LaRue et al. 2013, and references 

therein 

Total number of nucleation, coalescence or ripening events 

Gaonac’h et al. 1996a; b 

Klug and Cashman 1996;  

Herd and Pinkerton 1997;  

Blower et al. 2001; 2002;  

Gaonac’h et al. 2003; 2005;  

Lovejoy et al. 2004,  

Yamada et al. 2008;  

Bai et al. 2008; 

Costantini et al. 2010 

Post-fragmentation evolution as indicator of : 

i) fountaining mechanisms 

ii) transportation and dispersal of the pyroclasts in submarine 

environment  

Polacci et al; 2006a; 

Gurioli et al; 2008; 

Stovall et al. 2011; 2012; 

Schipper at al. 2010a, b, c; 2011; 

2012; 

Rotella et al. 2013; 2014 

Vesicle Number density 

(Nv) 

Link with magma mass eruption rate (MER), 

link with column height 

Polacci et al. 2006b; 

Toramaru 2006;  

Gurioli et al. 2008;  

Carey et al. 2009; 

Houghton et al. 2010; 

Rust and Cashman 2011;  

Alfano et al. 2012 

Magma decompression rate 

Mangan and Sisson 2000;  

Suzuki and Nakada 2001; 2002; 

Toramaru 2006;  

Cluzel et al. 2008;  

Shea et al. 2010b; 2011; 2012; 

Wright et al. 2012 

Phreatomagmatic fragmentation 

Tsukui and Suzuki 1995; 

Suzuki, Nakada 2001, 2002; 

Shimano and Nakada 2006; 

Mattsson 2010; 

Murtagh et al. 2011; 

Murtagh and White 2013 

Link vesicularity with external trigger mechanisms (crystallinity, 

pressure changes) 

Belien et al. 2010; 

Carey et al. 2012; 

Gurioli et al. 2014 



Crystal size distribution 

(CSD) 

Crystal size (mean, modal, and maximum crystal size), crystallization 

kinetics (nucleation and growth rates),  

annealing, crystal accumulation, and fractionation 

Cashman and Marsh, 1988;  

Marsh 1988; 1998; 2007; 

Cashman 1993;  

Armienti et al. 1994;  

Higgins 2000; 2002a;b; 2006; 2011; 

Wilhelm and  Worner, 1996;  

Bindeman 2003;  

Gualda 2006; 

Gualda and Rivers 2006; 

Mock et al. 2003;  

Simakin and Bindeman, 2008; 

Spillar and Dolejs 2013 

Magma ascent rate 

Cashman 1992; 

Rutherford and Hill 1993;  

Rutherford and Devine 2003;  

Noguchi et al. 2008; 

D’Oriano et al. 2011 

Pre-eruptive decompression paths 

Hammer et al. 1999;  

Szramek et al. 2006;  

Clarke et al. 2007; 

Innocenti et al. 2013 

Magma storage conditions prior to eruption and residence times 

Mangan 1990;  

O’Driscoll et al. 2007; 

Cigolini et al. 2008 

Simakin and Bindeman 2008;  

Magee et al. 2010;  

Shea et al. 2009 

Water exsolution rate meter Toramaru et al. 2008 

Magma mixing 
Morgan et al. 2007; 

Jerram et al. 2003 

Crystal+Vesicle size and 

percentage 

Three phases magma rheology,  

fluid mechanical behavior of magma 

Gurioli et al. 2014;  

Noguchi et al. 2006 
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