Exceptional values of p-adic analytic functions and derivatives

by Alain Escassut and Jacqueline Ojeda

Abstract Let K be an algebraically closed field of characteristic 0, complete with respect
to an ultrametric absolute value | . |. Given a meromorphic function f in K (resp. inside an
"open” disk D) we check that the field of small meromorphic functions in K (resp. inside
D) is algebraically closed in the whole field of meromorphic functions in K (resp. inside D).
If two analytic functions h, [ in K, other than affine functions, satisfy h'l — hl’ = c € K,
then ¢ = 0. The space of the entire functions solutions of the equation y” = ¢y, with ¢
a meromorphic function in K or an unbounded meromorphic function in D, is at most
of dimension 1. If a meromorphic function in K has no multiple pole, then f’ has no
exceptional value. Let f be a meromorphic function having finitely many zeroes. Then for
every ¢ # 0, f' — c has an infinity of zeroes. If % is not a constant or an affine function and
if f has no simple pole with a residue equal to 1, then f’ + f2 admits at least one zero.

When the field K has residue characteristic zero, then we can extend to analytic functions
in D some results showed for entire functions.
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Notation and definitions: Let K be an algebraically closed field of characteristic 0,
complete with respect to an ultrametric absolute value | . |. We set K* = K \ {0}. Given
a € K and R € IR, we denote by d(o, R) the disk {x € K | |x — o] < R} and by
d(a, R7) the disk {x € K | |z — o] < R}, by A(K) the K-algebra of analytic functions in
K (i.e. the set of power series with an infinite radius of convergence) and by A(d(a, R™))
the K-algebra of analytic functions in d(«, R™) (i.e. the set of power series in (x — «) with
a radius of convergence r > R).

We denote by M (K) the field of meromorphic functions in K (i.e. the field of fractions
of A(K)) and by M(d(a, R™)) the field of meromorphic functions in d(a, R~) (i.e. the
field of fractions of A(d(a, R7))).

Similarly, we denote by A(d(c, R7)) the K-algebra of bounded analytic functions in
d(a, R7) and by My(d(c, R7)) the field of fractions of A(d(cr, R7)). On Ap(d(a, R7))
we denote by || . ||g(a,r~) the norm of uniform convergence on d(a, R™).

Next we set A, (d(a, R7)) = A(d(a, R7)) \ Ap(d(a, R7)) and
Mu(d(e, R7)) = M(d(er, R7)) \ My(d(a, RT)).

Given f € A(d(0,R7)) = Z anx", it is well known that |f(z)| has a limit denoted by
n=0
| f|(r) when |x| tends to r, while being different from r [4]. Then |f|(7) = sup,c n |an|r".
This is an absolute value on A(d(0, R™)) that expands to M(d(0,R7)).
We call affine function a function h of the form h(z) = ax + b, a,b € K and linear

b
fractional function a function h of the form h(x) = ﬂ, a,b,c,d € K.
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Let us recall some notation concerning the ultrametric Nevanlinna Theory. Let f €
M(d(0,R™).

Let a € d(0, R7). If a is zero of order q of f, we set w,(f) = ¢q. If a is pole of order ¢
of f, we set w,(f) = —q. And if a is neither a zero nor a pole of f, we set w,(f) = 0.

Let r €]0, R[. Assume that f(0) # 0, co. We denote by Z(r, f) the counting function
of zeroes of f in d(0, ) i.e. if (a,,) is the finite or infinite sequence of zeroes of f in d(0, R™)
with respective multiplicity order s,,, we put Z(r, f) = Z sn(logr —log|ay|).

lan|<r

In the same way, considering the sequence (b,) of poles of f in d(0,r) with respective

multiplicity order ¢,,, we put N(r, f) = Z t,(logr —log |by)).
[bn|<r
Next, we must define the Nevanlinna function T'(r, f) as max{Z(r, f)+log(| f(0)|), N(r, f)}.

Remark: If we change the origin, the functions Z, N, T are not changed, up to an
additive constant. Consequently, if we deal with a function f admitting either a zero or a
pole at 0, we may perform a change of origin that lets us define the functions Z, N, T":
the behaviour of such functions does not depend on the origin we choose.

For each f € M(K) (resp. f € M(d(0,R7))) we set f(z) = z=“o() f and we denote
by M#(K) (resp. Mf(d(0, R7))) the set of functions h € M(K) (resp. h € M(d(0,R7)))
such that T(r,h) = o(T(r, f)) when r tends to +oo (resp. when r tends to R). The
elements of M ;(K) (resp. M;(d(0,R7))) are called small functions with regards to f.

Given f € M(K) or f € M,(d(a, R7)), it is well known that there exists at most one
value b € K such that f(x) # b Vx € K and when such a value b exists, it is then called an
exceptional value of f (or a Picard value of f). Given f € A(K)or f € A,(d(a, R7)), there
exists no b € K such that f(x) # bVz € K. Actually, we know that given f € M(K)\ K (x)
or f € My(d(a, R™)), there exists at most one value b € K such that f(x) — b has only
finitely many zeroes, and if f € A(K) \ K|[z] (resp. if f € A,(d(a, R7))) then f —b has
an infinity of zeroes, for every b € K.

In a previous work [8], the second author gave solutions to the Hayman Conjecture
[5], [6] by showing that given a meromorphic function f € M(K) or f € My (d(a, R7)),
and 7 € K(x), then f'+7f™ has infinitely many zeroes that are not zeroes of f, whenever

m > 5 and when m = 1. Here we mean to look for other results more or less linked to
these problems. We shall first examine the field of small functions.

Let us recall the following theorems [1], [2], [3], [7]:

Theorem A: Let f(x) = Zakxk € A(d(0,R7)). Letr €]0,R™[. If f has q zeroes in
k=0
d(0,7) then |f|(r) = |ag|r?. Moreover if f(0) # 0, then Z(r, f) + log|f(0)| = log|f](r).
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Theorem B: Let f € M(d(0,R™)). For all r < R, we have |f'|(r) < |f|(r) Moreover,

T(r, f) is bounded if and only if f belongs to /\/lb(d( R™)) '
Theorem C: Let f € M(K) (resp. f € M(d(0,R™))). Let P(Y) € M#(K)[Y], (resp.
P e M¢(d(0,R7))[Y]), let n = deg(P) and assume that f cmd P(f) have no zero and no

pole at 0. Then T'(r, P(f)) =nT(r, f)+o(T(r, f)) and T(r, f) T(r, f)+ O(1). Further,
for every g € M(K) (resp. g € M(d(0,R7))), we have T'(r, P(g)) < nT'(r,g)+o(T(r, f)).

By Theorem C we can easily check Theorem 1:

Theorem 1: Let f € M(K) (resp. f € M(d(a,R7)))). Then M¢(K) (resp. My(d(er, R7)))
is a field algebraically closed in M(K) (resp. in M(d(a, R7))).

Proof: Let g € M(K) (resp. g € M(d(a, _)) and assume that ¢ is algebraic on

M (K) (resp. on Mys(d(cer, R7))). Let P(Y Za] Y™ e My(K)[Y] (resp. P(Y) €

M (d(a, R7))[Y] be its minimal polynomial on ./\/lf( ) (resp. on My¢(d(a, R7)) (so
ap, =1).
Without loss of generality we may assume that a = 0 and that none of the a; have

n—1

any zero or any pole at 0. Let Q(Y) = Zaj(a:)Y”. Then T'(r,¢g") = nT(r,g) + O(1).
j=0

On the other hand, and by Theorem C, T'(r,Q(g)) < (n — 1)T'(r,g) + o(T(r, f)), hence

T(r,g) =o(T(r, f)), i.e. gliesin Ms(K) (resp. in f € M#(d(0,R7)))).

Similarly, we can show Theorem 2:

Theorem 2: The field My(K) (resp. My(d(a, R7)))) is algebraically closed in M(K)
(resp. in M(d(a, R7))).

We shall notice a property of differential equations of the form y(™) — ¢y = 0 that is
almost classical.

Theorem 3: Let ¢ € A(K) (resp. let ¢ € A(d(a, R7))) and let £ be the differential
equations y™ — iy = 0. Let E be the sub-vector space of A(K) (resp. of A(d(a, R7)))
of the solutions of €. If 1 belongs to A(K) (resp. if ¥ belongs to A,(d(a, R7))), then
E ={0}.

If ¢ belongs to Ay(d(a, R7)) and satisfies ||[U||qa,r—) > then E = {0}.

R”’
Proof: In each case, we assume that £ admits a non-identically zero solution h. Then
h(") may not be identically zero.



h(n)
Suppose first that ¢ lies in A(K). Then |¢|(r) = % is an increasing function

[A](r)

1
in 7 in ]0, +o0[, a contradiction to the inequality < — coming from Theorem B.

|hl(r)  —
Now, suppose that 1 € A, (d(a, R™)). Without loss of generality, we may assume
h(™) 1
a = 0. Similarly, [¢|(r) is unbounded in ]0, R~[, a contradiction to | |h|(|7°()r> < e again.
1

In the same way, if 1 belongs to Ay(d(0, R™)) and satisfies [|1||40,r-) > T the
) R () ) .
inequality W < e is then violated when r tends to R.

The problem of a constant Wronskian is involved in several questions.
Theorem 4: Let h, | € A(K) (resp. h, l € A(d(a, R7))) and satisfy k'l — hl' =c€ K,

h
with h non-affine. If h, 1 belong to A(K), then ¢ =0 and 7 is a constant. If ¢ # 0 and if

h, l € A(d(a, R7)), there exists ¢ € A(d(a, R™)) such that h'' = ¢h, I = ¢l. Further, if
K has a residue characteristic 0 and if h has at least 2 zeroes in d(a, R™), then ¢ =0 and

7 18 a constant.

Proof: Suppose ¢ # 0, if h(a) = 0, then I(a) # 0. Next, h and [ satisfy
h// l//
W =7
Remark first that since h is not affine, h” is not identically zero. Next, every zero of h or
[ of order > 2 is a trivial zero of 'l — hl’. So we can assume that all zeroes of h and [ are

of order 1.
12

Now suppose that a zero a of h is not a zero of h”. Since a is a zero of h of order 1, m
i
has a pole of order 1 at a and so does T hence I(a) = 0, a contradiction. Consequently,

1
each zero of h is a zero of order 1 of h and is a zero of h”. Hence, m is an element ¢ of

M(K) (resp. of M(d(cr, R7)))) that has no pole in K (resp. in d(«, R™)) and therefore ¢
lies in A(K) (resp. in A(d(a, R7))).
The same holds for [ and so, I" is of the form ¢l with ¢ € A(K) (resp. in A(d(ca, R7))).

But since % = %, we have ¢ = 1.

Now, suppose h, [ belong to A(K). Since h” is of the form ¢h with ¢ € A(K),
we have |h"|(r) = |¢|(r)|h|(r). But by Theorem B, we know that |h”|(r) < %2|h|(7°), a
contradiction when r tends to +oo. Consequently, ¢ = 0. But then h’'l — hl’ = 0 implies

h h
that the derivative of 7 is identically zero, hence 7 is constant.



Suppose now that K has a residue characteristic 0 and h has at least 2 zeroes in
d(a, R™) (taking multiplicity into account) and suppose again that ¢ # 0. We can find a
disk d(0, s) with s < R such that h has ¢ > 2 zeroes in this disk. Let ¢ €]s, R] be such that

h has g zeroes in d(0,t) and let h(x) = Zakxk. Then by Theorem A we have |h|(r) =
k=0

lay|r? ¥r € [s,t] and since K has residue characteristic 0, |h”|(r) = |a,|r?~2 Vr € [s,t] and

W) 1 i ’
) 12 Vr € [s,t]. But then, |¢|(r) = ] Vr € [s,t], although ¢ € A(d(0, R7)),

hence |¢|(r) may not be a decreasing function in r. This finishes proving that ¢ = 0 again

hence

h
and therefore 7 is a constant.

Corollary : Let h, | € A(K) with coefficients in Q, also be entire functions in €, with
h non-affine. If k'l — hl" is a constant c, then ¢ = 0.

Remarks: The entire functions in C: h(x) = coshz, [(x) = sinhz satisfy h'l — hl’ =1

-1
but are not entire functions in K: the radius of convergence of both h, [ is p»—T when K
has residue characteristic p # 0, is and is 1 when K has residue characteristic 0.

Here we can find again the following result that is known and may be proved without
ultrametric properties: Let F' be an algebraically closed field of characteristic zero and let
P, Q € F[x] be such that PQ" — P'Q is a constant ¢, with deg(P) > 2. Then ¢ = 0.

Theorem 5: Let ¢ € M(K) (resp. let v € My (d(a, R7))) and let £ be the differential
equations y" — vy = 0. Let E be the sub-vector space of A(K) (resp. of A(d(ca, R7))) of
the solutions of £. Then, the dimension of E is 0 or 1.
Proof: Let h, [ € E be non-identically zero. Then h”l — hl” = 0 and therefore h'l — hl’
is a constant c. On the other hand, since h, [ are not identically zero, neither are h”, 1",
so h, [ are not affine functions.

Suppose first that ¢ lies in M(K). If ¢ lies in A(K), then by Theorem 3, E = {0}.
Now, suppose that 9 lies in M(K) \ A(K). If ¢ # 0, by Theorem 4, we have ¢ € A(K).

h
Consequently, ¢ = 0. Therefore h'l —hl’ = 0 and hence 7 is a constant, hence E' is at most

of dimension 1.
We now assume that ¢» € M, (d(a, R7)). Without loss of generality, we may assume

a = 0. Suppose ¢ # 0. By Theorem 4, we can see again that 1 belongs to A(d(0, R7)),
h
hence to A, (d(0, R™)), hence by Theorem 3, E = {0}. Now, suppose ¢ = 0. Thus 7 is a

constant, so F is at most of dimension 1

Remark: The hypothesis ¥ unbounded in d(a, R™) is indispensable to show that the
space F is of dimension 0 or 1, as shows the example given again by the p-adic hyperbolic

functions h(z) = coshx and [(x) = sinhz. The radius of convergence of both h, [ is pp__—ll

5



when K has residue characteristic p and is 1 when K has residue characteristic 0. Of
course, both functions are solutions of y”” — y = 0 but they are bounded.

Theorem 6: Let f € M(K) be not constant, have no pole of order > 2 and don’t let it
be a linear fractional function. Then f’ has no exceptional value.

h
Proof: We can write it 7 with h, [ € A(K), having no common zero. Since f is not a

linear fractional function,at least one of h, [ is not an affine function. Since f has no pole
of order > 2, 'l — hl’ and [ have no common zero, i.e. the zeroes of f’ are exactly the
zeroes of h'l — hi’. Suppose that f’ has no zero. Then, neither has h'l — hl’ and therefore
this is a constant ¢ # 0, a contradiction by Theorem 4.

Now, suppose f’ has an exceptional value b. Then f’ — b is the derivative of f — bx
whose poles are those of f, as we just saw, f’ — b must have at least one zero.

Remark: In Theorem 6, we can’t remove the hypothesis f has no pole of order > 2, as

1

shows f(z) = ol

Similarly to a theorem in complex analysis, we can show Theorem 7:

Notation: Let f € M(K), (resp. f € M(d(0,R7))) and let P be a property satisfied
by f at certain points.

Let r €]0, R[. Assume that f(0) # 0, co. We denote by Z(r, f | P) the counting
function of zeroes of f in d(0,r) at the points where f satisfies P, i.e. if (a,,) is the finite
or infinite sequence of zeroes of f in d(0, R~) with respective multiplicity order s,,, where

P is satisfied, we put Z(r, f) = Z sn(logr —log|anl).

|an|§r,73

Theorem 7: Let f € M(K) be transcendental (resp. Let f € My (d(a, R7))). If there
exists b € K such that f — b has finitely many zeroes, then for every ¢ € K*, f' — ¢ has
infinitely many zeroes.

Proof: Without loss of generality, we may assume o = 0. Let b € K and suppose that
f — b only has a finite number of zeroes. There exist P € K[x] and | € A(K) \ K|[z] (resp.

P
and | € A,(d(0, R7))) without common zeroes, such that f = b+ T

Particularly, considering the counting function of zeroes of certain function g whenever
I(x) = 0 or I(z) # 0, we shall denote them by Z(r,g | l(x) = 0) and Z(r,g | I(z) # 0),
respectively.
P'l — Pl' — cl?
Let ¢ € K*. Remark that f/ —c = B iy Let a be a zero of [. Then
(1) wa((P'l — Pl' — cl?) = wy(l) — 1 due to the fact that w,(P) # 0. Consequently, if a
is a zero of [, it is not a zero of f’ — c. Else, if a is not a zero of [, then

(2) wa(f' —¢) = wa(P'l— Pl —cl?)




Consequently, Z(r, f' —¢) = Z(r,(P'l — Pl' — cl?) | I(z) # 0). But now, by (1) we
have
(3) Z(r,(P'l—Pl' —cl?) | l(x) =0) < Z(r,1).
and therefore by (2) and (3) we obtain
(4) Z(r,f' —c)=Z(r,(P'l—Pl' —cl?) | I(x) #0) > Z(r, P'l — Pl' — cl?) — Z(r,1)

Now, let us examine Z(r, P'l — Pl' — cl?). Let r €]0,4o00[ (resp. let r €0, R[).
Since | € A(K) is transcendental (resp. | € A,(d(0,R7))), we can check that when
r is big enough, we have |Pl'|(r) < |c|(|l|(7°))2 and |Pl|(r) < |c|(|l|(r))2, hence clearly
|P'l — Pl'|(r) < \c|(\l\(r))2 and hence |P'l — Pl' — cl?|(r) = \c|(\l\(r))2 Consequently, by
Theorem A we have Z(r, P'l — Pl' — cl?) = Z(r,1?) + O(1) = 2Z(r,1) + O(1). Therefore
by (4) we check that
(5) Z(r, f'—c) > Z(r,1).

Now, if I € A(K), since [ is transcendental, by (5), for every ¢ € IN, we have
Z(r,f' —c¢) > Z(r,l) > qlogr, when r is big enough, hence f’ — ¢ has infinitely many
zeroes in K. And similarly if [ € A, (d(0, R7)), then by (5), Z(f' — ¢) is unbounded when
r tends to R, hence f’ — ¢ has infinitely many zeroes in d(0, R™).

The following Lemma is useful to prove Theorem 5:

Lemma Let f € M(K) (resp. f € M(d(a,R7))) and let a € K (resp. a € d(a, R7)))
be a zero of J’:—; + 1 that is not a zero of f' + f2. Then a is a pole of order 1 of f and the
residue of f at a is 1.
Proof: Without loss of generality, we assume o = 0. We may find r > |a| (resp. r €
llal, R]) such that f € A(d(0,r)) There exist h, | € A(d(0,r7)) without common zeroes
such that f = %

Since a is not a zero of f’ + f2, it is a zero of [ and hence it is not a zero of h.
Consequently, h(a)l’(a) — h%(a) = 0 and hence I’(a) = h(a) because h(a) # 0. Thus, a is

a pole of order 1 of f and the residue of f at a, of course, is lh,’((z)) =1.

Theorem 8 Let f € M(K) be not constant and assume that % s not an affine function.
Letb e K*. If f' +bf? has no zero, then f must admit at least one pole a of order 1 and
the residue of f at a is equal to %.

Proof: Without loss of generality, up to a change of variable, we may clearly assume
that b = 1. Suppose that f’ 4+ f2 has no zero in K. So, all zeroes of f are of order 1 and
hence all poles of JJ:—; + 1 are of order 2. Then, for any zero of JJ:—; + 1, by the previous

Lemma, a is a pole of order 1 of f and the residue of f at a is 1. Each pole of f—; +1lisa

zero of f and hence is a pole of order 2 of f—; + 1. Consequently, —% + x only has poles of

order 1.



Suppose that —% + z is not a linear fractional function. By Theorem 6, Jf—; + 1 has

no exceptional value and therefore it admits a zero a, a contradiction. Since % is not an

affine function, we may assume —% 4+ x to be %if with e,t € K, u, s € K* and ¢ # g
Then,

1 ur + e sx?+tr—ux —e
xr — =
f sx+t sr+t

and, putting D = sx? + tx — ux — e, we have

—sD + (sx +t)(—sz +u)
D? '

f+r=

When the denominator (sxz? + x(t — u) — e)? vanishes, we notice that the numerator may
not vanish. Indeed, suppose that both have a zero at a point a. So, we have D(a) =
0 = (sa+t)(—sa + u); now, if —sa 4+ u = 0, we can derive sa +t = 0 = ua + e, hence
ut = es, a contradiction because - # ﬁ; and similarly, if ua + e = 0, we can derive the
same. And since s # 0, the zeroes of —sD + (sa + t)(—sa + u) do exist. Thus, the zeroes
of —sD + (sz +t)(—sx + u) are not zeroes of D and consequently, f' + f2 admits zeroes,

which ends the proof.

Remarks: Of course, if % is an affine function, f’ 4+ f2 has no zeroes, except if it is

identically zero. And if it is not identically zero, the residue at the pole is not 1 in the
general case.

On a p-adic field, the Hayman Conjecture was solved for m > 5. Particularly it was
shown that f’ + f™ admits zeroes that are not zeroes of f for any integer m > 5 and for
m = 1. Moreover, it was shown that for m = 4, f' + f* admits at least one zero that is
not a zero of f [8]. Here we can see that f’ + f2 admits at least one zero provided % is

neither a constant nor an affine function and f has no pole of order 1 with a residue equal
to 1. Thus, if f € M(K) has no pole of order 1 with a residue equal to 1 and if % is not
an affine function, we can say that f’ + f™ admits at least one zero for every m € IN*
except maybe m = 3.

In the field € the classical example of f(x) = tan(z) shows that a meromorphic
function f may be so that f/ 4+ f2? admits no zeroes. Precisely, each pole is of order 1 and
the residue at each pole is 1. Consequently, in the field K we can ask whether there exist
meromorphic functions that only have poles of order 1, with residue 1 at each pole, such
that f' 4+ f2 have no zero.
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