Trees acclimation to strains induced by wind: from genes expression to stem structure

Ludovic L. Martin, Eric Badel, Nathalie N. Fournier-Leblanc, Mélanie M.
Decourteix, Catherine C. Lenne, Catherine C. Coutand, Bruno B. Moulia, Jean-Louis J.-L. Julien

To cite this version:

Ludovic L. Martin, Eric Badel, Nathalie N. Fournier-Leblanc, Mélanie M. Decourteix, Catherine C. Lenne, et al.. Trees acclimation to strains induced by wind: from genes expression to stem structure. Journées scientifiques du GDR 3544 "Sciences du Bois ", Centre National de la Recherche Scientifique (CNRS). Montpellier, FRA., Nov 2012, Montpellier, France. 1 p. hal-00964723

HAL Id: hal-00964723
https://hal.science/hal-00964723
Submitted on 5 Jun 2020

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L'archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
U.M.R. PIAF

Trees acclimation to strains induced by wind: from genes expression to stem structure

${ }^{1}$ L. Martin, ${ }^{2}$ E. Badel, ${ }^{1}$ N. Leblanc-Fournier, ${ }^{1}$ M. Decourteix, ${ }^{1}$ C. Lenne, ${ }^{2} \mathbf{C}$. Coutand, ${ }^{2}$ B. Moulia and ${ }^{1}$ J.L. Julien
1 Université BLAISE PASCAL, UMR547 PIAF, F-63177 AUBIERE 2 INRA, UMR547 PIAF, F-63100 CLERMONT-FERRAND

An integrative model of mechanosensing: $\mathbf{S}^{\mathbf{3} m}$

Mechanical signals are important factors that control plants growth and development External mechanical loadings, such as wind, lead to a decrease of primary growth, an increase of secondary growth, modifications of stems mechanical properties and biomass reallocation to roots.
Biomechanical studies on tomato and poplar demonstrated that tissue strains are sensed by plants (1), (2). A biomechanical model was proposed, assuming that each cell produces a signal (dSi) whose intensity depends on strain level (ε), volume and sensitivity of the cell At organ or tissue level, the integrative thigmomorphogenetical signal Si can be predicted by integrating the longitudinal strains (Sstrains), applied to the tissue (3).

Controlled stem bending

Experimental bending devic which allowed to quantify the evel of longitudinal strains during the stem bending

Plants accommodation to repeated mechanical stimuli

Response of secondary growth to repeated daily bending. Open circles represent growth response to one single bending (1B). Closed circles represent growth response to 9 successive bendings at 1 -da intervals (9B-1d). Dash squares, model of additive effects (linear time in
model with a sensitivity shift after 3 daily bendings ($3 \times 1 \mathrm{~B}$; accomodation).

In nature, mechanical stimuli do not occur as a single bending. In this experiment, successive bendings were separated at day scale, mimicking the alternance between windy or quiet weather.

As soon as a second bending was applied, a diminution of growth and molecular responses to subsequent bending were observed. Our results show that plants acclimate rapidly to mechanical loadings and a desensitization period of a few days occurs after a single transitory bending. This acclimation process provides a basis for a mechanistic analysis of response sensitivity to mechanical loadings such as wind (4).

Mechanoresponsive genes expression after repeated daily bending. $\mathrm{C}:$ control (no load). $1 \mathrm{~B}:$ one single bending. xB -yd $: x$ bendings each separated by y days. PtaZFP2 : Populus tremula*alba Zinc Finger rotein2 gene, PtaTCH4 : Populus tremula alba Touch4 xylogluca of responses are indicated by different letters.

Multiple mechanical stimuli affect anatomical pattern and secondary growth rate

[^0](a) to (d) Control plants. (e) to (h) Plants subjected to 6 bendings, 2 successive bendings separated by Blue astra-safratine staining.
c: cambium, cp: cortical parenchyma, fw: flexure wood, gl: G layer, ph: phloem, pi: pith, scl: sclerenchyma x : xyelm, xf: xylem fiber, xr: xylem ray, xv: xylem vessel

Cambial activity induced by local strains applied to the stem: experimentations and modelling Plants were subjected to 3 successive daily bendings per week during 4 months. (a) Transversal section of a stimulated plant. (b) Relative ovalisation induced by bending. (c) Strain field for living tissues. (d) Weekly growth rate measurements (blue lines) and growth rate modeling (red
lines).

In response to bendings, cambium activity is impacted by the strain. Growth rate is identically stimulated according to the strain level both in the stretched part and in the compressed part of the stem. Wood differentiation is modulated according to the type of mechanical loading (tension and compression).

References :

${ }^{\text {(1) }}$ Coutand C. and Moulia B. (2000). Biomechanical study of the effect of a controlled bending on tomato stem elongation: local strain sensing and spatial integration of the signal. Journal of Experimental Botany 51 (352): 1825-1842.
${ }^{(2)}$ Coutand C.*, Martin L.*, Leblanc-Fournier N., Decourteix M., Julien J.L. and Moulia B. (2009). Strain mechanosensing quantitatively controls diameter growth and PtaZFP2 gene expression in poplar. Plant Physiology 151: 1-10.
${ }^{(3)}$ Moulia B., Der Loughian C., Bastien R., Martin L., Rodriguez M., Gourcilleau D., Barbacci A., Badel E., Franchel J., Lenne C., Roeckel-Drevet P., Allain J.M., Frachisse J.M., de Langre E., Coutand C., Leblanc-Fournier N., and Julien J.L. (2011). Integrative mechanobiology of growth and architectural development in changing mechanical environments. In P. Wojitaszek [ed.], Mechanical integration of Plant Cells and Plants, Signaling and Communication in Plants $9,269-302$. Springle--Verlag Berlin Heidelberg.

[^0]: (a) to anatomical modifications induced by multiple bendings.

