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Abstract

Multi-objective optimization algorithms aim at finding Pareto-optimal solutions. Recovering Pareto fronts
or Pareto sets from a limited number of function evaluations are challenging problems. A popular approach in
the case of expensive-to-evaluate functions is to appeal to metamodels. Kriging has been shown efficient as a
base for sequential multi-objective optimization, notably through infill sampling criteria balancing exploitation
and exploration such as the Expected Hypervolume Improvement. Here we consider Kriging metamodels not
only for selecting new points, but as a tool for estimating the whole Pareto Front and quantifying how
much uncertainty remains on it at any stage of Kriging-based multi-objective optimization algorithms. Our
approach relies on the Gaussian Process interpretation of Kriging, and bases upon conditional simulations.
Using concepts from random set theory, we propose to adapt the Vorob’ev expectation and deviation to
capture the variability of the set of non-dominated points. Numerical experiments illustrate the potential
of the proposed workflow, and it is shown on examples how Gaussian process simulations and the estimated
Vorob’ev deviation can be used to monitor the ability of Kriging-based multi-objective optimization algorithms
to accurately learn the Pareto front.

Keywords: Multi-objective optimization, Attainment function, Vorob’ev Expectation, Expected
Hypervolume Improvement, Kriging

1. Introduction

The interest in Multi-Objective Optimization (MOO) has been growing over the last decades, resulting
in the development of numerous dedicated methods, especially in evolutionary MOO [1]. These methods are
able to cope with challenging problems occurring when few information about the properties of the objective
functions is available (black-box optimization). In some situations, as for example in car crash safety design
[2], another difficulty comes from a limited budget of evaluations, because of expensive experiments or high
fidelity simulations.

In this context, see e.g. [3] for a review, a common approach is to rely on a surrogate model or metamodel
to alleviate the computational costs of the optimization process. In particular, Kriging metamodels have
proven to be efficient because they not only give a response surface but also a quantification of prediction
uncertainty. In mono-objective optimization, this property has been extensively used following the principles
of the Efficient Global Optimization (EGO) algorithm [4] where the Expected Improvement criterion is used
to balance between exploitation and exploration. Extensions to MOO have been developed, from scalarization
approaches [5, 6] to the use of multi-objective expected improvement criteria such as the Expected Hypervol-
ume Improvement [7].
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While results about the optimality of solutions from aggregation approaches have been reported (see e.g.
[8]), things are more difficult to analyze for MOO and even worse in metamodel based MOO, where an addi-
tional source of uncertainty due to surrogate modeling must be taken into account. Besides, the study of the
convergence in evolutionary MOO is an ongoing subject of research [9].

Inspired by what has been proposed for Kriging-based excursion sets estimation in Chevalier et al. [10, 11],
we propose here to use notions from the theory of random sets [12] for quantifying uncertainty on Pareto
fronts, through conditional simulations. The latter are used to estimate the probability that any given point
in the objective space is dominated, which is known in performance assessment of multi-objective optimizers
as the attainment function [13]. From this we obtain a metamodel-based estimation of the Pareto front using
the Vorob’ev expectation [12], with a value of the associated uncertainty: the Vorob’ev deviation. At each
stage of the sequential optimization process, an insight is provided to the practitioner about convergence and
possibilities of further improvements. Furthermore, with two or three objectives the proposed approach makes
it possible to visualize the variability around the estimation of the Pareto front in the objective space.

The paper is organized as follows: Section 2 details notions in MOO and in Gaussian Process Regression
upon which the proposed approach is based. In particular Section 2.4 is dedicated to conditional simulations.
In Section 3, we propose an original definition of uncertainty using the Vorob’ev expectation and deviation.
Finally, Section 4 is dedicated to applications of the proposed methodology to three different test cases, where
the potential of the approach to quantify uncertainty and monitor convergence within a sequential MOO
algorithm is illustrated.

2. Multi-objective optimization and Gaussian Process Regression

2.1. Notions in MOO

Multi-objective optimizers aim at optimizing (say minimizing) several objectives at once: f1(x), . . . , fm(x)
with x = (x1, . . . , xd)

T a vector of decision variables in E (usually E ⊂ R
d) and f : E → R

m the vector valued
function whose coordinates are f1, . . . , fm. As the objectives are usually in competition, the existence of an
optimal solution minimizing all objectives simultaneously cannot generally be taken for granted. This leads
to the definition of compromise solutions following the Pareto dominance: a vector is said to be dominated if
there exists another vector which is not worse in any objective and better for at least one of them. If a vector
is not dominated by any other vector, it is said to be optimal in the Pareto sense.

The set of optimal (or non-dominated) points in E is called Pareto set and the corresponding image by
f , composed of non-dominated vectors, is called Pareto front. Multi-objective optimization algorithms aim at
finding non-dominated objective vectors as close as possible to the true underlying Pareto front, creating a
discrete approximation sometimes called a Pareto front approximation [14].

2.2. Kriging / Gaussian Process Regression

A common solution to perform optimization under a tight evaluation budget is to appeal to a mathematical
surrogate of the objective function. Here we focus on a class of probabilistic metamodels relying on Gaussian
random fields. Originating from geostatistics with a technique named Kriging [15], predicting with such a
metamodel is known in the machine learning community as Gaussian Process Regression (GPR) [16]. These
Kriging/GPR metamodels have the property of interpolating the observations when noiseless data is consid-
ered (deterministic case). Furthermore, due to the probabilistic nature of these metamodels, they also provide
a quantification of the prediction uncertainty.

Without loss of generality, here we do not assume a priori any stochastic dependency between the responses
f1, . . . , fm and we treat them separately since the use of dependent models is significantly more cumbersome
and has not been shown to perform better in state of the art studies [17, 18]. Following the settings of Gaussian
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Process Regression [19, 20], each of the objective functions fi is supposed to be a sample path of a random
field Yi:

Yi(.) = gT
i (.)βi + Zi(.) (Universal Kriging)

where gi(.)
T is a vector of known basis functions, βi a vector of unknown coefficient and Zi(.) is a zero mean

Gaussian process (GP) with given covariance function, or kernel, ki. With n evaluations at the same locations
for the objectives {Yi(x1) = yi,1, . . . , Yi(xn) = yi,n, 1 ≤ i ≤ m} denoted An, the predictor (or Kriging mean)
and the prediction covariance (also referred to as Kriging covariance) of Universal Kriging (UK) are expressed
as:

mi,n(x) = gi(x)
T β̂i + ki,n(x)

TK−1
i,n

(

yi,n −Gi,nβ̂i

)

ci,n(x,x’) = ki(x,x’)− ki,n(x)
TK−1

i,nki,n(x’) +
(

gi(x)
T − ki,n(x)

TK−1
i,nGi,n

) (

G
T
i,nK

−1
i,nGi,n

)−1 (
gi(x’)

T − ki,n(x’)
TK−1

i,nGi,n

)T

where yi,n = (yi,1, . . . , yi,n),Ki,n = (ki(xs,xt))1≤s,t≤n, ki,n(x) = (ki(x,x1), . . . , ki(x,xn))
T
, Gi,n =

(

gi(x1)
T , . . . , gi(xn)

T
)T

and β̂i =
(

G
T
i,nK

−1
i,nGi,n

)−1
G

T
i,nK

−1
i,nyi,n.

Note that from a Bayesian point of view, assuming that the Yi are Gaussian conditionally on βi and putting
an improper uniform prior on βi, it is known [21] that the Universal Kriging mean and covariance coincide
with the conditional expectation and covariance of Yi knowing An, respectively: mi,n(x) = E(Yi(x)|An) and
ci,n(x,x’) = cov (Yi(x), Yi(x’)|An).

The covariance functions are chosen according to prior hypothesis about the unknown functions, such as
regularity, sparsity, possible symmetries, etc. [22]. While there exists a variety of admissible covariance func-
tions, the most commonly used are the stationary “Gaussian” and “Matérn” kernels [19]. Maximum likelihood
estimation or cross validation techniques [23] are typically employed to estimate values for the kernel hyper-
parameters [16]. An example of a Kriging model with constant unknown trend and Matérn (ν = 5/2) kernel
is depicted in Figure 1a.

2.3. Multi-objective expected improvement

Sequential approaches in MOO aim at adding new observations with a balance between exploration and
exploitation. Similar to [4], several extensions of the EGO algorithm have been proposed for MOO. The main
idea is to derive criteria in the vein of the Expected Improvement by defining a generalization of the notion
of improvement for multiple objectives. Popular methods include scalarization approaches like ParEGO [5] or
MOEAD-EGO [6] or truly multi-objective methods based on the definition of improvement functions over the
current Pareto front Pn defined by the current observations. Considered improvement functions are respec-
tively based on Euclidean distance [24], Hypervolume [25, 26] or Maximin distance [27, 18] i.e. respectively
the distance to the closest point of Pn, the volume added over Pn and an axis-wise distance to Pn.

In the applications of Section 4, we use the Expected Hypervolume Improvement to sequentially add
points. This criterion has been successfully applied to problems with limited budget [7], enjoys some beneficial
properties [7] and furthermore is related to the concept of attainment function which is of particular importance
in what follows.

2.4. Conditional simulations

From the Universal Kriging metamodels presented in Section 2.2, it is possible to generate samples inter-
polating the available evaluation results, called conditional simulations. They can be generated using a variety
of methods, from matrix decomposition to spectral methods, as presented in [28, 29, 30, 31]. Examples of such
conditional simulations are displayed in Figure 1b.

They have been applied in mono-objective optimization in [32] as a tool to estimate an information gain
when no analytical formula is available, as opposed to the Expected Improvement. Until now, the computation
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Figure 1: (a) Example of Kriging model based on observations at n = 7 locations (black points), with Kriging mean (bold line)
and Kriging pointwise 95% prediction intervals (shaded area). The Gaussian predictive distribution for x = 0.7 is represented by
the vertical dashed line. (b) Conditional simulations (colored thin lines) from the fitted UK metamodel.

of multi-objective Expected Improvement relies either on analytical formulas or on Monte Carlo estimation
with draws of the posterior distribution at a single location x. In contrast, conditional simulations consist in
drawing posterior realizations of the unknown function at multiple points, say Ep : {e1, . . . , ep} ⊂ E. Since
exact methods essentially depend on p × p covariance matrices, the number of simulation points is typically
limited by storage and computational cost. Despite this limitation, conditional simulations (based on matrix
decomposition) prove useful for Pareto front estimation, as presented in the next sections.

3. Quantification of uncertainty

In this section, we assume that a Gaussian process model (see Section 2.2) has been estimated for each
objective function from a set of n observations An. These models allow us to generate conditional Pareto front
realizations and further estimate the uncertainty on the Pareto front with concepts from random sets theory.

3.1. Conditional simulations for MOO: generation of conditional Pareto fronts and corresponding attained sets

Here we use conditional simulations to generate so-called conditional Pareto fronts (CPF). The first step is

to simulate a finite number (sayN) of vector-valued GP conditional simulations
{

Y
(1)
1 , . . . ,Y(1)

m

}

, . . . ,
{

Y
(N)
1 , . . . ,Y(N)

m

}

at some simulation points in the design space. Selecting the corresponding non-dominated simulation points
and simulated responses then provides conditional Pareto sets and fronts as summarized in Algorithm 1 and
illustrated in Figure 2.

Note that what we denote by CPF are actually approximations of conditional Pareto fronts, just like con-
ditional simulations of Gaussian random fields are often approximated realizations relying on a finite number
of points. Simulation points can be fixed for all the simulations or changed from one simulation to the other.
Fixed simulation points accelerate the simulation generation but they may introduce a bias and lead to missing
worthwhile areas. On the other hand, modifying the simulation points increases the computational burden but
is more exploratory, which might be an asset in high dimensions. Besides, the procedure used to choose the
location of simulation points may impact the results. Accordingly, two sampling strategies are investigated in
Section 4.2.
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Figure 2: Conditional Pareto sets and fronts corresponding to the GP models Y1, Y2, based on the observations An represented
by blue triangles. Left and center: examples of two conditional simulations of Pareto sets (top) and fronts (bottom), where the
simulations are performed on a regular 100× 100 grid. The simulation points and simulated responses are plotted with dots. The
corresponding non-dominated points are represented by red squares. Right: contour plot of the probability density of optimal
points in the decision space estimated from 30 conditional simulations (top) and superposition of simulated conditional Pareto
fronts (bottom).
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Figure 3: Example of 3 realizations of RNP sets (points, triangles and squares) and the corresponding attained sets (shaded
areas).
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Algorithm 1 Simulation of N conditional Pareto sets and fronts

for i = 1, 2, . . . , N do
Choose p simulation points Ep = e1, . . . , ep in E (fixed or different at each iteration).
for j = 1, 2, . . . ,m do

Generate a conditional simulation at e1, . . . , ep for the jth objective: Y
(i)
j =

(

Y
(i)
j (e1), . . . , Y

(i)
j (ep)

)

.

end for
Determine the Pareto set and front of

{

Y
(i)
1 , . . . ,Y(i)

m

}

.

end for

From now on we focus on the use of CPFs since the decision maker is mostly interested in visualizing results
in the objective space. Each CPF is composed of non-dominated points in the objective space. They have
been considered to assess the performances of MO optimizers [33, 14] under the term Random Non-dominated
Point (RNP) sets: sets of random vectors in R

m, non-dominated with respect to each other and with random
finite cardinality (see e.g. [13]). An alternative view is to consider the set of all objective vectors dominated by
a realization of an RNP set, called an attained set. Realizations of RNP sets and the corresponding attained
sets are presented in Figure 3.

In the mono-objective case, GP models provide analytical expressions of the expectation (Kriging mean)
and uncertainty (variance of the pointwise prediction). It would be interesting to get their counterpart for the
attained sets of simulated CPFs. Nevertheless, defining an expectation and/or an index of variability for sets
is not straightforward and requires concepts from random sets theory [12].

3.2. Basics from random sets theory: quantifying uncertainty with the Vorob’ev deviation

Before introducing related notions for CPFs, let us recall some general definitions. Set-valued random
elements, in particular random closed sets [12] received attention in the probability literature over the last
decades. There exist several candidate notions to define the mean of a random closed set, see [12] (Chapter
2). We choose a rather intuitive one, based on the notion of coverage function:

Definition 1 (Coverage function). Let Y be a random closed set on a topological space D (here D ⊂ R
m

equipped with the topology induced by the Euclidean distance). The coverage function pY is defined by
pY : x ∈ D 7→ P(x ∈ Y).

This definition has been applied in the Kriging framework to estimate sets of critical input values [10, 11].
It uses the Vorob’ev expectation, based on the upper level sets Qβ = {z ∈ D, pY(z) ≥ β}, called β-quantiles.

Definition 2 (Vorob’ev expectation and deviation). Denoting by µ the Lebesgue measure on R
m and

assuming that E(µ(Y)) < +∞, the Vorob’ev expectation is the β∗-quantile Qβ∗ such that E(µ(Y)) = µ(Qβ∗)
if this equation has a solution, and otherwise it is defined from the condition µ(Qβ) ≤ E(µ(Y)) ≤ µ(Qβ∗),
∀β > β∗. The associated Vorob’ev deviation is the quantity E(µ(Qβ∗∆Y)), where ∆ denotes the symmetric
difference between sets, i.e. Qβ∗∆Y = (Qβ∗ ∪ Y) \ (Qβ∗ ∩ Y).

The Vorob’ev expectation is a global minimizer of the deviation among all deterministic closed sets with
volume equal to the average volume of Y (see [12] for a proof): for any set M with µ(M) = E (µ (Y)) ,
E (µ (Qβ∗∆Y)) ≤ E (µ (M∆Y)).

3.3. Quantification of uncertainty on Pareto fronts using random set theory

In the MOO literature, the study of distribution location and spread of an attained set X rely on the
attainment function αX [13]: the probability for a given point in the objective space to be dominated by an
RNP set, αX = P(x ∈ Y).
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Attained sets are also closed1 and unbounded subsets in R
m. Hence, the attained sets obtained with the

simulated CPFs can be considered as realizations of a random closed set and are denoted by Yi, (i = 1, . . . , N).
Looking again at Definition 1, one can see that the attainment function is in fact a coverage function. For
proofs about the equivalence of the distribution of an RNP set and the corresponding attained set as well as
for a definition of the attainment function in terms of coverage function, we refer to [13]. This reference estab-
lishes the link between optimization results and random closed sets, in a case where the attainment function is
computed from several runs of optimizers. Their comparison is then performed based on statistical hypothesis
testing procedures.

In practice the attainment function is estimated by taking the proportion of RNP sets that dominates a
given vector in the objective space:

Definition 3 (Empirical attainment function). Given a sample of attained sets Y1, . . . ,YN , the empirical

attainment function is defined as: α̂N : Rm 7→ [0, 1], α̂N (z) = 1
N

N
∑

i=1

1{z∈Yi} where 1{z∈Yi} = 1 if z ∈ Yi, 0

otherwise.

An example of an empirical attainment function is presented in Figure 4, showing where in the objective
space there is a high probability to improve on the current Pareto front.

Definition 2 requires that Y is bounded for its Vorob’ev expectation to exist. Hence it is necessary to
define a reference point R to bound the integration domain. Since the Lebesgue measure of an attained set
with respect to the reference point is the hypervolume indicator of the corresponding RNP set, denoted by
IH(.,R), the choice of R has a similar influence (see e.g. [34]). Unless there is previous knowledge about the
range of the objectives, we choose R as the maximum of each objective reached by the conditional simulations.

The Pareto frontier of the Vorob’ev expectation provides us with an estimate of the Pareto front, as
illustrated in Figure 4. The value of the Vorob’ev deviation gives an idea about the variability of the simulated
CPF and can be monitored as observations are added, as will be shown in Section 4. The procedure to
determine the value β∗ corresponding to the Vorob’ev expectation (Vorob’ev threshold) as well as of the
Vorob’ev deviation is described in Algorithm 2.

Remark 1. The last equality in Algorithm 2 comes from the following:
∫

Ω

1z∈A∆Bµ(dz) = IH2(A,B,R) +

IH2(B,A,R) where IH2(A,B,R) is the binary hypervolume indicator, defined for instance in [35]: the volume
dominated by A and not by B, i.e. IH2(A,B,R) = IH(A ∪B,R)− IH(B,R).

The determination of the Vorob’ev threshold β∗ requires the volumes of β-quantiles:

µ(Qβ) =

∫

Ω

1α̂N (z)≥βµ(dz)

They can be estimated by numerical quadrature, i.e. by computing the values of α̂N on a grid when there are
few objectives or relying on Monte Carlo schemes. The other integrations are performed using hypervolume
computation procedures and their complexity is related to the difficulty of computing the hypervolume in
general. Hence measuring the uncertainty with the Vorob’ev deviation would be possible with any number
of objectives but would require approximating integrals to keep the computations affordable. Note that since
we take the objectives separately, simulating with more objectives simply requires computing the additional
conditional simulations corresponding to those objectives.

1As a finite union of closed sets (hyper quadrants).
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Algorithm 2 General procedure for estimating the Vorob’ev expectation and deviation

1: Generate N CPFs (see Algorithm 1).
2: if R is unknown then find the extremal values for the objectives over the RNP sets realizations:

R =

[

max
i∈(1,...,N)

Y
(i)
1 , . . . , max

i∈(1,...,N)
Y(i)

m

]

3: Define the integration domain: Ω =

[

min
i∈(1,...,N)

Y
(i)
1 , R1

]

× · · · ×
[

min
i∈(1,...,N)

Y(i)
m , Rm

]

4: Determine the average volume of the attained sets Yi:

E(µ(Y)) ≈ 1

N

N
∑

i=1

∫

Ω

1{z∈Yi}µ(dz) =
1

N

N
∑

i=1

IH(Yi,R)

5: Find the value of the Vorob’ev threshold β∗ by dichotomy: set a = 0, b = 1:
while b− a < ǫ do

if µ
(

Q a+b
2

)

< E(µ(Y)) then b = a+b
2

else a = a+b
2

end if
end while, β∗ = a+b

2
6: Estimate the Vorob’ev deviation:

E(µ(Qβ∗∆Y)) ≈ 1

N

N
∑

i=1

∫

Ω

1(z∈Qβ∗∆Yi)µ(dz) =
1

N

N
∑

i=1

(2IH(Qβ∗ ∪ Yi,R)− IH(Qβ∗ ,R)− IH(Yi,R))
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Figure 4: Example of empirical attainment function (level sets, left) and corresponding Vorob’ev expectation (shaded area, right),
based on 200 conditional simulations. The estimate of the underlying Pareto front (dashed line) is the Pareto frontier of the
Vorob’ev expectation. The ten observations are marked by blue triangles.
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Remark 2. [13] proposes the use of the Vorob’ev median (Q0.5) if no compact set is chosen for integration.
While removing the problem of fixing the reference point, no equivalent of the Vorob’ev deviation seems
available in this case.

From a practical point of view, it is also useful for visualization purpose with few objectives to display the
superposition of all the symmetric differences by defining an analogue of the attainment function:

Definition 4 (Symmetric-deviation function). The function δY : z ∈ R
m 7→ P (z ∈ Qβ∗∆Y) is called the

symmetric-deviation function of Y.

δY is the coverage function of Qβ∗∆Y. It is estimated with the empirical symmetric-deviation function:

δ̂N (z) =
1

N

N
∑

i=1

1{z∈Qβ∗∆Yi}.

Figure 5 presents an example of a symmetric difference between two sets and an empirical symmetric-
deviation function. This shows the variability around the estimated Pareto front: dark areas indicate regions
where the estimation of the Pareto front is not known precisely.
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Figure 5: Left: symmetric difference between the Vorob’ev expectation (the level line of the Vorob’ev threshold is represented
by the red dashed line) and a simulated CPF’s attained set (blue dotted line). Right: illustration of the deviation around the
estimated Pareto front corresponding to Figure 4 with an example of empirical symmetric-deviation function (level plot).

4. Application

4.1. Two-dimensional bi-objective test problems

In this section, we illustrate the benefits of the proposed methodology for estimating Pareto fronts. We
consider the following two variable, bi-objective optimization problems from the literature:

(P1) The problem presented in [36], which has a convex Pareto front:

f1(x) =

(

b2 −
5.1

4π2
b21 +

5

π
b1 − 6

)2

+ 10

[(

1− 1

8π

)

cos(b1) + 1

]

f2(x) = −
√

(10.5− b1)(b1 + 5.5)(b2 + 0.5)− 1

30

(

b2 −
5.1

4π2
b21 − 6

)2

− 1

3

[(

1− 1

8π

)

cos(b1) + 1

]
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where b1 = 15x1 − 5, b2 = 15x2 and x1, x2 ∈ [0, 1].

(P2) The ZDT3 problem [37] which has a disconnected Pareto front.

For each example, we start with a set of few observations that allow fitting initial Gaussian process models
for the two objective functions. Then we add new points sequentially by maximizing the Expected Hyper-
volume Improvement, based on the formula detailed in [7]. At each step, the Gaussian process models are
updated and their hyperparameters re-estimated. These models are then used to simulate CPFs, from which
we compute the estimates of the Vorob’ev mean and the measures of uncertainty: Vorob’ev deviation and
symmetric-deviation function. Since the integration domain varies as points are added, the values are dis-
played divided by the volume of this integration domain. The following test problems are fast to compute,
so it is possible to compare the outcome of the proposed workflow to a reference Pareto front by using the
volume of the symmetric difference.

The results are presented in Figure 6 and Figure 7, showing the evolution of the estimated Pareto fronts
with the corresponding uncertainty around it. For the problem (P1) the sequence is detailed, demonstrating
the strength of the proposed approach for giving insights about the uncertainty on the Pareto front. In partic-
ular, the uncertainty measures are helpful for choosing a minimal number of observations for approximating
the Pareto front: while 10 initial observations may not be enough (Figure 6a) regarding the large symmetric-
deviation, adding 10 more observations dramatically reduces the uncertainty (Figure 6c).

The conclusions are similar for problem (P2) Figure 7, where the Pareto front is disconnected, starting this
time with 20 observations and sequentially adding ten more observations by Expected Hypervolume Improve-
ment maximization. This example makes clear that the Vorob’ev expectation refers to the area dominated
by the Pareto front. When the latter is disconnected, the dominated area’s frontier is horizontal in the corre-
sponding parts. The position of the cuts in the Pareto front depends on the model and simulations, resulting
in an higher variation around cuts: a small change in the extent of a peak impacts the beginning of the next
one (where the symmetric difference volume depends on the size of the disconnection).

One can note that the approximations obtained are dependent on the model accuracy. In Figure 6a the
approximation is clearly too optimistic, due to an underestimation of the range parameters of the used Matérn
covariance kernel (ν = 5/2). Similarly, for one objective, the expected value of the minimum would be mis-
leading at the beginning.

Finally, we propose the use of the Vorob’ev deviation as a stopping criterion when the Pareto front location
is known. An empirical rule could be a threshold on the Vorob’ev deviation (e.g. expected volume of the
symmetric difference less than 1% of the integration volume) and detection of stagnation (e.g. under the
threshold for several evaluations). On the examples Figures 6d and 7b, by considering the two last evaluations,
the result would have been to stop for problem (P1) and continue for problem (P2). Note that this simple
criterion would fail if the estimation of hyperparameters is misleading. A more robust version would be
to integrate the uncertainty on the hyperparameters estimation in a full Bayesian framework [30]. More
sophisticated values could also be derived inspired from [9].

4.2. Additional experiments on conditional simulations

The aforementioned methodology depends on the number and location of simulation points used to obtain
the CPFs from the Gaussian process models (cf. Algorithm 1 and first step of Algorithm 2). As a first study,
we have compared two sampling strategies: uniform sampling and space-filling sampling relying on a Sobol
sequence, again with 2 variables. The objective functions are taken as sample paths of centered Gaussian
processes with Matérn covariance kernel (ν = 5/2), with range parameters equal to 0.3/

√
3 for f1, and 0.5/

√
3

for f2.

We compute the approximation error over the set of non-dominated points obtained from the two sampling
strategies. To compare the results with a reference set obtained with an NSGA-II [38] with archiving, three er-
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(a) 10 initial observations
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(b) 15 observations
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(c) 20 observations
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Figure 6: Evolution of the deviation with new observations added using Expected Hypervolume Improvement for Problem (P1).
The shaded area represents the image of E by f with a thicker border for the Pareto front. Observations are marked with blue
triangles and the blue solid line represents the current Pareto front. The dashed line is the estimated Pareto front, with the
corresponding values of the symmetric-deviation in level plot. Bottom right: evolution of the Vorob’ev deviation scaled by the
current integration volume (black solid line with circles) and evolution of the distance to the real Pareto front measured with the
volume of the symmetric difference with the estimation (red dotted line with crosses).
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Figure 7: Evolution of the deviation with new observations added using Expected Hypervolume Improvement for Problem (P2).
The figure description is the same as in Figure 6.
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ror indicators are used: hypervolume difference, epsilon and R2 quality indicators [35]. The tests are repeated
one hundred times. The results presented in Figure 8 show that space-filling sampling slightly outperforms
uniform sampling to get an accurate estimation of the Pareto front. Additional tests performed showed a
similar behavior with 3 variables but no difference for 10 variables, where the number of points considered was
too small.

Here, only the impact of the error introduced by discretizing conditional simulations is studied. Given a
few hundred to a few thousands of simulation points, it should remain negligible considering a relatively low
number of variables, as is usually the case in application examples up to six variables and six objectives [39].
Alternatively, resorting to approximate spectral simulation methods such as the truncated Karhunen-Loève
expansion could be considered.
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Figure 8: Hypervolume difference, epsilon and R2 quality indicators between random reference Pareto fronts and approximations
of them. A hundred conditional simulations for each of the two objectives considered are generated on a bi-dimensional grid with
225 points. Each of them is re-interpolated by Kriging and a reference Pareto front is obtained by applying an NSGA-II [38] with
archiving. This reference set is used to compare the quality of approximations of the Pareto front obtained by uniform sampling
(red crosses) or with a Sobol sequence (blue points) with respect to the number of simulation points. The error bars indicate the
quantiles of level 5% and 95% for the hundred repetitions.

5. Conclusion and perspectives

We presented an original methodology to estimate and visualize the uncertainty of Pareto front approxi-
mations, based on Gaussian process conditional simulations. More precisely, the attainment function provides
an estimation of the probability of dominating a given point in the objective domain. Then, a global uncer-
tainty measure was defined relying on the theory of random sets through the concept of Vorob’ev deviation. It
indicates the confidence of the model on the approximation of the attained set. The last tool is a visualization
of the region of confidence for two or three objectives. Application on an higher number of objectives would be
feasible, requiring the use of Monte Carlo methods for the computation of the various integrals. As illustrated
on two bi-objective problems with convex or disconnected Pareto fronts, these measures can also be used as a
basis to define stopping criteria in a sequential framework.

Further work is needed to analyze the different kinds of uncertainty and biases that may occur when
applying the proposed methodology. In addition, techniques for simulating efficiently over more points and
updating simulations with new observations [40] should be considered, as well as optimization of simulation
points locations with re-interpolation or re-simulation [41]. Another direction for future research includes the
integration of the proposed uncertainty estimate in a Stepwise Uncertainty Reduction (SUR) strategy [42] as
an infill criterion.
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