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Integrating continuous spatial data into SOLAP systems is a new research challenge. Moreover, representation of field data at different scales or resolutions is often mandatory for an effective analysis. Thus, in this paper, we propose a logical model to integrate spatial dimensions representing incomplete field data at different resolutions in a classical SOLAP architecture.

INTRODUCTION

Spatial Data Warehouse (SDW) and Spatial OLAP (SOLAP) systems play an important role in helping decision-makers obtain the maximum benefits of these large amounts of geographic data [START_REF] Bédard | Fundamentals of Spatial Data Warehousing for Geographic Knowledge Discovery[END_REF]). These technologies extend Data Warehouse (DW) and OLAP systems to integrate spatial data with warehoused classical data to achieve the on-line analysis of large georeferenced data sets. SOLAP systems integrate advanced OLAP and Geographic Information Systems (GIS) in a unique framework usually based on the relational storage (i.e. Oracle, etc.) of spatial data according to the vector model, and their analysis through SOLAP operators (Spatial Roll-Up, Spatial Slice, etc.) implemented by the SOLAP server (e.g. Map4Decision, etc.) and visualized by means of tabular, graphical and cartographic displays [START_REF] Gomez | A Generic Data Model and Query Language for Spatiotemporal OLAP Cube Analysis[END_REF]. SDW are modeled according to the spatio-multidimensional model that extends the traditional multidimensional model to define spatial dimensions (i.e. analysis axes with spatial attributes) and spatial measures (i.e. analysis subjects) that integrate geographic information using the vector model [START_REF] Bédard | Spatial On-Line Analytical Processing (SOLAP): Concepts, Architectures and Solutions from a Geomatics Engineering Perspective[END_REF]. SOLAP technology can be applied in different domains (e.g. archeology, public health, etc.).

Geographic information can be represented by two models, depending on the nature of data: discrete (vector) and continuous field [START_REF] Mennis | Cubic Map Algebra functions for spatio-temporal analysis[END_REF]. Continuous fields (also called continuous spatial data) represent physical phenomena that continuously change in space [START_REF] Paolino | Integrating Discrete and Continuous Data in an OpenGeospatial-Compliant Specification[END_REF], for example the temperature, population, etc. Two representations of field data have been proposed: incomplete and complete [START_REF] Paolino | Integrating Discrete and Continuous Data in an OpenGeospatial-Compliant Specification[END_REF]. Incomplete representations store a sample of points and need additional functions to calculate the field in nonsampled areas (e.g. grid of points, TIN, etc.) (e.g. Figure 2). Complete representations associate estimated values to regions and assume that these values are valid for each point in the regions (e.g. raster). For those representations some ad-hoc analysis operators have been defined that allow a point by point analysis (i.e. map algebra [START_REF] Mennis | Cubic Map Algebra functions for spatio-temporal analysis[END_REF]). Representation of geographic data at different scales or resolutions (e.g. Figure 2b) is mandatory for an effective analysis of spatial complex phenomena since it represents a geovisualization method [START_REF] Camossi | Adaptive Management of Multigranular Spatio-Temporal Object Attributes[END_REF]. Consequently, these resolutions or scales represent decision-makers analysis needs that should be explicitly represented in any data and query model. Indeed, in the context of Geographic Information Systems and Spatial Databases Management Systems (SDBSM), several works addresses this issue by proposing conceptual, logical and physical data models and analysis techniques [START_REF] Parent | Conceptual Modelling for Traditional and Spatio-temporal Applications[END_REF].

Motivated by the important analysis capabilities offered by the continuous field representation of geographic data when integrated in SOLAP systems (visualization, querying, etc.) recently some works investigated the extension of the spatiomultidimensional model and SOLAP operators with complete and incomplete field data (cf. Section 6). In the same way, handling multi-resolutions of spatial data into spatial multidimensional models has been proposed in few works [START_REF] Yvan | Modeling multirepresentations into spatial data warehouses : A UML-Based approach[END_REF] [START_REF] Gascueña | A MULTIDIMENSIONAL METHODOLOGY WITH SUPPORT FOR SPATIO-TEMPORAL MULTIGRANULARITY IN THE CONCEPTUAL AND LOGICAL PHASES[END_REF] that propose conceptual models to represent SDW with several representations (scales, resolutions, etc.) of spatial dimensions and measures.

However, to best of our knowledge existing works concerning field data and multi-resolutions lack of a complete implementation in a full-featured SOLAP architecture, or in other terms they do not propose a coupled relational and SOLAP server model for a generic SOLAP architecture allowing (i) the map algebra operators, (ii) the multi-resolution, and (iii) a continuous view of the field.

In order to handle the spatio-multidimensional analysis of incomplete regular grid field data at different resolutions, we propose in this paper: (i) a specific logical model, extending the well-know relational star schema; (ii) and some new MDXbased defined functions. We validate our proposal using a real case study concerning the odor monitoring, and we provide some experiments showing the feasibility also in terms of storage and computation performances.

MODELING AND ANALYSIS REQUIREMENTS

In order to show our proposal, we present a case study based on data issued from the monitoring of urban odor. proportion the value of a neighbour impact on the value of the point to be estimated (Figure 1). Finally, as stated in the previous section, since visualization of spatial data at different resolutions is mandatory for the exploration/analysis process, decision-makers should be able querying spatial warehoused data at different resolutions. It is very important to note that for each spatial phenomenon a set of useful known resolutions exist, so they could be predefined according to data and users needs. Moreover, in order to calculate values at finer resolutions spatial interpolation functions as previously described can be used.

To summarize, spatio-multidimensional analysis of field data implies: supporting (i) OLAP classical operators as Map Algebra, (ii) continuous view of spatial data, (iii) spatial slice operators using field data, and (iv) visualizing and querying data at different predefined resolutions.

Spatio-multidimensional model for incomplete field data

In this section we describe our spatiomultidimensional model for handling incomplete fields at different resolutions. Our model extends the classical spatio-multidimensional models to generate the continuity of the phenomena over the studied area, and represents pre-defined levels of resolution.

In particular, a "Cube" is composed of "Facts" and "Dimensions". A "Dimension" is composed of "Hierarchies", which are composed of "Levels". A "Level" can be spatial or conventional. This means that it can contain "Spatial attributes" (e.g. points, etc.), or contain only alphanumerical attributes respectively. "Facts" is composed of "Spatial Measures" or "Conventional Measures". Moreover, our extension defines a "Field level" as a special type of spatial level where each member has a geometric attribute (e.g. point), a "neighbourhood relationship" association, and a re which it belongs.
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Incomplete field

In order to implement field levels we have defined a GeoMDX user-defined function that represents a spatial interpolation as:

NumericType InterpolatePoint(Geometry)

This function takes as input a geometry (point) and returns a numerical value, which is a derived measure in the OLAP model, representing an estimated value calculated using the neighbourhood values of the point given in input. Thus, let us suppose that we want to retrieve a value of the field in a location whose geometric property is set to the geometric coordinates POINT (-72.1235 42.3521). Then in order to answer to that need using the Bilinear interpolation function, decision-makers have to simply use a GeoMDX function in the following way: InterpolatePoint(POINT(-72.1235 42.3521)).

Thus, the function will look for the neighbours of the point given as a parameter, in the field level ([Field].[res100]), on the basis of the distance, and then find neighbours' respective values in the fact table, evaluate the value of the point to estimate using these values, and then return an estimated derived measure. Here is an example query that uses the "InterpolatePoint" function:

Query 2: select a field member's value at coordinates (721148 3140020) for the year 2012.

With member [Measures].[value] as' InterpolatePoint(ST_GeomFromText(" POINT (721148 3140020)"))' SELECT [Measures].[value]ON ROWS, [time].[2012] ON COLUMNS FROM [odorCube]

Figure 4: Classical star schema integrating regular grid of points Note that generally MDX allows defining userdefined functions in several programming languages (i.e. Java, .NET, etc.) depending of the OLAP Server used. In this work we have used a Java-based implementation in GeoMondrian (see Sec. 5). In particular, the interpolation is done using an existing interpolation Java API "javax.media.jai api" (JAI).

In this way we achieve the continuous view of field data using incomplete fields as stated in Section 2.

Multiresolution

Theoretically, we can measure a value of a field at every position inside a geographic space. However, not all resolutions are necessarily relevant. Indeed, according to the type of analysis performed by the user, a more or less detailed resolution can be requested. The multiresolution is an approach that consists in defining resolution levels likely to improve the rendering of the requests made by the user. To model an incomplete field at several resolutions in a multi-dimensional model, we propose two Approaches based on the "Classical Star Schema": The "field aggregation star-schema" approach and the "field interpolation star schema" approach.

Field Aggregation Star-Schema Approach

Based on the star schema model previously described, we propose a logical schema where the spatial dimension presents different field levels at different resolutions (fig. 5-a). This model extends the spatial dimension of figure 4 Each level of the field dimension is composed of an identifier and a geometry representing a point. The fact table is associated, classically, to the most detailed level of the field dimension.

In this way, decision-maker can explore warehoused field data at different resolutions during the same analysis MDX-based session. Only need to change the level of resolution in the query to change the level of details of the result. Using this approach, we use in an MDX query, the appropriate level of resolution of the field dimension as in the following where the Query 1 becomes:

Query 3: select average odor for each field member at the 400*400 resolution during 2012

SELECT [Field].[res400]. Members ON ROWS, {[time].[2012]} ON COLUMNSFROM [odorCube] WHERE [Measures].[value]

Field Interpolation Star-Schema Approach

As stated in Section 2, in order to provide field data at finer resolutions, spatial interpolation methods can be used. Then, here we propose a variation of the previously proposed schema for handling multiple field resolution levels, by associating the fact table to the field at less detailed resolution as shown on figure 5-b. In our approach moving from fact table values to finer spatial members' values implies applying spatial interpolation functions. Note that this approach is possible only when dealing with spatial data, because according to the Tobler law geographical position of data can be used for estimating missing values. We have implemented a GeoMDX function in the same way of the function defined in Section 4.1:

Numeric-type InterpolateBilinear (Field Member)

However, this function, named "InterpolateBilinear" is prepared to receive as input a field level member instead of geometry and return an interpolated value of this member. We can also see that in this case, the neighbors of each member of a higher resolution than the original one are also stored in the "Field" (Neighbours2, Neighbours3), since members of each resolution are pre-defined in advance, but their values are not since they depend on other dimensions. Calling this function as follows:

InterpolateBilinear ([Field].[res400].CurrentMember) in the formula of a derived measure, allows to find the values of all the members of the level "res400" (incomplete field at a 400*400 resolution) using their neighbors "Neighbors3" . Thus, the query 3 can be performed as follows:

SELECT {[Field].[res400].Members} ON ROWS, {[time].[2012]} ON COLUMNS FROM [odorCube] Where [Measures].[EstimatedValue]
While in the multidimensional SOLAP schema, the "InterpolateBilinear" function is called in the "EstimatedValue" calculated measure formula as:

formula="InterpolateBilinear([Field].[ res400].CurrentMember)"

As we can see in the previous query, the call of the calculated measure enables to find the values at a given scale transparently to the decision maker as a classical aggregation (SQL). This approach is motivated by performance issues as described in the next section.

Experimentations

In this section we detail the performances of the two approaches proposed in Section 4.2 (FASS and FISS) in terms of storage and time computation. The computer used for the following tests has the following configuration: processor Intel® core ™ i3 2,20 GHz, RAM 4 Go, Operating system Windows 7 professional, System OS 64 bits.

In particular, spatial data is stored in PostGIS Spatial DBMS. PostGIS is an open source software that adds support for geographic objects to the PostgreSQL object-relational database. PostGIS follows the Simple Features for SQL specification from the Open Geospatial Consortium (OGC); we use GeoMondrian as a SOLAP server; and JPivot as a client. GeoMondrian is an Open Source Spatial Online Analytical Processing Server.

In order to test our proposal we define different cases where the spatial dimension presents: one field level at the 100*100 resolution; two levels at the resolutions 100*100 and 200*200; and finally three levels at the resolutions 100*100, 200*200 and 400*400. We also vary the size of the temporal dimension in order to understand impact of the spatial and non spatial dimension on performances.

Figure 6-a shows the size of the fact table measured in function of the number of spatial and temporal members (spatial finest resolution / temporal finest granularity) using the two approaches. We can easily see two important differences: i) the field aggregation approach is expensive in terms of storage than the field interpolation one since the latter stores only facts values at a less detailed spatial granularity, ii) in the field interpolation approach the size of the fact table only varies depending on the size of the non spatial dimensions. Thus, even increasing the size of the spatial dimension, the fact table does not change since it contains only measures related to the first level of resolution.

In order to evaluate computation performance we execute the queries previously cited, where we combine roll-up operation on non spatial dimensions, and spatial slice operators over different field resolutions. Figure 6-b represents the execution time of the query 3, which consists in generating values of the members at different resolutions taking into account different sizes of the time dimension. This figure shows a certain degree of approximation in execution time between the two approaches to a certain level. Beyond this level, we note that the gap widens considerably. Thus, minimizing storage and relations has allowed the field interpolation approach we propose to have better execution time than the field aggregation approach at all resolution levels (100*100, 200*200 and 400*400). Figure 9 shows that the execution time in the "field aggregation approach" increases depending on the number of spatial and temporal members, whereas in the "field interpolation approach", it increases mainly depending on the number of temporal members. Indeed the size of the spatial dimension does not influence much on performance, since there is no relationship between the fact table and the members who belong to high resolutions. a) Figure 6: a) Fact table size with time for Query 3 for the Field aggre 6
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Conclusion and future work

In this paper we present a multidimensional model for incomplete fields at several resolutions and its implementation in a SOLAP architecture based on standards (e.g. SQL and MDX). We are working on using spatial data mining to speed-up map algebra operations and implement a SOLAP visualization client. We also work in integrating other interpolation functions to generalize the proposed approach.

  Figure 3: Odor SDW multi-dimensional model Query 1: select average odor for each field member during 2012 SELECT [Field].[res100]. Members ON ROWS, {[time].[2012]} ON COLUMNS FROM [odorCube] WHERE [Measures].[value]

  with 2 other levels each representing a different level of resolution ([Field].[res200] and [Field].[res400]).

Figure 5 :

 5 Figure 5: (a) Field Aggregation Star Schema (FASS), (b) Field Interpolation Star Schema (FISS)

  

  They also propose a physical schema, but any implementation into a classical ROLAP architecture is presented.

		b)
	ith the field aggregation and the field interpolation app approaches b) Execution
	regation Star Schema and the Field Interpolation Star Sc Schema approaches
		hierarchy" as a set of relate ted field levels, which
		allows a field to be seen a at different levels of
		granularity . They also propose ose a physical model for
	data in a SOLAP	data warehouses with continu inuous fields. However,
	2005) propose a	no implementation has been een proposed and the
	andling continuous	hierarchical relationship betwe ween field levels has not
	of points as spatial	been brought to light. (Bimon onte and Myoung 2011)
	e cube which is	provide a multidimensional m l model that integrates
	e to simulate a	field data independently from m their implementation,
	ines new types of	as measures and dimensions. ns. They also present a
	a regular grid of	formal representation of the sp spatio-multidimensional
	on", "mixed hybrid	model schema where they de define the concepts of
	dimension" and	field dimensions, field measure ures, and field views. To
	e also defines the	our knowledge, no implemen entation including the
	cells of the matrix	continuous appearance of inc incomplete field or the
	roach" presented in	multiresolution over incompl plete fields has been
	ork. However, the	proposed.
	e propose, although	Representation of multidim idimensional data under
	re efficient in terms	different resolution levels s or scales may be
	omez, Gomez et al.	considered as multirepresentat tation. (Bernier, Bédard
	del for representing	et al. 2005) proposes an app pproach to provide on-
	that makes use of	Demand multi-scale maps. Al Although this approach
	ice, Roll-up, Drill-	models maps features at diffe ifferent scales by using
	model the authors	spatial hierarchies, but it does es not contain measures.
	ntinuous aspect of	(Yvan, Proulx et al. 2002) d defines a UML-based
	ve a value for each	conceptual model that integrat rates multiple geometric
	y in the map. In	and semantic representations ns properties of spatial
	e authors propose a	levels. However, this work rk does not present a
	ling fields. They	complete multidimensional m model with facts and
	d" and "tempfield"	hierarchies.
	, and semantics for	Moreover, (Bédard et al., 200 2002) suggests (without
	e data types. They	providing details) using a d different spatial data
	ensions and field	warehouse for each repres resentation. Therefore,
	ld dimension" as a	changing the representation co corresponds to move to
	level that is a field	another spatial data wareho house. (Gascueña and
	he "field measure"	Guadalupe 2009) propose a co conceptual model with a
	field and the "field	multi-representation of spatial ial members.

Acknowledgements

The authors wish to thank the FEDER and the region for funding this project and project partners who provide us the data.