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Abstract: Integrating continuous spatial data into SOLAP systems is a new research challenge. Moreover, 
representation of field data at different scales or resolutions is often mandatory for an effective analysis. 
Thus, in this paper, we propose a logical model to integrate spatial dimensions representing incomplete field 
data at different resolutions in a classical SOLAP architecture.  

1 INTRODUCTION 

Spatial Data Warehouse (SDW) and Spatial 
OLAP (SOLAP) systems play an important role in 
helping decision-makers obtain the maximum 
benefits of these large amounts of geographic data 
(Bédard, Merrett et al. 2001). These technologies 
extend Data Warehouse (DW) and OLAP systems to 
integrate spatial data with warehoused classical data 
to achieve the on-line analysis of large 
georeferenced data sets. SOLAP systems integrate 
advanced OLAP and Geographic Information 
Systems (GIS) in a unique framework usually based 
on the relational storage (i.e. Oracle, etc.) of spatial 
data according to the vector model, and their 
analysis through SOLAP operators (Spatial Roll-Up, 
Spatial Slice, etc.) implemented by the SOLAP 
server (e.g. Map4Decision, etc.) and visualized by 
means of tabular, graphical and cartographic 
displays (Gomez, Gomez et al. 2012). SDW are 
modeled according to the spatio-multidimensional 
model that extends the traditional multidimensional 
model to define spatial dimensions (i.e. analysis axes 
with spatial attributes) and spatial measures (i.e. 
analysis subjects) that integrate geographic 
information using the vector model (Bédard, Rivest 
et al. 2007). SOLAP technology can be applied in 
different domains (e.g. archeology, public health, 
etc.). 

Geographic information can be represented by 
two models, depending on the nature of data: 

discrete (vector) and continuous field (Mennis, 
Viger et al. 2005). Continuous fields (also called 
continuous spatial data) represent physical 
phenomena that continuously change in space 
(Paolino, Sebillo et al. 2010), for example the 
temperature, population, etc. Two representations of 
field data have been proposed: incomplete and 
complete (Paolino, Sebillo et al. 2010). Incomplete 
representations store a sample of points and need 
additional functions to calculate the field in non-
sampled areas (e.g. grid of points, TIN, etc.) (e.g. 
Figure 2). Complete representations associate 
estimated values to regions and assume that these 
values are valid for each point in the regions (e.g. 
raster). For those representations some ad-hoc 
analysis operators have been defined that allow a 
point by point analysis (i.e. map algebra  (Mennis, 
Viger et al. 2005)). Representation of geographic 
data at different scales or resolutions (e.g. Figure 2-
b) is mandatory for an effective analysis of spatial 
complex phenomena since it represents a 
geovisualization method (Camossi, Bertino et al. 
2009). Consequently, these resolutions or scales 
represent decision-makers analysis needs that should 
be explicitly represented in any data and query 
model. Indeed, in the context of Geographic 
Information Systems and Spatial Databases 
Management Systems (SDBSM), several works 
addresses this issue by proposing conceptual, logical 
and physical data models and analysis techniques 
(Parent, spaccapietra et al. 2006).  

Motivated by the important analysis capabilities 
offered by the continuous field representation of 
geographic data when integrated in SOLAP systems 
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(visualization, querying, etc.) recently some works 
investigated the extension of the spatio-
multidimensional model and SOLAP operators with 
complete and incomplete field data (cf. Section 6). 
In the same way, handling multi-resolutions of 
spatial data into spatial multidimensional models has 
been proposed in few works (Yvan, Proulx et al. 
2002) (Gascueña and Guadalupe 2009) that propose 
conceptual models to represent SDW with several 
representations (scales, resolutions, etc.) of spatial 
dimensions and measures. 

However, to best of our knowledge existing 
works concerning field data and multi-resolutions 
lack of a complete implementation in a full-featured 
SOLAP architecture, or in other terms they do not 
propose a coupled relational and SOLAP server 
model for a generic SOLAP architecture allowing (i) 
the map algebra operators, (ii) the multi-resolution, 
and (iii) a continuous view of the field. 

In order to handle the spatio-multidimensional 
analysis of incomplete regular grid field data at 
different resolutions, we propose in this paper: (i) a 
specific logical model, extending the well-know 
relational star schema; (ii) and some new MDX-
based defined functions. We validate our proposal 
using a real case study concerning the odor 
monitoring, and we provide some experiments 
showing the feasibility also in terms of storage and 
computation performances. 

2 MODELING AND ANALYSIS 
REQUIREMENTS 

In order to show our proposal, we present a case 
study based on data issued from the monitoring of 
urban odor. For each 15 minutes and type of odor 
(e.g. NO2) a regular grid map (field) is produced by 
means of some sample points and a simulation 
model (ADMS5) . The simulation model estimates 
odors for a whole urban area and produces 100*100 
thematic grids. Examples of points grid are provided 
in figure 2-a (odor values are represented by color: 
green, yellow, red) for 10:00 19-2-2012 and 10:15 
19-2-2012. Let us now suppose that the user wants 
to aggregate data along a temporal dimension (year, 
month, day, hour, minute) using the average to 
obtain an aggregated odor map. This is an OLAP 
operation of RollUp on the temporal dimension that 
corresponds to a local map algebra operation (Figure 
2-a). Moreover, since space is represented in a 
continuous way, decision-makers should be able to 
ask for the result of any OLAP query in any point of 
the spatial dimension (for example, s/he should be 
interested in the odor value at 10:00 in the area 
behind the building) (Figure 2-c). It is also possible 

to apply a spatial slice operator on the spatial 
dimension (i.e. using a spatial predicate to select a 
subset of warehoused data) (Figure 2-d). In order to 
answer to these last two queries spatial interpolation 
methods are necessary, since in incomplete field 
only the values provided by the simulation model 
are stored. Spatial interpolation is the process of 
prediction of almost exact values of attributes at 
unsampled locations from measurements made at 
control points within the same area (O'Sullivan and 
J.Unwin 2002). In our case the interpolation function 
used is the bilinear interpolation, which is a local 
deterministic method. It uses the 2 * 2 grid sample 
points closest to the unknown point and calculates a 
distance weighted average which determines in what 
proportion the value of a neighbour impact on the 
value of the point to be estimated (Figure 1). 

Finally, as stated in the previous section, since 
visualization of spatial data at different resolutions is 
mandatory for the exploration/analysis process, 
decision-makers should be able querying spatial 
warehoused data at different resolutions.  It is very 
important to note that for each spatial phenomenon a 
set of useful known resolutions exist, so they could 
be predefined according to data and users needs. 
Moreover, in order to calculate values at finer 
resolutions spatial interpolation functions as 
previously described can be used. 

To summarize, spatio-multidimensional analysis 
of field data implies: supporting (i) OLAP classical 
operators as Map Algebra, (ii) continuous view of 
spatial data, (iii) spatial slice operators using field 
data, and (iv) visualizing and querying data at 
different predefined resolutions. 

3 Spatio-multidimensional model 
for incomplete field data 

In this section we describe our spatio-
multidimensional model for handling incomplete 
fields at different resolutions. Our model extends the 
classical spatio-multidimensional models to generate 
the continuity of the phenomena over the studied 
area, and represents pre-defined levels of resolution. 
In particular, a “Cube” is composed of “Facts” and 
“Dimensions”. A “Dimension” is composed of 
“Hierarchies”, which are composed of “Levels”. A 
“Level” can be spatial or conventional. This means 
that it can contain “Spatial attributes” (e.g. points, 
etc.), or contain only alphanumerical attributes 
respectively. “Facts” is composed of “Spatial 
Measures” or “Conventional Measures”. Moreover, 
our extension defines a “Field level” as a special 
type of spatial level where each member has a 
geometric attribute (e.g. point), a “neighbourhood 
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composed of an identifier and a geometry 
representing a point. The measure «Concentration of 
odor» represents the values for all members 
representing the field at a 100*100 resolution. This 

representation of incomplete field data in the 
multidimensional model allows making queries as 
Map Algebra operators (point by point aggregation) 
such as the following: 

 
 
 
 
 
 
 
 
 

 

 

 

 

 

 

Figure 3: Odor SDW multi-dimensional model 

Query 1: select average odor for each field 
member during 2012 
SELECT [Field].[res100]. Members ON 
ROWS, {[time].[2012] } ON COLUMNS 
FROM [odorCube] WHERE 
[Measures].[value] 

4.1 Incomplete field 

In order to implement field levels we have 
defined a GeoMDX user-defined function that 
represents a spatial interpolation as: 
NumericType InterpolatePoint(Geometry) 
This function takes as input a geometry (point) and 
returns a numerical value, which is a derived 
measure in the OLAP model, representing an 
estimated value calculated using the neighbourhood 
values of the point given in input. Thus, let us 
suppose that we want to retrieve a value of the field 
in a location whose geometric property is set to the 
geometric coordinates POINT(-72.1235 42.3521). 
Then in order to answer to that need using the 
Bilinear interpolation function, decision-makers 
have to simply use a GeoMDX function in the 
following way: InterpolatePoint(POINT(-
72.1235 42.3521)). 

Thus, the function will look for the neighbours 
of the point given as a parameter, in the field level 
([Field].[res100]), on the basis of the distance, and 
then find neighbours’ respective values in the fact 

table, evaluate the value of the point to estimate 
using these values, and then return an estimated 
derived measure. Here is an example query that uses 
the "InterpolatePoint" function: 

Query 2: select a field member’s value at 
coordinates (721148 3140020) for the year 2012.  
With member [Measures].[value] as' 
InterpolatePoint(ST_GeomFromText(" 
POINT (721148 3140020)"))' 
SELECT [Measures].[value]ON ROWS,  
[time].[2012] ON COLUMNS 
FROM [odorCube] 

 

 

 

 

 

Figure 4: Classical star schema integrating regular grid of 
points 

Note that generally MDX allows defining user-
defined functions in several programming languages 
(i.e. Java, .NET, etc.) depending of the OLAP Server 
used. In this work we have used a Java-based 

ICEIS 2013 INSTICC International Conference on Enterprise Information Systems, July 3-7, 2013, Angers



 5
 

implementation in GeoMondrian (see Sec. 5). In 
particular, the interpolation is done using an existing 
interpolation Java API “javax.media.jai api” (JAI). 

In this way we achieve the continuous view of 
field data using incomplete fields as stated in 
Section 2.   

 
4.2 Multiresolution 
 

Theoretically, we can measure a value of a field 
at every position inside a geographic space. 
However, not all resolutions are necessarily relevant. 
Indeed, according to the type of analysis performed 
by the user, a more or less detailed resolution can be 
requested. The multiresolution is an approach that 
consists in defining resolution levels likely to 
improve the rendering of the requests made by the 
user. To model an incomplete field at several 
resolutions in a multi-dimensional model, we 
propose two Approaches based on the “Classical 
Star Schema”: The “field aggregation star-schema” 
approach and the “field interpolation star schema” 
approach.  

4.2.1 Field Aggregation Star-Schema 
Approach 

Based on the star schema model previously 
described, we propose a logical schema where the 
spatial dimension presents different field levels at 
different resolutions (fig. 5-a). This model extends 
the spatial dimension of figure 4 with 2 other levels 
each representing a different level of resolution 
([Field].[res200] and [Field].[res400] ). 
Each level of the field dimension is composed of an 
identifier and a geometry representing a point. The 

fact table is associated, classically, to the most 
detailed level of the field dimension.  

In this way, decision-maker can explore 
warehoused field data at different resolutions during 
the same analysis MDX-based session. Only need to 
change the level of resolution in the query to change 
the level of details of the result. Using this approach, 
we use in an MDX query, the appropriate level of 
resolution of the field dimension as in the following 
where the Query 1 becomes: 

Query 3: select average odor for each field 
member at the 400*400 resolution during 2012 

SELECT [Field].[res400]. Members ON 
ROWS, {[time].[2012] } ON COLUMNSFROM 
[odorCube] 
WHERE [Measures].[value] 

4.2.2 Field Interpolation Star-Schema 
Approach 

As stated in Section 2, in order to provide field 
data at finer resolutions, spatial interpolation 
methods can be used. Then, here we propose a 
variation of the previously proposed schema for 
handling multiple field resolution levels, by 
associating the fact table to the field at less detailed 
resolution as shown on figure 5-b. In our approach 
moving from fact table values to finer spatial 
members’ values implies applying spatial 
interpolation functions. Note that this approach is 
possible only when dealing with spatial data, 
because according to the Tobler law geographical 
position of data can be used for estimating missing 
values. 
 

 

(a)       (b) 

Figure 5: (a) Field Aggregation Star Schema (FASS), (b) Field Interpolation Star Schema (FISS) 
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We have implemented a GeoMDX function in the 
same way of the function defined in Section 4.1: 
Numeric-type InterpolateBilinear (Field 

Member)  
 However, this function, named "InterpolateBilinear" 
is prepared to receive as input a field level member 
instead of geometry and return an interpolated value 
of this member. We can also see that in this case, the 
neighbors of each member of a higher resolution 
than the original one are also stored in the “Field” 
(Neighbours2, Neighbours3), since members of each 
resolution are pre-defined in advance, but their 
values are not since they depend on other 
dimensions. 
Calling this function as follows: 
InterpolateBilinear 

([Field].[res400].CurrentMember)  in the 
formula of a derived measure, allows to find the 
values of all the members  of the level “res400” 
(incomplete field at a 400*400 resolution) using 
their neighbors “Neighbors3” . Thus, the query 3 can 
be performed as follows: 
SELECT 

  {[Field].[res400].Members} ON ROWS, 

  { [time].[2012] } ON COLUMNS 

FROM [odorCube] 

Where [Measures].[EstimatedValue] 
  
While in the multidimensional SOLAP schema, 

the "InterpolateBilinear" function is called in the 
“EstimatedValue” calculated measure formula as: 
formula=" InterpolateBilinear([Field].[ 
res400].CurrentMember) "    

As we can see in the previous query, the call of 
the calculated measure enables to find the values at a 
given scale transparently to the decision maker as a 
classical aggregation (SQL). This approach is 
motivated by performance issues as described in the 
next section. 

5 Experimentations 

In this section we detail the performances of 
the two approaches proposed in Section 4.2 (FASS 
and FISS) in terms of storage and time computation. 
The computer used for the following tests has the 
following configuration: processor Intel® core ™ i3 
2,20 GHz, RAM 4 Go, Operating system Windows 7 
professional, System OS 64 bits. 

In particular, spatial data is stored in PostGIS 
Spatial DBMS. PostGIS is an open source software 
that adds support for geographic objects to 
the PostgreSQL object-relational database. PostGIS 

follows the Simple Features for SQL specification 
from the Open Geospatial Consortium (OGC); we 
use GeoMondrian as a SOLAP server; and JPivot as 
a client. GeoMondrian is an Open Source Spatial 
Online Analytical Processing Server.  

In order to test our proposal we define different 
cases where the spatial dimension presents: one field 
level at the 100*100 resolution; two levels at the 
resolutions 100*100 and 200*200; and finally three 
levels at the resolutions 100*100, 200*200 and 
400*400. We also vary the size of the temporal 
dimension in order to understand impact of the 
spatial and non spatial dimension on performances. 

Figure 6-a shows the size of the fact table 
measured in function of the number of spatial and 
temporal members (spatial finest resolution / 
temporal finest granularity) using the two 
approaches. We can easily see two important 
differences: i) the field aggregation approach is 
expensive in terms of storage than the field 
interpolation one since the latter stores only facts 
values at a less detailed spatial granularity, ii) in the 
field interpolation approach the size of the fact table 
only varies depending on the size of the non spatial 
dimensions. Thus, even increasing the size of the 
spatial dimension, the fact table does not change 
since it contains only measures related to the first 
level of resolution. 

In order to evaluate computation performance 
we execute the queries previously cited, where we 
combine roll-up operation on non spatial 
dimensions, and spatial slice operators over different 
field resolutions. 
Figure 6-b represents the execution time of the query 
3, which consists in generating values of the 
members at different resolutions taking into account 
different sizes of the time dimension. This figure 
shows a certain degree of approximation in 
execution time between the two approaches to a 
certain level. Beyond this level, we note that the gap 
widens considerably. Thus, minimizing storage and 
relations has allowed the field interpolation 
approach we propose to have better execution time 
than the field aggregation approach at all resolution 
levels (100*100, 200*200 and 400*400). Figure 9 
shows that the execution time in the “field 
aggregation approach” increases depending on the 
number of spatial and temporal members, whereas in 
the “field interpolation approach”, it increases 
mainly depending on the number of temporal 
members. Indeed the size of the spatial dimension 
does not influence much on performance, since there 
is no relationship between the fact table and the 
members who belong to high resolutions. 
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propose a physical schema, but any implementation 
into a classical ROLAP architecture is presented. 
Finally, (McGuire, Gangopadhyay et al. 2008)define 
a snowflake schema for an environmental 
application where three dimensions represent the 
same spatial members at different resolutions. 

7 Conclusion and future work 

In this paper we present a multidimensional 
model for incomplete fields at several resolutions 
and its implementation in a SOLAP architecture 
based on standards (e.g. SQL and MDX). We are 
working on using spatial data mining to speed-up 
map algebra operations and implement a SOLAP 
visualization client. We also work in integrating 
other interpolation functions to generalize the 
proposed approach. 
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