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Abstract

This paper deals with the numerical computation of null controls for the linear heat equa-
tion. The goal is to compute approximations of controls that drive the solution from a pre-
scribed initial state to zero at a given positive time. In [Fernandez-Cara & Miinch, Strong
convergence approximations of null controls for the 1D heat equation, 2013], a so-called primal
method is described leading to a strongly convergent approximation of distributed control: the
controls minimize quadratic weighted functionals involving both the control and the state and
are obtained by solving the corresponding optimality conditions. In this work, we adapt the
method to approximate the control of minimal square integrable-weighted norm. The opti-
mality conditions of the problem are reformulated as a mixed formulation involving both the
state and its adjoint. We prove the well-posedeness of the mixed formulation (in particular
the inf-sup condition) then discuss several numerical experiments. The approach covers both
the boundary and the inner situation and is valid in any dimension.

Keywords: Linear heat equation; Null controllability; Finite element methods; Mixed formula-
tion.
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1 Introduction. The null controllability problem

Let Q C RY be a bounded connected open set whose boundary 952 is regular enough (for instance

of class C?). Let w C Q be a (small) nonempty open subset and assume that 7' > 0. In the sequel,

for any 7 > 0 we denote by @, ¢, and X, the sets Qx (0,7), wx (0,7) and 9Q x (0, T), respectively.
This work is concerned with the null controllability problem for the heat equation

ye — V- (c(x)Vy) + d(z,t)y =v1l,, in Qr,
Yy = 07 on ET7 (1)
y(z,0) = yo(x), in Q.

Here, we assume that ¢ := (¢; ;) € C*(Q; Mpy(R)) with (c(2)&,€) > col¢|> in Q (o > 0), d €
L*(Qr) and yo € L?(Q); v = v(x,t) is the control (a function in L?(qr)) and y = y(x,t) is the
associated state. Moreover, 1, is the characteristic function associated to the set w.

In the sequel, we shall use the following notation :
Ly:=y =V (c(2)Vy) +d(z,t)y,  L'¢:=—p—V-(c(z)Vyp)+d(z,t)p.

For any yo € L?(Q) and v € L?(qr), there exists exactly one solution y to (), with the
regularity y € CY([0,T]; L?(Q)) N L2(0,T; HX(Q)) (see [30, [7]). Accordingly, for any final time
T > 0, the associated null controllability problem at time T is the following : for each yo € L%(£2),
find v € L?(gr) such that the corresponding solution to satisfies

y(-,T)=0 in Q. (2)

The controllability of PDEs is an important area of research and has been the subject of many
papers in recent years. Some relevant references are [27, 29, [35] and [I2]. In particular, we refer
to [21] and [28] where the null controllability of (1)) is proved.

The numerical approximation is also a fundamental issue, since it is not in general possible to
get explicit expression of controls. Due to the strong regularization property of the heat kernel,
numerical approximation of controls is a rather delicate issue. The same holds in inverse problems
theory when parabolic equations and systems are involved (see [I5]). This have been exhibited
numerically in [5] who made use of duality argument and focused on the control of minimal square
integrable norm: the problem reads

1
Minimize Jy(y,v) := 5// |v(z,t)|* dx dt
qr

Subject to (y,v) € C(yo,T)

(3)
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where C(yo; T) denotes the linear manifold

C(yo; T) := { (y,v) : v € L*(qr), y solves and satisfies (2) }.

The earlier contribution is due to Glowinski and Lions in [23] (updated in [24]) and relies on
duality arguments. Duality allows to replace the original constrained minimization problem by an
unconstrained and a priori easier minimization (dual) problem. The dual problem associated with

is :
min J7 (pr) // (x,t |2dxdt+/ yo(x)p(x, 0)dx 4)
(S ar

YT

where the variable ¢ solves the backward heat equation :
L*(p =0 in QT7 ¥ = 0 on ZT, QO(?T) = ¢T in Qa (5)

and the Hilbert space H is defined as the completion of D(£2) with respect to the norm ||pp||x =
ll¢llz2(qry- In view of the unique continuation property to , the mapping o1 +— |lor|x is a
Hilbertian norm in D(2). Hence, we can certainly consider the completion of D(Q2) for this norm.
The coercivity of the functional J7 in H is a consequence of the so-called observability inequality

160 0) 22y < C // (e, P dedt Vor € H, (6)
qT

where ¢ solves . This inequality holds for some constant C = C(w,T) and, in turn, is a
consequence of some appropriate global Carleman inequalities; see [2I]. The minimization of J is
numerically ill-posed, essentially because of the hugeness of the completed space H. The control
of minimal square integrable norm highly oscillates near the final time 7', property which is hard
to capture numerically. We refer to [I} 25, 31, 34] where this phenomenon is highlighted under
several perspectives.

Moreover, at the level of the approximation, the minimization of Ji requires to find a finite
dimensional and conformal approximation of H such that the corresponding discrete adjoint so-
lution satisfies , which is in general impossible for polynomial piecewise approximations. In
practice, the trick initially described in [23], consists first to introduce a discrete and consistent
approximation of and then to minimize the corresponding discrete conjugate functional. How-
ever, this requires to get some uniform discrete observability inequalities which is a delicate issue,
strongly depend on the approximations used (we refer to [3, [I6] [36] and the references therein)
and is still open in the general case of the heat equation with non constant coefficients. This fact
and the hugeness of ‘H has raised many authors to relax the controllability problem: precisely, the
constraint (2). We mention the references [3, 5, 36] and notably [2, 19} 26] for some numerical
realizations.

In [I8] (see also [I7] in a semi-linear case), a different - so-called primal approach - allowing
more general results has been used and consists to solve directly optimality conditions : specifically,
the following general extremal problem (initially introduced by Fursikov and Imanuvilov in [21])

is comnsidered :
Minimize J(y,v) : // PAlyl? dadt + = // p|v|? dx dt
T qr (7)

Subject to (y,v) € C(yo, T).

The weights p = p(z,t) and pg = po(x,t) are continuous, uniformly positive and are assumed to
belong to L>®(Qr—s) for any § > 0 (hence, they can blow up as ¢ — 7). Under those conditions,
the extremal problem is well-posed (see [18]).
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Moreover, the explicit occurrence of the term y in the functional allow to solve directly the
optimality conditions associated with : defining the Hilbert space P as the completion of the
linear space Py = {¢ € C®(Qr) : ¢ = 0 on Y7} with respect to the scalar product

(p.q)p = // p_QL*pL*qudtJr// py > pqdzdt, (8)
QT qr

the optimal pair (y,v) for J is characterized as follows

y=p 2 L*p in Qr, v= —p52p 1, in Qr (9)

in term of an additional variable p € P unique solution to the following variational equality :

(p.a)p = /Q yo(2) q(z,0)dx, Vg€ P (10)

The well-posedeness of this formulation is ensured as soon as the weights pg, p are of Carleman type
(in particular p and pg blow up exponentially as ¢t — T); this specific behavior near T reinforces
the null controllability requirement and prevents the control of any oscillations near the final time.

The search of a control v in the manifold C(yg,T) is reduced to solve the (elliptic) variational
formulation . In [18], the approximation of is performed in the framework of the finite ele-
ment theory through a discretization of the space-time domain Q7. In practice, an approximation
pp, of p is obtained in a direct way by inverting a symmetric positive definite matrix, in contrast
with the iterative (and possibly divergent) methods used within dual methods. Moreover, a major
advantage of this approach is that a conformal approximation, say P, of P, leads to the strong
convergence of py toward p in P, and consequently from @, to a strong convergence in L?(q7) of
v = fp62ph1w toward v, a null control for . It is worth to mention that, for any A > 0, vy,
is not a priori an exact control for any finite dimensional system (which is not necessary at all in
practice) but an approximation for the L?-norm of the control v.

The variational formulation derived from the optimality conditions @[) is obtained assuming
that the weights p and py are both strictly positive in Q7 and gr respectively. In particular, this
approach does not apply for the control of minimal L?-norm, for which simply p := 0 and pg := 1.
The main reason of the present work is to adapt this approach to cover the case p := 0 and
therefore obtain directly an approximation v, of the control of some minimal weighted L?-norm.
To do so, we adapt the idea developed in [11] devoted to the wave equation. We also mention [33]
where a different space-time variational approach (based on Least-squares principles) is used to
approximate null controls for the heat equation.

The paper is organized as follows. In Section [2) we associate to the dual problem an equiv-
alent mixed formulation which relies on the optimality conditions associated to the problem @
with p = 0. In Section [2.1] we first address the penalization case and write the constraint L*¢ = 0
as an equality in L2(Q7). We then show the well-posedness of this mixed formulation, in partic-
ular we check the inf-sup condition (Theorem [2.1)). The mixed formulation allows to approximate
simultaneously the dual variable and the primal one, controlled solution of . Interestingly, we
also derive an equivalent extremal problem in the primal variable y only (see Prop Section
. In Section we reproduce the analysis relaxing the condition L*¢ = 0 in the weaker
space L2(0,T, H1(Q)). Then, in Section by using the Global Carleman estimate , we
show that a well-posed mixed formulation is also available for the limit and singular case for which

= 0 leading to Theorem Section [3]is devoted to the numerical approximation of the mixed
formulation in the case € > 0 (Section [3.1)) and of the mixed formulation in the casee =0
(section . Conformal approximations based on space-time finite elements are employed. In
Section [3:3] we numerically check that the approximations used lead to discrete inf-sup properties,
uniformly w.r.t. the discretization parameter h. Then the remaining of Section [3] is devoted to
some experiments which emphasize the remarkable robuteness of the method. Section [4] concludes
with some perspectives.
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2 Control of minimal weighted L?-norm: mixed reformula-
tions

In order to avoid the minimization of the conjugate functional J* with respect to the final state @
by an iterative process, we now present a direct way to approximate the control of minimal square
integrable norm in the spirit of the primal approach recalled in the introduction and developed in
[18]. We adapt the case of the wave equation studied in [IT].

2.1 The penalized case: Mixed formulation I

Let p, € R} and let pg € R defined by
R:={w:wel(Qr);w>p,>0in Qr;w € L= (Qr_s) Vo > 0} (11)

so that in particular, the weight pg may blow up as ¢ — T~. We first consider the approximate
controllability case. For any € > 0, the problem reads as follows:

o 1 1
Minimize J.(y,v) := 5// pg|v|2dt+?€||y(~,T)||%z(Q)
qT

Subject to (y,v) € A(yo; T)

(12)

where A(yo; T') denotes the linear manifold A(yo; T) := { (y,v) : v € L*(qr), y solves (1) } and
where e denotes a penalty parameter (see [2] [5, [I9]). The corresponding conjugate and well-posed
problem is given by

. . 1 _ €
Minimaize J2(pr) =5 [[ st O de dt+ S lerla + (ool 0) o
qaT

Subject to @1 € L*(Q)

(13)

where ¢ solves .

We recall that the penalized problem is a consistent approximation of the original null
controllability problem, in the sense that its unique solution converges to the solution of with
p=0ase — 0. We refer for instance to [19], Prop. 3.3 for a proof of the following result,
consequence of the null controllability for the heat equation.

PROPOSITION 2.1 Let (ye,ve) be the solution of Problem and let (y,v) be the solution of
Problem @ with p = 0. Then, one has

ye —y strongly in L*(Qr), wve — v strongly in L*(qr)

as e — 0.

2.1.1 Mixed formulation

Since the variable ¢, solution of , is completely and uniquely determined by the data ¢p, the
main idea of the reformulation is to keep ¢ as main variable.

We introduce the linear space ®° := {p € C?(Qr), ¢ = 0 on Ur}. For any n > 0, we define
the bilinear form

(0.0 = // pi2opdrdt + e(o(,T), (. T)) L2y +1 // Lo L'pdedt, Vo,pc )
qT

T
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From the unique continuation property for the heat equation, this bilinear form defines for any
€ > 0 a scalar product. For any € > 0, let ®. be the completion of ®° for this scalar product. We
denote the norm over @, by || - ||¢. such that

lell3, = 100 'l F2(gry +leC D2 + 1lIL OllT2(gr) Ve € Pe. (14)
Finally, we defined the closed subset W, of ®. by
We={ped.: L'¢=0in L*(Qr)}

and we endow W, with the same norm than ..
Then, we define the following extremal problem :

S 1 _ €
min J*(p) = 2 // 9 2o, )P dt + Sllp( T) 2oy + (or 005 0oy (15)
pEW, 2 ar 2

Standard energy estimates for the heat equation imply that, for any ¢ € W., (-,0) € L?(Q) so
that the functional J* is well-defined over W.. Moreover, since for any ¢ € W, o(-,T) belongs
to L?(Q2), Problem is equivalent to the minimization problem (13). As announced, the main
variable is now ¢ submitted to the constraint equality (in L?(Qr)) L*¢ = 0. This constraint
equality is addressed by introducing a Lagrangian multiplier.

We consider the following mixed formulation : find (¢., A.) € ®. x L?(Q7) solution of

{as(%,w)er(%)\s) = I(®), Vped. 15)
b(gos,X) = 0, VXGLQ(QT),

where

ac : . x . — R, as(@a@) = // p62<p¢d:rdt+5(¢(~,T),¢(-,T))L2(Q)
qT

b:®. x L2(Qr) — R, b(p,\) ::—// Lo Ndx dt

l: (I)s — R, Z(QO) = —(yo,(p(',O))Lz(Q).
We have the following result :
THEOREM 2.1 (i) The mized formulation 1s well-posed.
(ii) The unique solution (p-,\.) € ®. x L*(Qr) is the unique saddle-point of the Lagrangian
L. :®. x L2(Qr) — R defined by
1
Le(p, ) 7= Fae(0,0) + (0, A) = U(0). (17)
(i4i) The optimal function . is the minimizer of jg* over W, while the optimal multiplier . €
L?(Qr) is the state of the heat equation in the weak sense.

PROOF - We easily check that the bilinear form a. is continuous over ®. x ®., symmetric and
positive and that the bilinear form b. is continuous over ®. x L*(Qr). Furthermore, for any fixed
€, the continuity of the linear form [ over ®. can be viewed from the energy estimate :

||sa<~7o>||iQ(msc(//Q |L*sa|2dxdt+||¢<-,T>||%2(m>, Vi € @,
T

for some C' > 0, so that [|¢(-,0)[|72 ) < Cmax(n~", e ")lell3.
Therefore, the well-posedness of the mixed formulation is a consequence of the following two
properties (see [4]):
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e a. is coercive on N(b), where N (b) denotes the kernel of b :

NOb):={pe®. : b(p,\) =0 for every XA € L*(Qr)};

e b satisfies the usual “inf-sup” condition over ®. x L?(Q7): there exists § > 0 such that

inf  sup Mo d) > 4. (18)

AeL2(Qr) ped. |lPlle. [[Mz2(qQr)

From the definition of a., the first point is clear : for all ¢ € N'(b) = We, ac(p,¢) = [|¢l[5,. Let
us check the inf-sup condition. For any fixed A’ € L?(Q7), we define the (unique) element ¢ of

L*¢® =-X\° in Qr, =0 on XNp; ©°(,T)=0 in Q,

so that ° solves the backward heat equation with source term —\° € L?(Qr), null Dirichlet
boundary condition and zero initial state. Since —\° € L?(Qr), then using energy estimates, there
exists a constant Cq r > 0 such that the solution ¢° of the backward heat equation with source
term A° satisfies the inequality

// po 21" Pda dt < p;2 // |’ dz dt < pf Cor [\ 720, )-
ar qT

Consequently, ¢° € ®.. In particular, we have b(¢°, \?) = ||)\0H%2(QT) and

sup b(p: A7) b(¢% A% _ X172 @)
- Nlelle XMLz @ry — I1€° e 1A 2(@r)

: .
_ 2
196 0132 gy + 1l M0llF2(00y ) IPollz2@r)
L2(qr)

Combining the above two inequalities, we obtain

b(0, Ao) 1
sup >
wocd. l@olle. I hollz2@r) — /P2 Car +n

and, hence, holds with § = (p? Cor + 77)_1/2.

The point (i7) is due to the symmetry and to the positivity of the bilinear form a.. (i)
Concerning the third point, the equality b(¢., A) = 0 for all A € L?(Qr) implies that L*¢. = 0 as
an L?(Qr) function, so that if (p., \e) € ®. x L?(Q7) solves the mixed formulation, then ¢. € W,
and L.(pe, \e) = J*(¢.). Finally, the first equation of the mixed formulation reads as follows:

// P20 Pz dt + (o2 (. T), 5(- T)) // L5, ) Ao t) dedt = (), Vg € &,

or equivalently, since the control is given by v. := p; 200 1.,
// vepdrdt+ (e (-, T), P // L*p(x, t) Ae(x, t) da dt = 1(p), Vp e P..
qT T

But this means that A\. € L?(Qr) is solution of the heat equation in the transposition sense. Since
Yo € L*(Q) and v. € L?(gr), A\e must coincide with the unique weak solution to (1)) (y. = \c) such
that A\o(-,T) = —ep:(-,T). As a conclusion, the optimal pair (y.,v.) to is characterized in
term of the adjoint variable . solution of by ve = py 2pe 1, and y. (-, T) = —e. (-, T). O

Theorem reduces the search of the approximated control to the resolution of the mixed
formulation , or equivalently the search of the saddle point for £.. In general, it is convenient
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to “augment” the Lagrangian (see [20]), and consider instead the Lagrangian L., defined for any
r > 0 by

S0 (,0) + b, ) ~ (),

ae (0, 0) = ac(p, ¢ +T// L*o|* da dt.
T

Ea r(@a )‘) .

Since ac(p, ¢) = aer (@, ) on W, and since the function ¢, such that (¢, Ac) is the saddle point
of L. verifies ¢, € W¢, the lagrangian £. and L., share the same saddle-point.
2.1.2 Dual problem of the extremal problem

The mixed formulation allows to solve simultaneously the dual variable ¢., argument of the conju-
gate functional 7 and the Lagrange multiplier A.. Since A, turns out to be the (approximate)
controlled state of , we may qualify \. as the primal variable of the problem. We derive in this
section the corresponding extremal problem involving only that variable A..

For any r > 0, let us define the linear operator A. , from L*(Qr) into L?(Qr) by

A N = L*p, VA€ L*(Qr)
where ¢ € &, is the unique solution to

as,r(%a) =-b(®,)\), Vpeo. (19)

Note that the assumption r > 0 is necessary here in order to guarantee the well-posedness of .
Precisely, for any r > 0, the form a. , defines a norm equivalent to the norm on ®, (see )
We have the following crucial lemma :

LEMMA 2.1 For any r > 0, the operator A, is a strongly elliptic, symmetric isomorphism from
L2(QT) mto Lz(QT)

PROOF- From the definition of a.,,, we easily get that || Az A2 < 77 A L2(Qr) and the
continuity of A, ,. Next, consider any X' € L?(Qr) and denote by ¢’ the corresponding unique
solution of so that A. .\ := L*¢'. Relation with @ = ¢’ then implies that

J| Acxnde it = oo (20)
T
and therefore the symmetry and positivity of A, ,. The last relation with X = A implies that A,

is also positive definite.
Finally, let us check the strong ellipticity of A, ,, equivalently that the bilinear functional

(0 N) = // (A NN dar dt
is L?(Qr)-elliptic. Thus we want to show that

for some positive constant C. Suppose that does not hold; there exists then a sequence
{An}n>o of L?(Qr) such that

n—oo

Aall2@ry =1, ¥n >0, lim // (A An) A dzdt = 0.
T
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Let us denote by ¢,, the solution of corresponding to A,. From , we then obtain that
lim | L0nllz2@r =0, lm [log enll2ge =0, lim flon( D)l = 0. (22)

From with A = A\, and ¢ = ¢, we have

1
[ erenpizarie [ Dot Tdnt [| (Lt0n- AL Rdsdt =0, Vpe o (23
qr 0 T

We define the sequence {@,, }n>0 as follows :
L*g, =rL*¢, — A\, in Qr, ?,=0 on Xp; %,-,T)=0 in K,

so that, for all n > 0, i, is the solution of the backward heat equation with zero initial datum and
source term r L*p,, — A, in L?(Qr). Using again energy type estimates, we get

100 ' @nll2ar) < 3 1Bnll2gr) < PF CarllrLren — AnllL2 (1),

so that ©,, € ®.. Then, using with = p,,, we get

[rL*¢n — Mnllz2(@r) < px  Carllp " enll L2 (gr)-

Then, from (22)), we conclude that lim,_ 4o [|[An||22(Qs) = 0 leading to a contradiction and to the
strong ellipticity of the operator A, .. O
The introduction of the operator A, , is motivated by the following proposition:

PROPOSITION 2.2 For any r > 0, let ©° € ®. be the unique solution of

as,r(@ova) =1(®), Vped.
and let J2% - L*(Qr) — L*(Qr) be the functional defined by

1
I = 7// (A A) Az dt — (", \).
’ 2 Qr ’
The following equality holds :

su inf L.,.(p,\)=— inf TN + Lo,(¢%0).
AeL2(0p) #EPe (0. == iy, r ) r(®50)

PROOF- For any A € L*(Qr), let us denote by ¢y € ®. the minimizer of ¢ — L. .(p,\); @x
satisfies the equation
acr(px, @) + (@, A) =U(P), VP €D,

and can be decomposed as follows : @y = ¥\ + ¢° where 1) € ®. solves
aa,r(d})\@) + b(@a )‘) =0, W € ..
We then have

inf Ea,r(@a )\) = Ea,r(@/\a )\) = Le,r(¢>\ + @Oa )\)
pED,

1
= Saer(tr+ @ hn + %) + b(n + ¢, A) — (1 + )

:X1+X2+X5

with

X1 1= 500 (Un,02) + (02, ) + (5, )

1
X2 = as,r(¢0»¢A) - l(wk)v X3 = iaavr(@oa SDO) - l(SDO)
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From the definition of ©°, Xy = 0 while X3 = £57T(<p0, 0). Eventually, from the definition of 1y,
1 1
X1 = 5b(¥x, A) + b(e”, A) = —5// (AcpA) Az dt +b(°, ) = —JZ5(N)
T

and the result follows. O

From the ellipticity of the operator A ., the minimization of the functional JZ% over L*(Qr)
is well-posed. It is interesting to note that with this extremal problem involving only A, we are
coming to the primal variable, controlled solution of (see Theorem [2.1] (iii)). This argument
allows notably to avoid the direct minimization of J. (introduced in Problem ) with respect
to the state y (ill-conditioned due to the term ~! for ¢ small). Here, any constraint equality is
assigned to the variable .

2.2 The penalized case : Mixed formulation II (relaxing the condition
L. =0 in L*(Qr))

The previous mixed formulation amounts to find a backward solution . satisfying the condition
L*¢. =0 in L?(Qr). For numerical purposes, it may be interesting to relax this condition, which
typically leads to the use of C! type approximations in the space variable (see Section . In order
to circumvent this difficulty, we introduce and analyze in this section a second penalized mixed
formulation where the condition on ¢, is relaxed, namely we impose the constraint L*p. = 0 in
L2(0,T; H-1(Q)).

Considering as before the full adjoint variable ¢ as the main variable, we associated to the
following extremal problem :

I 1 _ €
wmin J2(0) = 5 (| gt O dedt+ Slel D + [ wnlaote0)ds, (1)
peEW, Qr Q

over the space WE = {go € (/I;E : L*¢ =0in L%(0,T; H*I(Q))}. The space @8 is again defined as

the completion of ®° with respect to the inner product

Qr

T
(0, 9)5, = // o ppdrdt+e(p(-,T),2(,T)) +1 (/ vaédxdﬂr/ (wt,wt)Hldt>,
qT 0

defined over ®°. We denote by || - the associated norm such that

[F
lell%, = llpo ' lZ2(qr) +elloC D2 () + nIVOlLai@r) + 19elli20mm-1)), Vo€ @ (25)

LEMMA 2.2 The equality ﬁ/\e = W, holds. Therefore, the minimization problem s equivalent
to the minimization ,

PROOF - First, let us see that W, C W\E. To do this, it is enough see that ®. C E)E. In fact, if
p € O, then there exists a sequence (¢™)22; in P such that ¢ — ¢ in ®.. So, we can conclude
that o™ — ¢ in L?(0,T; H}(2)) and ¢ — ¢, in L*(0,T; H-()). Hence, ™ — ¢ in >..
Secondly, let us see that /V[Z C We. Indeed, if ¢ € /VIZ then @ € ?{;5 and L*@ = 0. Let us denote
o1 = @(-,T), so there exists a sequence (%)%, in C§°(Q2) such that ¢ — $r in L?(Q2). Now, if
(¢™)9%; is a sequence such that L*¢"™ = 0, ¢ = 0 on X and ¢"(-,T) := ¢} then this sequence

belongs to ®°. Hence, ¢" — & in ®. and o™ — @ in ®.. Therefore, 3 belongs to W.. O

The main variable is now ¢ submitted to the constraint equality L*¢ = 0 € L?(0,T; H~1).
As before, this constraint is addressed by introducing a mixed formulation given as follows : find
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(pes Ac) € &% X Ke solution of

0=(p,P) +b(®.A) = U(p),  Vped. (26)
b(¢e,N) = 0, VA € A,
where A, := L2(0,T; HL(Q)) and

~

boiBx 8 o R alop)i= [[ pitepdedts el )BT
qr
b zI\)E X KE — R,
R T
b, A) = —/ < L', A >pg-1(q),Hi0) dt
0
T
— [t Ay~ [ (<c<x>w, VA) + d(, tw) du dt
0 T
[:0. >R, I(p):= —/ yo(x)p(x, 0)dz.
Q

Similarly to Theorem the following holds :
THEOREM 2.2 (i) The mized formulation is well-posed.
(i) The unique solution (pe, Ac) € &)5 X Ks is the unique saddle-point of the Lagrangian operator

Le: P, x A — R defined by

Lo(p.3) 1= gaelo,0) +b(o,N) ~ (9. (27)

(iii) The optimal function @, is the minimizer of j; over Wg while the optimal multiplier A\ € A,
is the weak solution of the heat equation .

PROOF - We easily check that the bilinear form a. is continuous over (ISE X @E, symmetric and
positive and that the bilinear form b is continuous over &)6 X /A\E. Furthermore, the continuity of the
linear form [ over @, is a direct by the continuous embedding &, — C°([0,T); L*(Q)). Therefore,
the well-posedness of the mixed formulation is a consequence of the following two properties (see

[41):

e . is coercive on N (b), where N (b) denotes the kernel of b :

N(b) = {cp € . such that b(p, A) = 0 for every \ € Ks} .

e b satisfies the usual “inf-sup” condition over @E X /A\E: there exists § > 0 such that

b(p, A
inf sup e > 4. (28)
reh. yea, lells 1M,

From the definition of @, the first point is clear : for all ¢ € N'(b.) = ., thanks to classical
energy estimates, we have

. — € €
ac(,0) = llpo " @l T2 (ar) + 5100 D) + 5 leC Dlliz )
_ €
> oo ' elT2gr) + 510G DL+ CUVONL2 (@ + 19l 720,5-1)

> Cellolls .
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where C' = C(T, co, ||d||c) > 0 and C: , := min(27, Cen™).
Let us check the inf-sup condition. For any fixed A’ € A., we define the (unique) element ° of
L*¢®=AX" in Qrp, W0=0 on Iy QC,T)=0 in Q,

so that ¢° solves the backward heat equation with source term AM?, null Dirichlet boundary
condition and zero initial state. Since AN’ € L?(0,T; H~!), then ©° € ®.: precisely, using energy
estimates, there exists a constant C' > 0 such that (¥ satisfies the inequalities

||V<PO||2L2(QT) < C||V)‘O||2L2(QT)
and 012 1 02 0 2 012 02
€115, = lpo @ 12 (qry T Elle” C DIz ) + IV 12200 + N0t L200,0:m-1))
= ||P(§1900H%2(qT) + 77(HVSDOH%2(QT) + HQO?H%Z(O,T;H*l))
< CyllVA° 1172100

where C' = C(T, ||CHOO, [dllsc) > 0 and Cy, == C(1 + 7).
Consequently, ¢° € ®.. In partlcular we have b. (9%, \%) = |[VA?) 12, 2(Qp) a0d
be (0, A°) b (0%, A°) IVl 20,

sup > = .
eca. el NI~ 1%l X005, G2V Nollz2(0m) IV A0l 22

Combining the above two inequalities, we obtain

sup b(¢o, o) > 1
eocd lollellMollzz@r) — +/Cy

and, hence, holds with § = C,,_%.
The point (i) is due to the symmetry and to the positivity of the bilinear form a..
Concerning the third assertion, the equality b(p, A) = 0 for all X € A. implies that L*p, = 0
as an L2(0 T; H=') function, so that if (., A.) € ®« x A, solves the mixed formulation (26), then
e € W and E (pe, Ae) = JZ(pe). This implies that ¢, of the two mixed formulations coincide.
Assuming yo € L*(Q) and v € L?(qr), it is said here that y € L?(0,T; H}(£2)) is the (unique)
solution by transposition of the heat equation if and only if, for every g € L%(0,T; H™ 1), we
have

T
/ <gay>H_1,H5dt:// ’Uadxdt_'_(@(’o))yo)lzz(ﬁ%
0 qr
where @ solves
L’'p=g in Qr, =0 on Xp, (-, 7)=0 in Q.

As g (v,9)12(4) + (@(-,0),90) L2(0) is linear and continuous on L*(0,T; H~') the Riesz repre-
sentation theorem guarantees that this definition makes sense.
Finally, the first equation of the mixed formulation reads as follows:

T
/ / P52 Bdedt +e(pe(- T),B(.T)) + / (B A 111
qT 0

- / / (c(2)VP, VL) + d(z, )PAe du dt = 1(7), Vo € ®.,

or equivalently, since the control is given by v, = py 20, (recall that the formulations and
are equivalent),

T
[ vepdedts ot DR+ [ @Ay de
qT 0

// (c(2)VP, V) + d(z, )pA. dudt = [(7), Vo € ®..

T
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But this means that A\ € KE is solution of the heat equation in the transposition sense. Since
yo € L?(Q) and v. € L?(qr), Ac must coincide with the unique weak solution to (ye = X\¢) and,
in particular, we can conclude that y.(-,T) = —ep.(-,T). So from the unique of the weak solution,
the solution (p., Ac) of the two mixed formulation coincides. O

The equivalence of the mixed formulation with the mixed formulation is related to
the regularizing property of the heat kernel. At the numerical level, the advantage is that this
formulation leads naturally to continuous spaces of approximation both in time and space.

2.3 Third mixed formulation of the controllability problem : the limit
case ¢ = 0.

We consider in this section the limit case of Section corresponding to € = 0, i.e. to the null
controllability. The conjugate functional J* corresponding to this case is given in the introduction,
see (4), with a weight py 2 (recall that pg € R defined by ) in the first term, precisely

min J*(or) // o2, ), ) dedt + (g0, (- 0)) (e (20)
pT€H

where the variable ¢ solves the backward heat equation and H is again defined as the com-
pletion of the L?(Q) space with respect to the norm |73 := [|pg '@l z2(gr)- As explained in the
introduction, the limit case is much more singular due to the hugeness of the space H. At the limit
e = 0, the control of the terminal state ¢(-, T) is lost in L*(Q).

Let p € R. Proceeding as before, we consider again the space dy = {p € C?(Qr): p=00nXr}
and then, for any 1 > 0, we define the bilinear form

(0,95 oy // Po <p<pdxdt+n// LYo L*pdrdt, Vo,7 € .
qr

The introduction of the weight p, which does not appear in the original problem will be
motivated at the end of this Section. From the unique continuation property for the heat equation,
this bilinear form defines for any 7 > 0 a scalar product. Let then &)PO,P
for this scalar product. We denote the norm over ®,, , by | - || oy such that

be the completion of EISO

1

I3, = 105 ol + 10 LBy 0 € B (30)

Finally, we defined the closed subset WPO,P of CT)po,p by

WPO)P = {Lp € %Pmp : p_lL*gO =01in LQ(QT)}

and we endow /V[7,,M, with the same norm than <T>p0_,,,.
We then define the following extremal problem :

. - 1 _
win J*() =5 [ st 0P d dt + (o 90 0) 1o (31)
PEWpg,p ar
For any ¢ € W, ,, L*¢ = 0 a.e. in Qp and ||Lp||W = [lpy* ‘PHLZ(qT) so that gp( T) belongs by

definition to the abstract space H: consequently, extremal problems (31} and ( are equivalent.
In particular, from the regularizing property of the heat kernel, (-, 0) belongs to L?(Q2) and the
linear term in ¢ in J* is well defined.

Then, we consider the following mixed formulation : find (¢, A) € ipo,p x L%(Qr) solution of

{ EL((/D,@) + E(Ea )‘) = i(@)a v¢ € ZIV)ﬂOaP (32)
bip.X) = 0, VA € L*(Qr),
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where
Q@i By p X Dpyp =R, alp,p) = //qT po 2 da dt
b: (f)po,p x L2(Qr) = R, b(p,\) = —// p L L*p Nda dt
T
l: ‘T’po,p — R, Z(SD) = _(yOv@('vo))Lz(Q)o

Before to study this mixed formulation, let us do the following comment. The continuity of [

over the space ® holds true for a precise choice of the weights which appear in Carleman type

P0,P
estimates for parabolic equations (see [2I]): we recall the following important result.

PROPOSITION 2.3 ( [21]) Let the weights p°, p§ € R (see (11))) be defined as follows

pf(x,t) := exp (1@5) , Bx) =K (eKz—eﬁo(””)) ,

po(x,t) = (T — t)*/?p°(a,1),

(33)

where the K; are sufficiently large positive constants (depending on T, ¢ and ||c||c gq)) such that
Bo€C®(Q), B3>0 in Q,B=0 on 09, Supp(VP)C Q\w.
Then, there exists a constant C > 0, depending only on w,T, such that
le > 0)llz2) < Cllel, .o Vo € By pe- (34)

The estimate is a consequence of the celebrated global Carleman inequality satisfied by the
solution of , introduced and popularized in [21]. Tt allows to obtain the following existence and
uniqueness result :

THEOREM 2.3 Let pg € R and p € RN L>(Qr) and assume that there exists a positive constant
K such that

po < Kpg, p<Kp° in Qr. (35)
Then, we have :
(i) The mized formulation defined over CT)po,p x L*(Qr) is well-posed.

(ii) The unique solution (¢, A) € &)Poyp x L?(Qr) is the unique saddle-point of the Lagrangian
L:® x L3(Qr) — R defined by

E(p ) = 5, 0) + 5o N) ~ (9). (36)

1) The optimal function ¢ is the minimizer o j* over 5 while NelL? is the state
14 posP P 1
of the heat equation (1)) in the weak sense.

PROOF- The proof is similar to the proof of Theorem 2.1} From the definition, the bilinear form

a is continuous over @, ,x ® symmetric and positive and the bilinear form b is continuous over

POP? . =
P,y 01 X L2(Qr). Furthermore, the continuity of the linear form [ over ®,, , is the consequence
of the estimate : precisely, from the assumptions , the inclusion @, , C ®pe pc hold true.

Therefore, estimate implies

e Ollzz) < Cligl, . < CKligls, Vo € By (37)
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Therefore, the well-posedeness of the formulation is the consequence of two properties: first,
the coercivity of the form @ on the kernel N'(b) := {p € ®,, , : b(p,\) = 0V € L?*(Qr)}: again,
this holds true since the kernel coincides with the space W, ,. Second, the inf-sup property which
reads as :

inf sup b N >0
AeL2(@Qr) e, Nell5,, 1Mz @)

(38)

for some § > 0. For any fixed \° € L?(Q7r), we define the unique element ° solution of
p 'L*o=-XNinQr, ¢=0o0n %p, o-T)=0inQ.
Using energy estimates, we have
g %122 (ar) < P2 10 N2(@r) < P2 HIPA N L2 (@r) < Pt IolL= (@) I 220y (39)
which proves that " € 5%),) and that

7 0 B0 )0 A0
sup b(goa)‘ ) > b(@ ;A ) _ H ||L2(QT)

o, Tola,, IV = T7Ts,, ¥llan ~ (

[N

-1
195 603 gy + 1ol32(01 )
Combining the above two inequalities, we obtain

Sup b(@07>\0) > 1
cocy 1900, , Pollzz@n) = [o22pl2 L o+

_ B ~1/2
and, hence, holds with § = (p* 2||p||%°°(QT) + 77) .
The point (i¢) is again due to the positivity and symmetry of the form a.
Concerning the last point of the Theorem, the equality b(¢, ) = 0 for all A € L?(Qr) implies
that p~1L*p = 0 as an LQQQT) function, so that if (¢, \) € @, ,, x L*(Qr) solves the mixed

formulation , then ¢ € W, ,, and E((p, A) = j*(go). Finally, the first equation of the mixed
formulation reads as follows:

// pa2g0¢dxdt—// p '\ L*pAdzdt = 1(7), VpeD,
qr T

or equivalently, since the control is given by v := py 201,

// v@dmdt—// L*p(p~ "N dedt = (7)), Vge @,
qr T

This means that p~'A € L?(Qr) is solution of the heat equation with source term v 1, in the
transposition sense and such that (p~'A)(-,T) = 0. Since yo € L*(Q) and v € L*(qr), p~ '\ must
coincide with the unique weak solution to (y = p~'A) and, in particular, y(-,T) = 0. O

Remark 1 The well-posedness of the mized formulation , precisely the inf-sup property ,
is open in the case where the weight p is simply in R (instead of R N L>°(Qr)): in this case,
the weight p may blow up att — T~ . In order to get , it suffices to prove that the function
= p0_1<p solution of the boundary value problem

p 'L (pop) = =N’ in Qr, Y =0o0n%y, (-, T)=01inQ
for any \g € L?(Q7) satisfies the following estimate for some positive constant C

[9llz2(4r) < Clo™" L* (po¥)ll 21

In the cases of interest for which the weights py and p blow up at t — T~ (for instance given by
p§ and p©), this estimates is open and does not seem to be a consequence of the estimate .



3 NUMERICAL APPROXIMATION AND EXPERIMENTS 16

Let us now comment the introduction of the weight p. The solution ¢ of the mixed formulation
belongs to /V[v/pmp and therefore does not depend on the weight p (recall that p is strictly
positive); this is in agreement with the fact that p does not appear in the original formulation
formulation . Therefore, this weight may be seen as a parameter to improve some specific
properties of the mixed formulation, specifically at the numerical level. Precisely, in the limit case
e = 0, we recall that the trace p|;—r of the solution does not belong to L*(2) but to a much larger
and singular space. Very likely, a similar behavior occurs for the function L*¢ near 2 x {T'} so that
the constraint L*p = 0 in L?(Qr) introduced in Section is too “strong” and must be replaced
at the limit in € by the relaxed one p~1L*¢ = 0 in L?*(Qr) with p~! “small” near Q x {T'}. Remark
that this is actually the effect and the role of the Carleman type weights p¢ defined by and
initially introduced in [21].

As in Section it is convenient to “augment” the Lagrangian and consider instead the
Lagrangian £, defined for any r» > 0 by

ar (i, ) + b, \) — U(p),

ar(p,¢) = alep, @)+r//@ |p~ L*p|? da dt.

Lr(p,A) ==

N =

Finally, similarly to Lemma [2.I] and Proposition [2:2] we have the following result.
Let pp € R and p € RN L>®(Qr)

PROPOSITION 2.4 For any r > 0, let po € R and p € RN L>®(Qr) verifying . Let us define
the linear operator A, from L?(Q7) into L*(Qr) by

Ad = p 1LY, VA€ L*(Qr),
where ¢ € ZI;pw, is the unique solution to
ar(p, @) = —b(®,A), Vpe D po,p-

A, is a strongly elliptic, symmetric isomorphism from L*(Qr) into L>(Qr). Let j:* : L2(Qr) —
L2(Q7) be the functional defined by

TN = %// (A N) Adz dt — b(p°, \).

where ¢V € (T)Po-,/) is the unique solution of
ar(@ova) = Z(¢)7 v¢ € zf)po,p'
The following equality holds :

sup  inf  Ly(p,\)=— inf  J*N) + L.(£°,0).
AEL2(QT) PEP,y,p ( ) AeL2(Qr) ( ) ( )

3 Numerical approximation and experiments

3.1 Discretization of the mixed formulation ({16))

We now turn to the discretization of the mixed formulation assuming r > 0. Let then &,
and M, j be two finite dimensional spaces parametrized by the variable h such that, for any € > 0,

., C D, M., CL*Qr), Yh>D0.
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Then, we can introduce the following approximated problems : find (pp, Ap) € ®¢ p, X Mc j, solution
of

{ ar(on ) +0@n M) = @), V€ B (w0)
b(tph, )\h) 0, YA, € Ms,h-
The well-posedness of this mixed formulation is again a consequence of two properties : the

coercivity of the bilinear form a. , on the subset Ny, (b) = {¢n € Pe.n;b(on, An) =0 VA, € M.}
Actually, from the relation

as,r(@a(p) > C’!‘,nHQOHéE’ v@ € o,

where C,, = min{l,r/n}, the form a., is coercive on the full space ®., and so a fortiori on
Np(b) C @, j, C @.. The second property is a discrete inf-sup condition : there exists §, > 0 such
that

b(en; An)

inf sup > Op. (41)
MEMen gea. s, || @nlle., 1Anllhr.

For any fixed h, the spaces M. j, and ®. j are of finite dimension so that the infimum and supremum
in are reached: moreover, from the property of the bilinear form a. ., it is standard to prove
that ¢y is strictly positive (see Section . Consequently, for any fixed h > 0, there exists a
unique couple (¢, Ap) solution of (40). On the other hand, the property infj, §, > 0 is in general
difficult to prove and depends strongly on the choice made for the approximated spaces M, ; and
®. . We shall analyze numerically this property in Section @

Remark 2 For r = 0, the discrete mized formulation (@) 15 not well-posed over ®.p x M. p,
because the bilinear form ac y=¢ is not coercive over the discrete kernel of b: the equality b( A, on) =
0 for all A\, € M, j, does not imply that L*y;, vanishes. Therefore, the term THL*QthQLQ(QT) may
be understood as a numerical stabilization term: for any h > 0, it ensures the uniform coercivity of
the form a., (and so the well-posedness) and vanishes at the limit in h. We also emphasize that
this term is not a regularization term as it does not add any regularity to the solution vy,.

As in [I0], the finite dimensional and conformal space ®.; must be chosen such that L*¢y,
belongs to L?(Qr) for any ¢ € ®. 5. This is guaranteed as soon as ¢, possesses second-order
derivatives in L7 .
achieves this sufficient property as soon as it is generated by spaces of functions continuously
differentiable with respect to the variable z and spaces of continuous functions with respect to the

variable t.

(Q7). Any conformal approximation based on standard triangulation of Qr

We introduce a triangulation 7;, such that Qr = UkeT, K and we assume that {7, }n>0 is a
regular family. Then, we introduce the space ®. ; as follows :

@E’h = {Sph S Cl(@) : (ph‘K S ]P(K) VK € 7;“ ©h, =0on ZT}

where P(K) denotes an appropriate space of polynomial functions in  and ¢. In this work,
we consider for P(K) the so-called Bogner-Foz-Schmit (BFS for short) Cl-element defined for
rectangles.

In the one dimensional setting considered in the sequel, it involves 16 degrees of freedom,
namely the values of @n,¥n 2, Yht, Pt on the four vertices of each rectangle K. Therefore
P(K) = P3, @ P3; where P, ¢ is by definition the space of polynomial functions of order r in the
variable £. We refer to [9] page 76.

We also define the finite dimensional space

M. ={\ € C%Q7) : M|k € QK) VK €T},

where Q(K) denotes the space of affine functions both in  and ¢ on the element K.
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Again, in the one dimensional setting, for rectangle, we simply have Q(K) =P , ® Py 4.

We also mention that the approximation is conformal : for any h > 0, we have ®.; C ®. and
M&h C LQ(QT).

Let n, = dim ®, , m), = dim M, ), and let the real matrices A, € R*»™ B, € R™r"h,
Jp € R™™e and Ly, € R™ be defined by

ae,r(@hu@) =< Ae,r,h{@h}v {@} >Rrnp R™h VQP}“@ e @€’h7
b(en; An) =< Ba{en}, {An} >rmn mmn,  Veon € Ocp,VAn € Mep,

// )\hThdx dt =< Jh{Ah}’ {Th} >R™h JR™h V)‘fu)\ih S ME,h7
T
Uen) =< L, {¢n}t >, Von € Qe

where {¢5,} € R™ denotes the vector associated to ¢, and < -, - >gns ger the usual scalar product
over R . With these notations, Problem reads as follows : find {¢p} € R™ and {\,} € R™»

such that
( AE,’I‘,h B}IL—‘ ) ( {@h} > — ( Lh ) . (42)
Bh 0 R™*htmp mptmpy {Ah} R™h TR 0 R™h+™mh

The matrix A. ,j as well as the mass matrix .Jj, are symmetric and positive definite for any A > 0
and any r > 0. On the other hand, the matrix of order my + ny in is symmetric but not
positive definite. We use exact integration methods developed in [14] for the evaluation of the
coefficients of the matrices. The system is solved using the direct LU decomposition method.

Let us also mention that for r = 0, although the formulation is well-posed, numerically,
the corresponding matrix A, o is not invertible in agreement with Remark In the sequel, we
shall consider strictly positive values for r.

Once an approximation ¢y, is obtained, an approximation v ; of the control v, is given by
Ve,h = Po 29057;1 1,. The corresponding controlled state y. », may be obtained by solving with
standard forward approximation (we refer to [10], Section 4 where this is detailed). Here, since
the controlled state is directly given by the multiplier A, we simply use A, as an approximation of
y and we do not report here the computation of y,.

In the sequel, we only report numerical experiments in the one dimensional setting. We use
uniform rectangular meshes. Each element is a rectangle of lengths Az and At; Az > 0 and At > 0
denote as usual the discretization parameters in space and time, respectively. We note

h := max{diam(K), K € T,}

where diam(K') denotes the diameter of K.

3.2 Normalization and discretization of the mixed formulation (32)

The same approximation may be used for the mixed formulation . In particular, we easily
check that the finite dimensional spaces M, j and ®.; (which actually do not depend on €) are
conformal approximation of L?(Qr) and &)po,p respectively. However, in the limit case ¢ = 0,
a normalization of the variable ¢, which is singular and takes arbitrarily large amplitude in the
neighborhood of Q x {T'} is very convenient and suitable in practice. Following [I§], we introduce
the variable ¢ := py loe Po 1tf>p0,p and replace the mixed formulation by the equivalent one:
find (¢, \) € p(;l&)pmp x L?(Qr) solution of

l@), V@ € pal(ipo,p

) = 0 VA € L*(Qr), o

—N—
Q>
=
2
+
o
2
|
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where

i By X Py B, — R, aw,%:/ O dadt
qT

j=}3

by B x L2@r) > B b0 N == [[ Lo w) Adnds

T

[ 05 ®pep = R, 1(9) = —(y0, po-, 0)8(-, 0)) 12 (-

Well-posedness of this formulation is the consequence of Theorem [2.3] Moreover, the optimal
controlled state is still given by p~!\ while the optimal control is expressed in term of the variable
P asv:pglwlw.

The corresponding discretization approximation (augmented with the term || o~ L*(pot))|| L2(01))
reads as follows: find (¢p, Ap) € ®p, x M), solution of

{ ar(Yn, Pp,) + li?(@ha)\h) = (), Vi, € Py, (44)
b(Yn, An) = 0, VAn € M.
with
ar(Yn, Py) =a(n, Y1) + (0" L*(potn), " L (pot1)) 22 (@)
=(tn, V1) r2(gz) + (0" "L* (potbn), p L (po¥1)) L2(Q 1) -
for any r > 0.

Remark 3 When the weights py and p are chosen in such a way that they are compensated each
other in the term p~LL*(po1)), the change of variable has the effect to reduced the amplitude (with
respect to the time variable) of the coefficients in the integrals of a, and B, and therefore, at
the discrete level, to improve significantly the condition number of square matriz Anh so that
ar(Vn, 0p,) =< Appn{tbn}, {0} >ron gon . In this respect, the change of variable, can be seen as a
preconditioner for the mized formulation @)

Similarly to , we note the matrix form of as follows :

Aj,h B}j; {'(/}h} _ IA/h (45)
B}L 0 2 P , {)\h} n m 0 n m ’
R7h+mpnp+mp, R™h+™mh R™h+mp

where Bj, is the matrix so that Z)(@/}h, An) =< B’h{wh}, {A\n} >rmn grmn and Ly, is the matrix so
that [(yn) =< Ln, {tn} >.

3.3 The discrete inf-sup test

Before to give and discuss some numerical experiments, we first test numerically the discrete inf-
sup condition (41]). Taking n =r > 0 so that a.,(p,P) = (¢, P)s. exactly for all p,% € D, it is
readily seen (see for instance [§]) that the discrete inf-sup constant satisfies

e,r,h

Serh = inf{\/S :BRAZL, BI Y =6 ), V{A} eR™\ {0}}. (46)

The matrix BhA;}n’ hB?; enjoys the same properties than the matrix A. ,p: it is symmetric and
positive definite so that the scalar d. j, defined in term of the (generalized) eigenvalue problem
is strictly positive. This eigenvalue problem is solved using the power iteration algorithm (assuming
that the lowest eigenvalue is simple): for any {v)} € R™ such that ||{v)}||2 = 1, compute for any

n>0, {ppt € R™ {\i} € R™ and {v}™'} € R™ iteratively as follows :

{ Acradei} + Bi{An} =0 A}

,Un+1 —
Bu{gp} = —Jn{vp} R

AR 2
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The scalar 4. ., defined by is then given by : ., = lim, oo ({7 }H]2) /2.

We now give some numerical values of d. ;. ; with respect to h for the C'-finite element intro-
duced in Section [3.11

We consider the one dimensional case for which Q = (0,1) and take for simplicity ¢ := 1/10
and d := 0. Values of the diffusion ¢ and of the potential d do not affect qualitatively the results.

In the spirit of the previous work [I8], we consider the following choice for the weight py € R:

K,
(T —1)

polx,t) = (T —t)*/? exp( ) (z,t) € Qr, K= % (47)
so that pg blows exponentially as ¢ — T~. This allows a smooth behavior of the corresponding
control v := py 2ap 1. Let us insist however that the mixed formulation is well-posed for any weight
po € R, in particular pg := 1 (leading to the control of minimal L?-norm and for which we refer to
[34]). po is independent of the variable x for simplicity.

We consider the following data w = (0.2,0.5), T' = 1/2, and Q = (0,1). Tables and
provides the values of 4 ., with respect to h and € for » = 1072, 1 and r = 102, respectively. In
view of the definition, we check that ., increases as r — 0 and € — 0. We also observe, that
for r large enough (see Tables [2| and , the value of the inf-sup constant is almost constant with
respect to € and behaves like

55,r,h ~ Cs,r,h X T71/2 (48)

for some constant C. 5 € (0,1). More importantly, we observe that for any r and ¢, the value
of 4. 1 is bounded by below uniformly with respect to the discretization parameter h. The same
behavior is observed for other discretizations such that At # Az, other supports w and other
choices for the weight pg (in particular pg := 1).

Consequently, we may conclude that the finite approximation we have used do ”pass” the
discrete inf-sup test. It is interesting to note that this is in contrast with the situation for the
wave equation for which the parameter r have to be adjusted carefully with respect to h; we refer
to [II]. Moreover, as it is usual in mixed finite element theory, such a property together with
the uniform coercivity of form a., then implies the convergence of the approximation sequence

(¢n, An) solution of ([40).

h 7.07x 1072 3.53x1072 1.76 x 1072 8.83 x 1073
e=10"2 8.358 8.373 8.381 8.386
e=10"1 9.183 9.213 9.229 9.237
e=10"8 9.263 9.318 9.354 9.383

Table 1: 6. pp wrt. cand h ;7 =10"2; Q= (0,1), w = (0.2,0.5), T = 1/2.

h 7.07x1072  353x1072 1.76x107? 883x1073
e=10"219.933x 101 9.938 x 10~1 9.940 x 10~1  9.941 x 10~ 1
e=10"%19.933 x 107" 9.938 x 10~' 9.941 x 10~! 9.942 x 10!
e=10"% 19933 x 107" 9.938 x 107" 9.941 x 10~* 9.942 x 10~!

Table 2: §. 5 wrt. cand h;r=1.;Q=(0,1), w=(0.2,05), T =1/2.

Similarly, Table [f] displays the discrete inf-sup constant corresponding to the limit case of the
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h 7.07x1072  353x1072 1.76x107? 883 x1073
e=10"2 19933 x 1072 9.939 x 1072 9.940 x 1072 9.941 x 10~2
e=10"*19.933x 1072 9.939 x 1072 9.941 x 10~2 9.942 x 1072
e=10"%19933x1072 9.939x 1072 9.941 x 1072 9.942 x 1072

Table 3: 6.5 wr.t. eand h ;7 =10% ; Q = (0,1), w = (0.2,0.5), T = 1/2.

mixed formulation :

inf  sup B(wh’)\h)
MM yed, Anllz@n [¥nll,o05,
// M p LL* (porbn) da dt
qr

= inf sup .
A EMn o, €3, ||)\hHLZ(QT)(Hwh”%Q(qT) +rllp=tL*(po 7ph)||2L2(QT))1/2

We take here a weight p independent of the variable = given by

K, 3

t) = —_— t K= -. 49
ety i=exo(fy ) w0eQr K= (19)
Again, for the limit case, the value given in the Table suggest a similar behavior observed for
€ > 0: the constant is uniformly bounded by below with respect to the parameter h and behaves
like 7—1/2 for r large enough (up to 1). Remark that, due to the introduction of the weight p # 1,

the inf-sup constants given by Table {4 are not the limit (as e — 0) of the previous Tables.

h 7.07x 1072 3.53x 1072 1.76x 1072 8.83x 1073 4.41 x 1073

r=10%2 | 6.9x1072 691 x1072 7.06x1072 8.08x1072 9.52x 1072

r=1 6.89 x 1071 6.91 x 10! 6.96 x 107! 7.94x 10! 8.66 x 107!
r=10"2 1.944 1.922 1.845 1.775 1.731

Table 4: € = 0; 0, w.r.t. 7 and h; Q = (0,1), w = (0.2,0.5), T' = 1/2.

3.4 Numerical experiments for the mixed formulation ([16))

We report in this section experiments for the mixed formulation and for simplicity we consider
only the one dimensional case: Q = (0,1) and T' = 1/2.

Let us first remark that in general explicit solutions (., Ac) of are not available. However,
when the coefficient ¢ and d are constant, we may obtain a semi-explicit representation (using
Fourier decomposition) of the minimizer ¢, r of the conjugate functional J (see ), and conse-
quently of the corresponding adjoint variable ., the control of weighted minimal square integrable
norm v = p, 2. 1, and finally the controlled state y. solution of . In practice, the obtention of
the Fourier representation amounts to solve a symmetric linear system. We refer to the Appendix
for the details.

Such representation allows to evaluate precisely the distance of the exact solution (p., Ac) from
the approximation (pp, Ay,) with respect to h and validate the convergence of the approximation
with respect to h.

As for the initial data, we first simply take the first mode of the Laplacian, that is, yo(z) =
sin(rz), x € (0,1). In view of the regularization property of the heat equation, the regularity of the
initial data has a very restricted effect on the optimal control and the robustness of the method.

We take c(z) := 1071, d(z,t) := 0 and recall that in the uncontrolled case (w = ), these data
leads to [|ly(-, T)||20.1) = v/1/2¢™™ T ~ 4.31 x 10~ 1. Finally, we take w = (0.2,0.5).
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For r = 1, Tables |§| and [7] report some norms with respect to h for ¢ = 1072, 1074 and
e = 1078 respectively. The cases r = 10% and r = 10~2 are reported in the Appendix, in Tables
[16 [I7] [I§ and [I9] [20] [21] respectively. In the Tables, ¢. and y. denotes the unique solution of
given by and . In the Tables, k. j denotes the condition number associated to ,
independent of the initial data yq E

We first check that the L?-norm ||A.p (-, T)|lz2(0,1) of the final state is of the order of /¢ and
that the condition number k. j behave polynomially with respect to h; on the other hand, we
observe a low variation of k., with respect to €; ke ~ O(h%?) for ¢ = 1072 and k., ~ O(h"3)
for e = 1078,

Then, we check the convergence as h tends to zero of the approximations (ve p, e p) toward
the optimal pair (ve,y.) in L?(gr) x L*(Qr) for any values of € and r.

More precisely, for large enough value of € (here ¢ = 1072), we observe a quasi linear rate
llpo(ve—ve, )l L2 (47 nd lye=Acnll L2
||yz||L2(QT)

the value of the parameter r. We refer to Figure [I| For small values of ¢, we observe a reduced
convergence both for the control and the state (see Figurefor e=10"*and Figurefor e=107%).
We recall that as € tends to zero, the space ®. degenerates into a much larger space and ¢, highly
oscillates near T. Remark also that for e = 1078, the constraint L*p. = 0 as an L?(Q7) function
is badly represented: this is due to the loss of regularity on the variable . (in the neighborhood

of convergence for both

with respect to h, independent of

HPOUEHL,z(qT)

of T) as € — 0T. This does not prevent the convergence of the variable ©e,p, for the norm @,
in particular the control v, j; = ,0_2<p57h 1., and of the variable A, 5. We will come back to this
situation in detail in the section devoted to the limit case ¢ = 0. Moreover, for small value of ¢,
the parameter r does have an influence; precisely, a low value of 7 (here » = 1072) leads to better
relative errors : this is in agreement with the behavior of the inf-sup constant d. , 5, which increases

with r—1/2,
h 1.41 x 1071 7.07x 1072 353 x 1072 1.76 x 1072 8.83 x 1073
mp + np 330 1155 4 305 16 605 65 205
IL*@enllzz@ry) | 1.32x 1071 3.75x 1072 9.66 x 1072 242 x 1072 7.82x 1074
”pO(””;O;”i’h’j”“("T> 1.10x 1071 6.21x 1072 3.29x 1072 1.68x 1072 857 x 1073
elL=(qr)

W 513 x 1072 284 x 1072 148 x 1072 7.60 x 1073 3.89 x 1073

el T
(A D)ll20,1) | 1.54x 1071 1.61x 107" 1.65 x 107'  1.67 x 107+ 1.68 x 10"
Keh 1.52 x 10°  1.10 x 10**  6.80 x 102  3.83 x 10  1.96 x 10'6

Table 5: Mixed formulation -r=1and e = 1072 with w = (0.2,0.5).

h 141 x 107" 7.07x 1072 353 x107%2 1.76 x 1072 8.83 x 1073

I L*@e nllL2(r) 1.383 1.471 9.05 x 1071 2.56 x 1071 6.54 x 1072

Wove verlliztur | 672 %1070 322x 1070 L15x 1070 549 x 1072 2.74 x 1072
povellL2 (g

W 2.73x10°1 1.86x 10! 589 x10~2 2.51 x 102  1.26 x 102

||A5,h(-,T)||Z2(O,1) 850 x 1072 574 x 1072 3.39x1072 3.11x1072 3.13x1072

Ke.h 3.02x10° 391 x 101! 3.86 x 10" 3.25 x 105 2.46 x 107

Table 6: Mixed formulation -r=1and e=10"* with w = (0.2,0.5).

IThe condition number k(M) of any square matrix My, is defined by k(M) = H|Mh||\2|\|./\/l;1\||2 where the
norm |[|My]||2 stands for the largest singular value of Mj,.
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h 1.41x 1071 7.07x1072 353x1072 1.76x 1072 8.83x 1073
IL*0enll 2 (@r) 1.48 2.03 2.50 2.52 2.61
oo (ve Zve 1)l 2 a7) 1.44 1.01 7.92x 1071 6.65 x 101 4.89 x 10~

||P0'U6HL2(QT)

Mye=Aenllz2gp) 842 x 1071 827 x 107! 5.73x 107! 435x 107! 2.89x 107!

HyeHL2(QT)
[Acn (D)l 20,1y | 863 x 1072 6.65 x 1072 239 x 1072 1.23x 1072 4.43 x 1073
e h 312 x10% 430 x 10*  6.05 x 10" 1.13 x 106 1.90 x 108

Table 7: Mixed formulation -r=1and e = 1078 with w = (0.2,0.5).
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Figure 1: w = (0.2,0.5); yo(x) = sin(7z): e = 1072, ; Ieotve ~ver )2 ag) (Left) and Ive =2 w20y
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(Right) vs. h for r =102 (o), r = 1. (x) and 7 = 1072 (0J).
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(Right) vs. h for r = 102 (o), r = 1. (%) and r = 10~2 (0J).

Remarkably, we highlight that the variational approach developed here allows, for any ¢, a
direct and robust approximation of one control for the heat equation. As discussed at length
in [I9, [34], the minimization of the conjugate functional J* using conjugate gradient algorithm
requires a number of iterates for small ¢ (typically e = 1078 and w = (0.2,0.5)) and diverge for
small values of h.

3.5 Conjugate gradient for J7

We illustrate here the Section and minimize the functional JZ% : L?*(Qr) — R defined in
Proposition with respect to the variable A.. From the ellipticity of the operator A. ,, we use a
conjugate gradient method which in the present case reads as follows :

(i) Initialization
Let A2 € L?(Q1) be a given function;

Solve
{ P e @,
e (P2, 0) + b-(7,20) = 1.(9), Vp € @,

and set gg = L*¢g and set wg = gg.

For n > 0, assuming that AZ,g¢” and w] are known with g/ # 0 and wl # 0, compute

AL gntl and wlt! as follows

(ii) Steepest descent
Compute @™ € ®, solution to

aE,T(Egaa) = _b€(¢7 ’LU?), W € (be
and W, = L*p. and then compute
pn =92 720r)/ @2, WD) 2(Qr) -

and set

+1 _
AT = A — ppwl.
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(iii) Testing the convergence and construction of the new descent direction
Update g by

n+1l __ — " n-—n

e ge — P W
If ||9§L+1||L2(QT)/||gg||L2(QT) <, take A\c = A"T1. Else, compute

a2

Yo = llg (QT)/H9g||2L2(QT)

and update w7 via

n+1 n+1
We + Ynw

Do n =n+ 1 and return to step (ii).

As mentioned in [22] where this approach is discussed at length for Stokes and Navier-Stokes
systems, this algorithm can be viewed as a sophisticated version of Uzawa type algorithm to solve
the mixed formulation . Concerning the speed of convergence of this algorithm, it follows, for
instance, from [I3] that

v(Ac,) —1\"
A2 = Aellz2(@ry < 24/v(A: )(\/—EH) N = AcllLz@ry, Vn>1
E’I"

where \. minimizes J2}. v(Ar) = [|Acr ||l AZ}]] denotes the condition number of the operator
A,

Eventually, once the above algorithm has converged we can compute p. € ®. as solution of
e (e P) +0:(P,Ae) = 1(P), VP € De.

We use the same spaces ®. 5 and M, j as described in Section In practice, each iteration
amounts to solve a linear system involving the matrix Ac . of size np, = 4my, (see ) which is
sparse, symmetric and positive definite. We use the Cholesky method.

From the previous estimate, the performances of the algorithm are related to the condition
number of the operator A, restricted to M., C L?*(Qr), which coincides here (see [4]) with
the condition number of the symmetric and positive definite matrix BhAE ’ hB,? introduced in
(46). Using again the power iteration algorithm, we obtain that, for any h, the largest eigenvalue
of BLA_ thf:LF is very closed to =1 (and bounded by r~!). This is in agreement with the esti-
mate [ Az r A2 < A L2(@p) for all X € L?(Qr). Consequently, the condition number is
expressed in term of r and of the discrete inf-sup constant d. j as follows :

(BhAg B Iy rt22

e,rh’

Since, from our observation in Section the discrete inf-sup constant d. , , is uniformly bounded
by below with respect to h, we deduce that the condition number is uniformly bounded by above
with respect to the discretization parameter. This implies that the convergence of the sequence
{)\8 1} (n>0), minimizing for JZ7. over M 5, is independent of h. This is exactly what we observe from
our numerical experiments. Morever from , we get that the number v(BrAZ}, Bl) ~ C_ 2,
is very closed to one. We refer to Tables [§| and [ for the values.

We consider the same data as in Section[3.4] that is, w = (0.2,0.5), yo(z) = sin(rz) and T' = 1/2.
We take v = 10710 as a stopping threshold for the algorithm (that is the algorithm is stopped as
soon as the norm of the residue g at the iterate n satisfies |92 12(0z) < 107°192]|22(05))- The
algorithm is initiated with A2 , = 0 in Q7.

We check that the method provides, for the same value of r, € and h, exactly the same ap-
proximation A, than the previous direct method (see Tables [5 etc). Table [10] u n 11| and [12] we
simply give the number of iterates of the conjugate gradient algorlthm for r = 102, r = 1 and
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h 707x 1072 3.53x1072 1.76 x 1072 8.83x 1073
e=10"2 1.431 1.426 1.423 1.423
e=10"4 1.185 1.177 1.173 1.171
e=10"% 1.165 1.151 1.142 1.135

Table 8: r_lég_,f}h wrt. eand h;r=10"2; Q= (0,1), w=(0.2,0.5), T = 1/2.

h 7.07x 1072 353x 1072 1.76 x 1072 883 x 10°?
e=10"2 1.013 1.012 1.012 1.011
e=10"* 1.013 1.012 1.011 1.011
e=10""% 1.013 1.012 1.011 1.011

Table 9: r‘légzh wrt. cand h;r=1and r =10% Q= (0,1), w = (0.2,0.5), T = 1/2.

7T1

r = 1072 with respect to h and ¢ respectively. For each case, the convergence is reached in very
few iterates, independent of h. Once again, this is in contrast with the behavior of the conjugate
gradient algorithm when this latter is used to minimize JZ with respect to ¢ defined by . The
number of convergence is also almost independent of € and 7. Since the gradient of J7. is given by
VI (N) = Acr(N) = L*q for all X' € L*(Qr), in particular V.J2%(X:) = L*¢., a larger value of
the augmentation parameter r reduces (slightly here) the number of iterates.

According to this very low number of iterates, it seems more advantageous not only in term
of memory resource but also in term of time execution to solve the extremal problem in the
variable A than the (equivalent) mixed formulation . The matrix A, . of order ny is very
sparse, symmetric, definite positive, diagonal bloc (for which the Cholesky method is very efficient)
while the matrix defined by , of order my, + ny = 5/4n;, requires the use of for instance the
Gauss decomposition method. Note however that the condition number of the matrix A, . j is not
independent of i but behaves polynomially (see Table [L0] where the value is reported for r» = 1.).
On the other hand, the condition number slightly decreases with r (recall that the norm over ®.
contains the term 7| L*p||z2(g,)): consequently, for very stiff situation (typically w very small),
there may be a balance between large values of r leading to a better numerical robustness and low
values of r leading to smaller relative errors on ve , and A; p.

For very small values of both A (leading to very fine meshes) of the order h = 1073 and ¢, we
observe some instabilities on the approximation A j (very likely due to the condition number of
the matrix A. ., which exceeds 10%° in this case). A preconditioning technique introduced in the
next section is needed in these cases.

h 141 x 107! 7.07x 1072 353 x 1072 1.76 x 1072 8.83 x 103
myp, = card({Aen}) 66 231 861 3321 13 041
# iterates - ¢ = 1072 5 5 5 5 5
# iterates - ¢ = 10~* 5 5 5 4 4
# iterates - ¢ = 1078 5 5 5 ) 5
K(Acpn)-e=10"2 | 1.51x10° 1.10 x 101 6.81 x 10’2 3.83 x 104  1.91 x 106

Table 10: Mixed formulation -r=1-w=1(0.2,0.5) ; Conjugate gradient algorithm.

We do not describe experiments for the mixed formulation introduced in which require the

use of continuous finite element approximation. We refer to [I8] in a closed context.
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h 141 x 1071 7.07x 1072 353x107%2 1.76 x 1072 8.83 x 1073
# iterates - ¢ = 1072 5 5 4 4 4
# iterates - ¢ = 10~* 5 5 5 4 4
# iterates - ¢ = 1078 5 5 5 5 4

Table 11: Mixed formulation -r=10% - w = (0.2,0.5) ; Conjugate gradient algorithm.

h 141 x 107! 7.07x1072 3.53x 1072 1.76x 1072 8.83 x 1073
# iterates - ¢ = 1072 9 9 8 8 8
# iterates - ¢ = 1074 8 8 8 8 8
# iterates - ¢ = 1078 8 8 7 7 7

Table 12: Mixed formulation -r=10"2-w = (0.2,0.5) ; Conjugate gradient algorithm.

3.6 Numerical experiments for the mixed formulation (32) - limit case
e=0.

We now report in this section some experiments corresponding to the limit case, that is € = 0, of
the mixed formulation ([32)). We consider again the first mode : yo(z) = sin(rz), take w = (0.2,0.5),
T = 1/2 and the exponential type weights po and p given by and respectively.

This particular choice of the weights allows to rewrite the quantity p~! L*¢ in term of the new
variable v as follow

p~ L (pop) = p~ oL — p~ " porth

3 50

= (T —t)*2L*y + <—2(T—t)1/2+K1(T—t)1/2>w (50)

and thus eliminate the exponential singularity near 7-'. Only a much weaker polynomial singu-
larity, precisely (T' — t)~'/? remains.

Moreover, we define as “exact” solution (y,v) the solution obtained with a very fine mesh

corresponding to h ~ 1.1 x 1073, a number of element equal to 819 200 and a number of degrees

of freedom equal to my, + ny = 3 284 484. With these values, we get the following norms :
107 An=t1.1x10-3 ] p2(@r) & 3:592 X 1071, [|povp=1.1x10-3 | £2(gp) =~ 18.6634.

We do not use the Fourier expansion approach described in the Appendix, since the optimality
equation is ill-posed for € = 0 and leads to instability as the number of modes used in the
sum increases. On the contrary, the minimization of J*- equivalent to the resolution of the mixed
formulation exhibits a remarkable robustness as h — 0. Eventually, we mention that the mesh
used is so fine that the corresponding result is (almost) independent of the parameter r.

Tables and reports some norms with respect to h for r = 1072, r = 1 and » = 102,
respectively. Let us first mention that we again obtain exactly the same approximations from the
direct resolution of the system and from the minimization of J}™*.

As in the case ¢ > 0, we observe the convergence of p~!\, and povy, in L?(Q7) and L?(qr)
respectively as h — 07. For instance, for r = 1, we obtain

-1
lleo(v —wn)llL2gr) 1:047,0.429 ly—p~"AnllL2r) o1:277,0.704.

[povl[z2(qr) ’ Wl z2(Qr)

Figure [4] depicts the evolution of these relatives errors with respect to h for » = 1072,1 and
r = 10%2. Again, in view of the values of the inf-sup constant of Table 4} we check that the lower
value r = 1072 provides a faster convergence of the approximation. It is also interesting to remark
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that low errors for the state p~!)\;, and the control v, are obtained with a relatively large value
of the norm ||p~'L*@ul|12(gp)- This suggests that the constraint equality L*¢ = 0 in L*(Qr)
may be replaced by a weaker one as discussed in Section 2.2 We do not present experiments
for the weaker formulation and refer to Section 4 of [18] in a closed context. Tables
and [15] also report some results from the minimization of the functional J* using the conjugate
gradient algorithm. For r = 1 and r = 102%, the quantity r_16; }21 - bounded by above of the
condition number of Bhflr_ iég - slightly decreases with h; the convergence of the algorithm is
reached in few iterations independent of h. The value r = 10~2 requires about 50 iterations for all
the discretization considered.

Remarkably, the change of variable performed in the limit case allows to reduce very significantly
the condition number k(A ;) of the matrix A, ; (almost independent of r): see Table This
allows to consider very small values of the parameter h without producing any instabilities.

This high robustness of the approximation is definitively in contrast classical dual methods
discussed in [34] and the references therein: We recall that for ¢ = 0, the minimization of JX_,
defined by ([13]) fails as soon as h is small enough.

Figure [5[ and Figure@ depict over Qr the approximation yy, := p~ '\, and vy, := palwh 14y for
h = 8.83 x 1073, In particular, the smallness of both the diffusion coefficient and the size of the
support w leads to a large amplitude of the control at the initial time. This is in contrast with the
boundary control situation where one acts directly on the state (or its first derivative).

Eventually, in order to validate one more time our computations, we have approximated by a
standard time-marching algorithm the solution of with v = vy,. Specifically, we have used a
Cl-approximation with P3 ,(0,1) elements in space and the second-step implicit Gear scheme (of
order two) for the time discretization. Tables and [15|report the L2-norm of the state at the
final time, i.e. ||yn(-,T)| 12(0,1)- For each value of 7, the L?-norm decreases linearly to 0 with h.
For any h, the non-zero value of ||y (-, T)|z2(0,1) is, first due to the fact that vy, is not an exact
null-control for any discrete system, and second to the consistency error of the approximation used.

h 353 x 1072 1.76 x 1072 883 x 1073 441 x 1073  2.2x 1073
1o~ L* (povn) | 2(@r) 29.76 24.86 21.12 17.92 15.42
% 535 x 1071 334 x 1071 242 x107'  1.63x 1071  8.45 x 1072
L4(q
lpovnll 2 (gr) 15.20 16.642 17.52 18.07 18.43
1o~ Al 22 (0r) 315 x 1071 334 x 1071 346 x 1071 3.52x 107! 3.56 x 1071
W 196 x 1071 120x 107! 6.97x 1072 3.67x 1072 1.49 x 102
JI L T
# CG iterates 52 55 56 56 55
rié 27.04 29.37 31.73 33.37 —
k(A p) 9.5 x 104 1.4 x 107 3.03 x 10° 1.1 x 10'2 -
np=size(A, ;) 3 444 13 284 52 264 206 724 823 044
lyn (s Tl £2(0,1) 1.52x 1071 6.109 x 1072 259 x 1072 1.162x 1072 5.41 x 1073

Table 13: Mixed formulation -r=10"% and € = 0 with w = (0.2,0.5).

The experiments reported here - in the limit case ¢ = 0 - are obtained for a specific choice
of the weights py and p. Precisely, the weight pg is such that the approximation vy, := p, zgoh 1,
vanishes exponentially as ¢ — T~. This allows in particular to avoid the high oscillatory behavior
of the control of minimal L?-norm, that is when py := 1 in ¢7. The exponential behavior of the
control implies a similar behavior of the corresponding controlled stated p~!), so that the choice of
the parameter p made here, is also natural. Remark that p is not bounded and therefore does not
strictly satisfied the hypothesis of Theorem Seemingly, this has no influence at the numerical
level. This specific choice of the parameter p allows to perform a change of variable and therefore
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h 353 x 1072 1.76 x 1072 8.83x 1073 4.41x1073 22x1073
10~ L* (povn) || 2(Qr) 3.659 3.276 2.808 2.377 2.002
W 6.97x 1071 4.82x 1071 3.69x 10" 2.81x 101 2.06 x 10~
aT
llp0val 22 (gr) 13.37 15.33 16.62 17.45 17.99
1o~ Ml r2(0r) 335x 107! 340x 107! 341x107! 342x107! 3.52x 107!
_pTiA
W 328 x 1071 213 x 1071 1.33x 1071 8.09 x 1072  4.63 x 102
T
# CG iterates 12 11 10 9 9
rén 2.092 2.062 1.585 1.333 -
lyn (. T) |l 22(0.1) 119 x 1071 539x 1072 242x 1072 1.12x 1072 529 x 1073
Table 14: Mixed formulation -r=1.and ¢ = 0 with w = (0.2,0.5).
h 353x 1072 1.76 x 1072 8.83x 1072 441 x 1073 22x 103
1o~ L* (povn) || 2(@r) 0.428 0.426 0.380 0.321 0.215
% 883 x 107! 6.80x 107! 524x107! 4.16x 107t 3.25 x 107!
L4(q
ll0vn |22 (g 9.880 12.706 14.82 16.256 17.338
o~ Ml 220 0.2546 0.2926 0.3189 0.3352 0.3477
ly-r” Anlli2@r) 586 x 1071 4.04 x 1071 2.63 x 1071 1.66 x 10~1  9.88 x 102
H?/HLZ(QT)
f CG iterates 10 8 7 5 5
ré ; 2.092 2.007 1.53 1.103 -
lyn (. T) |l 22(0.1) 826 x 1072 424 x 1072 211x1072 1.03x1072 5.12x 1073
Table 15: Mixed formulation -r=10? and € = 0 with w = (0.2,0.5).
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Figure 5: w = (0.2,0.5); Approximation p~!)j, of the controlled state y over Q7 - r = 1 and
h =8.83 x 1073,
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Figure 6: w = (0.2,0.5); Approximation vy, = palwh of the null control v over Q7 - r = 1 and
h =8.83 x 1073.
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reduce significantly the condition number of the discrete problem. We also point out that, if the
mixed formulation is well-posed for any p, pg satisfying the hypothesis of Theorem the
constant of continuity of the linear form ! depends strongly - in view of the Carleman estimate
- of p and pg. This affects the convergence and the robustness of the method. Thus, for pg
as before and p := 1, the condition number is too large for small values of h (typically h ~ 10~3)
and leads to wrong results. Remark that for p := 1, the exponential decreases of p, 1 cannot be
compensated by p (see ) so that the change of variable is inefficient.

4 Concluding remarks and Perspectives

The mixed formulation we have introduced here in order to address the null controllability of
the heat equation seems original and adapted the work [II] devoted to the wave equation. This
formulation is nothing else than the Euler system associated to the conjugate functional and
depends on both the dual adjoint variable and a Lagrange multiplier, which turns out to be the
primal state of the heat equation to be controlled. The approach, recently used in a different way
in [I8], leads to a variational problem defined over time-space functional Hilbert spaces, without
distinction between the time and the space variable. The main ingredients allowing to prove the
well-posedness of the mixed formulation are an observability inequality and a direct inequality
(usually deduced from energy estimates). For these reasons, the mixed reformulation may also be
employed to any other controllable systems for which such inequalities are available. In particular,
we may consider the Stokes system as in [32].

At the practical level, the discrete mixed time-space formulation is solved in a systematic way in
the framework of the finite element theory: in contrast to the classical approach initially developed
n [23], there is no need to take care of the time discretization nor of the stability of the resulting
scheme, which is often a delicate issue. The resolution amounts to solve a sparse symmetric linear
system : the corresponding matrix can be preconditioned if necessary, and may be computed once
for all as it does not depend on the initial data to be controlled. Eventually, as discussed in
[11], Section 4.3 (but not employed here), the space-time discretization of the domain allows an
adaptation of the mesh so as to reduce the computational cost and capture the main features of
the solutions. We also emphasize that the higher dimensional case is very similar as it requires C*
approximation in space.

The numerical experiments reported in this work suggest a very good behavior of the approach:
the strong convergence of the sequences {vy, } >0, approximation of the controls of minimal weighted
square integrable norm, are clearly observed as the discretization parameter h tends to zero (as
the consequence of the uniform inf-sup discrete property). It is worth to mention that, within this
mixed formulation approach, the strong convergence of the approximations (as obtained within
a closed but different approach in [I8] assuming that the weights py and p coincide with the
Carleman weight) is still to be done. From the uniform coercivity of the bilinear form in the
primal variable, a strong convergence is guaranteed by a uniform discrete inf-sup property. In view
of the complicated and unusual constraint L*¢ = 0 and of the C! nature of the approximation,
the proof of such uniform property is probably very hard to get. However, it seems possible to
bypass this property by adding to the Lagrangian the stabilization terms (for instance in the limit
case € = 0)

L™ M) = 25 20n Lullo@ryr —IAR(50) = woll72(0,1)

which vanish at the continuous level (writing Ly = v 1, with y = p~*X and v = p~2pl,,, see
Theorem and give coercivity property for the variable Aj. This will be examined in a future
work.

The approach may also be extended to the boundary case. We also mention that the variational
approach developed here based on a space-time formulation is also very well-adapted to the case
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where the support of the inner control evolves in time and takes the form
qr :={(z,t) € Qr; a(t) <z <bt) te€ (0,7}

with any a,b in C°([0,T],]0, 1[). We refer to [6] which examines this case for the wave equation.

Eventually, we also mention that this approach which consists in solving directly the optimality
conditions of a controllability problem may be employed to solve inverse problems where, for
instance, the solution of the heat equation has to be recovered from a partial observation, typically
localized on a sub-domain g of the working domain: actually, the optimality conditions associated
to a least-square type functional can be expressed as a mixed formulation very closed to . This
issue will be analyzed in a future work.

A Appendix

A.1 Appendix : Fourier expansion of the control of minimal L?(p, qr)
norm.

We expand in term of Fourier series the control of minimal L?(pg,qr) norm v for the (1) and
the corresponding controlled solution y. We use these expansions in Section to evaluate with
respect to h the error [ly. — Ac nllL2(@r) and [|po(ve — ve,n)l|L2(gr) Where the sequence (¢e,n, Ac,n)
solves the discrete mixed formulation (40). We use the characterization of the couple (y.,v.) in
term of the adjoint solution ¢, (see (B))), unique minimizer in L?(Q) of J* defined by .

We first note (acp)(p>0) the Fourier coefficients in I?(N) of the minimizer @7, € L*(0,1) of
(13) such that

wer(x) = Z ac p sin(prz), x € (0,1). (51)
p>0

The adjoint state takes the form p.(z,t) = > asypeC”QT’Q(t’T) sin(prz) in Q.

p=1
The optimality equation associated to the functional JZ then reads,

1
DJX () - T = // po e du dt +s/ 1P + (40, 7(+,0)) = 0,¥pT € L*(0,1)
qar 0
and can be rewritten in terms of the (a. p)p>0 as follows :

< {CTp}p>07MqT,5{ap}p>0 >=< {CTp}p>0a~7:yo > Va&p € ZQ(N) (52)

where M, . denotes a symmetric positive definite matrix and F,, a vector obtained from the
expansion . The resolution of the infinite dimensional system (reduced to a finite dimension
one by truncation of the sums) allows an approximation of the minimizer ¢r . of JZ.

Finally, we use that the control of minimal L?(po, gr) norm is given by v. = py 2. 1,, and find
that the corresponding controlled solution may be expanded as follows

Ye(z, t) = Z (ec”2q2tb2 + Z as,pcq7p(w)dq7p(t)]) sin(prz), (z,t) € Qr (53)

q>0 p>1
with
¢
Cpq(w) := 2/ sin(prz) sin(gra) dx;  dp4(t) := / p62(s)ec’rz(”z(s_T”qZ)(s_t)) ds, t€(0,T).
w 0

(b9)g>0 denotes the Fourier coefficients of the initial data yo € L*(0,1).
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h 1.41 x 107 7.07x 1072 353x1072 1.76x 1072 8.83 x 1073
IL*@enllz2@r) | 3:84% 1072 290x 1072 927 x107% 241x 1072 7.78 x 1074
lootve v i )lli2ar) | 39 % 10-1 5.90 x 10~2 324 x 102 1.68x 102 8.57 x 10-3

||Pova”L2(qT)
W 1.04 x 107! 354 %1072 148 %1072 7.59x 1073 3.89 x 1073

Je L (QT)
[Aen (5Tl 20,1y | 2.02x 107 1.68 x 107! 1.65x 107! 1.67x 107! 1.68 x 107*
Ke 444 x 10° 4.20 x 101 3.84 x 103 3.25 x 10  5.72 x 1016

Table 16: Mixed formulation -r =102 and ¢ = 1072 with w = (0.2,0.5).

h 1.41 x 107" 7.07x 1072 353x1072 1.76x 1072 8.83 x 1073
IL*@enllz2@r | 6:19% 1072 157 x 1071 1.56 x 107! 1.50 x 107! 6.21 x 1072
oo =ve 1)le2 (o) 1.02 736 x 1071 3.65x10~! 1.52x 10! 3.01 x 102

||P0Ua|\L2(qT)
W 6.74 x 1071 551 x 107t 242x 10! 1.05x 107! 1.81 x 1072

YellL2(Qr)
[Aen(Dll20,1) | 223 x 1071 176 x 1071 7.86 x 1072 4.87 x 1072 3.28 x 1072
Ke 5.31 x 10°  8.31 x 101 9.64 x 103 1.47 x 106 1.50 x 10'®

Table 17: Mixed formulation -r =102 and ¢ = 10~* with w = (0.2,0.5).

h 1.41 x 107" 7.07x 1072 353 x1072 1.76x 1072 8.83x 1073
|L*@enllzzory) | 6:23% 1072 1.63x 1071 1.77x 107" 2.66 x 1071 2.24 x 10~*
leo(veve mll12(ar) 1.50 1.11 953 x 1071 833 x10~! 7.19x 10~}
||P0va|\L2(qT)
lyeAenlliz@r) 1.08 1.09 9.4 x 1071 769x10"' 5.15x 107t
Hl/aHL2(QT)
Aen(Dlz201) | 224 x 1071 1.79x 107! 810x 1072 5.67 x 1072 1.71 x 1072
, (0,1)
Ke 5.32 x 10°  8.59 x 101 9.86 x 103  1.84 x 106  3.07 x 10'®

Table 18: Mixed formulation -r =102 and ¢ = 108 with w = (0.2,0.5).

h 141 x 1071 7.07x 1072 353x1072 1.76 x 1072 8.83 x 107
IL*@enllzz@r) | 286 x1071 7.15x 1072 1.84x 1072 4.86x 1072 1.40 x 1073
leotve=verMlizir) | 1115 101 621 x 1072 3.29% 102 1.68x 102 857 x 102

||P0'U6HL2(qT)
lreherlizan | 5061072 284x 1072 148x 1072 7.50 x 107 3.80 x 10~

JellL=(Qr)
[Acn(D)ll20,1) | 153 x 1071 1.61x 107" 1.65 x 107'  1.67 x 107+ 1.68 x 10"
Ke 9.15 x 108 2.07 x 101°  8.05 x 101 3.25 x 10! 1.45 x 10'®

Table 19: Mixed formulation -r=10"2 and ¢ = 1072 with w = (0.2,0.5).

h 1.41 x 107Y  7.07x 1072 353 x 1072 1.76 x 1072 8.83 x 1073

I L* e nll L2(Qr) 10.77 3.821 1.018 2.59 x 1071 6.56 x 1072

”p“(””,joffi”‘j!'“w> 463x 1071 223 x 107" 1.10x 107" 5.52x 1072 2.74 x 1072
elNL=(ar)

W 1.55 x 1071 9.03 x 1072 4.08 x 1072  2.46 x 1072 1.27 x 1072

ellr T
(A (D)l 20,1) | 322%x 1072 2.85x 1072 299 x 1072 3.08 x 1072 3.12x 1072
Ke 3.04 x 10°  1.33 x 10! 7.55 x 10'2  3.88 x 10'*  1.96 x 10'6

Table 20: Mixed formulation -r=10"2 and ¢ = 10~* with w = (0.2,0.5).
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h 1.41 x 1071 7.07x 1072 353x1072 1.76x 1072 8.83x 103
IL*@e nl 2 (@r) 21.872 19.388 26.098 28.310 21.249
llpo(ve = ve,n) | L2 (gp) 14.989 9.459 6.606 4.175 1.556

llpo(ve—ve )l 124

1.33 843 x 1071 589x 107! 3.72x107' 1.38x 107!

||P01)5”L2(QT)
”y5_>\a,hHL2(QT)

573x 1071 471 x10- 3.51x107! 211 x107! 6.82x 1072
Hys”L2(QT)

[Aen (5Tl 220,y | 3311072 1.31x 1072 5.99x 1073 283 x107% 826 x 10~*
Ke 4.08 x 10°  3.04 x 10'" 454 x 10"  6.79 x 10> 1.30 x 10'8

Table 21: Mixed formulation -r =102 and ¢ = 10~® with w = (0.2,0.5).

A.2 Appendix: Tables
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