Exceptional values of p-adic analytic functions and derivatives by Alain Escassut and Jacqueline Ojeda

Abstract

Let K be an algebraically closed field of characteristic 0 , complete with respect to an ultrametric absolute value $|$.$| . Given a meromorphic function f$ in K (resp. inside an "open" disk D) we check that the field of small meromorphic functions in K (resp. inside D) is algebraically closed in the whole field of meromorphic functions in K (resp. inside D). If two analytic functions h, l in K, other than affine functions, satisfy $h^{\prime} l-h l^{\prime}=c \in K$, then $c=0$. The space of the entire functions solutions of the equation $y^{\prime \prime}=\phi y$, with ϕ a meromorphic function in K or an unbounded meromorphic function in D, is at most of dimension 1. If a meromorphic function in K has no multiple pole, then f^{\prime} has no exceptional value. Let f be a meromorphic function having finitely many zeroes. Then for every $c \neq 0, f^{\prime}-c$ has an infinity of zeroes. If $\frac{1}{f}$ is not a constant or an affine function and if f has no simple pole with a residue equal to 1 , then $f^{\prime}+f^{2}$ admits at least one zero. When the field K has residue characteristic zero, then we can extend to analytic functions in D some results showed for entire functions.

2000 Mathematics subject classification: Primary 12J25 Secondary 46S10
Notation and definitions: Let K be an algebraically closed field of characteristic 0 , complete with respect to an ultrametric absolute value $|$.$| . We set K^{*}=K \backslash\{0\}$. Given $\alpha \in K$ and $R \in \mathbb{R}_{+}^{*}$, we denote by $d(\alpha, R)$ the disk $\{x \in K||x-\alpha| \leq R\}$ and by $d\left(\alpha, R^{-}\right)$the disk $\{x \in K||x-\alpha|<R\}$, by $\mathcal{A}(K)$ the K-algebra of analytic functions in K (i.e. the set of power series with an infinite radius of convergence) and by $\mathcal{A}\left(d\left(\alpha, R^{-}\right)\right)$ the K-algebra of analytic functions in $d\left(\alpha, R^{-}\right)$(i.e. the set of power series in $(x-\alpha)$ with a radius of convergence $r \geq R$).

We denote by $\mathcal{M}(K)$ the field of meromorphic functions in K (i.e. the field of fractions of $\mathcal{A}(K))$ and by $\mathcal{M}\left(d\left(\alpha, R^{-}\right)\right)$the field of meromorphic functions in $d\left(a, R^{-}\right)$(i.e. the field of fractions of $\mathcal{A}\left(d\left(\alpha, R^{-}\right)\right)$).

Similarly, we denote by $\mathcal{A}_{b}\left(d\left(\alpha, R^{-}\right)\right)$the K-algebra of bounded analytic functions in $d\left(\alpha, R^{-}\right)$and by $\mathcal{M}_{b}\left(d\left(\alpha, R^{-}\right)\right)$the field of fractions of $\mathcal{A}_{b}\left(d\left(\alpha, R^{-}\right)\right)$. On $\mathcal{A}_{b}\left(d\left(\alpha, R^{-}\right)\right)$ we denote by $\|.\|_{d\left(\alpha, R^{-}\right)}$the norm of uniform convergence on $d\left(\alpha, R^{-}\right)$.

Next we set $\mathcal{A}_{u}\left(d\left(\alpha, R^{-}\right)\right)=\mathcal{A}\left(d\left(\alpha, R^{-}\right)\right) \backslash \mathcal{A}_{b}\left(d\left(\alpha, R^{-}\right)\right)$and
$\mathcal{M}_{u}\left(d\left(\alpha, R^{-}\right)\right)=\mathcal{M}\left(d\left(\alpha, R^{-}\right)\right) \backslash \mathcal{M}_{b}\left(d\left(\alpha, R^{-}\right)\right)$.
Given $f \in \mathcal{A}\left(d\left(0, R^{-}\right)\right)=\sum_{n=0}^{\infty} a_{n} x^{n}$, it is well known that $|f(x)|$ has a limit denoted by $|f|(r)$ when $|x|$ tends to r, while being different from $r[4]$. Then $|f|(r)=\sup _{n \in \mathbb{N}}\left|a_{n}\right| r^{n}$. This is an absolute value on $\mathcal{A}\left(d\left(0, R^{-}\right)\right)$that expands to $\mathcal{M}\left(d\left(0, R^{-}\right)\right)$.

We call affine function a function h of the form $h(x)=a x+b, a, b \in K$ and linear fractional function a function h of the form $h(x)=\frac{a x+b}{c x+d}, a, b, c, d \in K$.

Let us recall some notation concerning the ultrametric Nevanlinna Theory. Let $f \in$ $\mathcal{M}\left(d\left(0, R^{-}\right)\right.$.

Let $a \in d\left(0, R^{-}\right)$. If a is zero of order q of f, we set $\omega_{a}(f)=q$. If a is pole of order q of f, we set $\omega_{a}(f)=-q$. And if a is neither a zero nor a pole of f, we set $\omega_{a}(f)=0$.

Let $r \in] 0, R[$. Assume that $f(0) \neq 0, \infty$. We denote by $Z(r, f)$ the counting function of zeroes of f in $d(0, r)$ i.e. if $\left(a_{n}\right)$ is the finite or infinite sequence of zeroes of f in $d\left(0, R^{-}\right)$ with respective multiplicity order s_{n}, we put $Z(r, f)=\sum_{\left|a_{n}\right| \leq r} s_{n}\left(\log r-\log \left|a_{n}\right|\right)$.

In the same way, considering the sequence $\left(b_{n}\right)$ of poles of f in $d(0, r)$ with respective multiplicity order t_{n}, we put $N(r, f)=\sum_{\left|b_{n}\right| \leq r} t_{n}\left(\log r-\log \left|b_{n}\right|\right)$.

Next, we must define the Nevanlinna function $T(r, f)$ as $\max \{Z(r, f)+\log (|f(0)|), N(r, f)\}$.

Remark: If we change the origin, the functions Z, N, T are not changed, up to an additive constant. Consequently, if we deal with a function f admitting either a zero or a pole at 0 , we may perform a change of origin that lets us define the functions Z, N, T : the behaviour of such functions does not depend on the origin we choose.

For each $f \in \mathcal{M}(K)$ (resp. $f \in \mathcal{M}\left(d\left(0, R^{-}\right)\right)$) we set $\widetilde{f}(x)=x^{-\omega_{0}(f)} f$ and we denote by $\mathcal{M}_{f}(K)\left(\right.$ resp. $\mathcal{M}_{f}\left(d\left(0, R^{-}\right)\right)$) the set of functions $h \in \mathcal{M}(K)\left(\right.$ resp. $\left.h \in \mathcal{M}\left(d\left(0, R^{-}\right)\right)\right)$ such that $T(r, \widetilde{h})=o(T(r, \widetilde{f}))$ when r tends to $+\infty$ (resp. when r tends to R). The elements of $\mathcal{M}_{f}(K)\left(\right.$ resp. $\mathcal{M}_{f}\left(d\left(0, R^{-}\right)\right)$) are called small functions with regards to f.

Given $f \in \mathcal{M}(K)$ or $f \in \mathcal{M}_{u}\left(d\left(\alpha, R^{-}\right)\right)$, it is well known that there exists at most one value $b \in K$ such that $f(x) \neq b \forall x \in K$ and when such a value b exists, it is then called an exceptional value of f (or a Picard value of f). Given $f \in \mathcal{A}(K)$ or $f \in \mathcal{A}_{u}\left(d\left(\alpha, R^{-}\right)\right.$), there exists no $b \in K$ such that $f(x) \neq b \forall x \in K$. Actually, we know that given $f \in \mathcal{M}(K) \backslash K(x)$ or $f \in \mathcal{M}_{u}\left(d\left(\alpha, R^{-}\right)\right)$, there exists at most one value $b \in K$ such that $f(x)-b$ has only finitely many zeroes, and if $f \in \mathcal{A}(K) \backslash K[x]$ (resp. if $f \in \mathcal{A}_{u}\left(d\left(\alpha, R^{-}\right)\right)$) then $f-b$ has an infinity of zeroes, for every $b \in K$.

In a previous work [8], the second author gave solutions to the Hayman Conjecture [5], [6] by showing that given a meromorphic function $f \in \mathcal{M}(K)$ or $f \in \mathcal{M}_{u}\left(d\left(\alpha, R^{-}\right)\right)$, and $\tau \in K(x)$, then $f^{\prime}+\tau f^{m}$ has infinitely many zeroes that are not zeroes of f, whenever $m \geq 5$ and when $m=1$. Here we mean to look for other results more or less linked to these problems. We shall first examine the field of small functions.

Let us recall the following theorems [1], [2], [3], [7]:
Theorem A: Let $f(x)=\sum_{k=0}^{\infty} a_{k} x^{k} \in \mathcal{A}\left(d\left(0, R^{-}\right)\right)$. Let $\left.r \in\right] 0, R^{-}$. If f has q zeroes in $d(0, r)$ then $|f|(r)=\left|a_{q}\right| r^{q}$. Moreover if $f(0) \neq 0$, then $\left.Z(r, f)+\log |f(0)|=\log \mid f\right](r)$.

Theorem B: Let $f \in \mathcal{M}\left(d\left(0, R^{-}\right)\right)$. For all $r<R$, we have $\left|f^{\prime}\right|(r) \leq \frac{|f|(r)}{r}$. Moreover, $T(r, f)$ is bounded if and only if f belongs to $\mathcal{M}_{b}\left(d\left(0, R^{-}\right)\right)$
Theorem C: Let $f \in \mathcal{M}(K)$ (resp. $f \in \mathcal{M}\left(d\left(0, R^{-}\right)\right.$). Let $P(Y) \in \mathcal{M}_{f}(K)[Y]$, (resp. $\left.P \in \mathcal{M}_{f}\left(d\left(0, R^{-}\right)\right)[Y]\right)$, let $n=\operatorname{deg}(P)$ and assume that f and $P(f)$ have no zero and no pole at 0. Then $T(r, P(f))=n T(r, f)+o(T(r, f))$ and $T\left(r, \frac{1}{f}\right)=T(r, f)+O(1)$. Further, for every $g \in \mathcal{M}(K)$ (resp. $g \in \mathcal{M}\left(d\left(0, R^{-}\right)\right)$), we have $T(r, P(g)) \leq n T(r, g)+o(T(r, f))$.

By Theorem C we can easily check Theorem 1:
Theorem 1: Let $f \in \mathcal{M}(K)\left(\right.$ resp. $\left.f \in \mathcal{M}\left(d\left(\alpha, R^{-}\right)\right)\right)$). Then $\mathcal{M}_{f}(K)\left(\operatorname{resp} . \mathcal{M}_{f}\left(d\left(\alpha, R^{-}\right)\right)\right)$ is a field algebraically closed in $\mathcal{M}(K)$ (resp. in $\mathcal{M}\left(d\left(\alpha, R^{-}\right)\right)$).

Proof: Let $g \in \mathcal{M}(K)$ (resp. $g \in \mathcal{M}\left(d\left(\alpha, R^{-}\right)\right.$) and assume that g is algebraic on $\mathcal{M}_{f}(K)$ (resp. on $\mathcal{M}_{f}\left(d\left(\alpha, R^{-}\right)\right)$). Let $P(Y)=\sum_{j=0}^{n} a_{j}(x) Y^{n} \in \mathcal{M}_{f}(K)[Y]$ (resp. $P(Y) \in$ $\mathcal{M}_{f}\left(d\left(\alpha, R^{-}\right)\right)[Y]$ be its minimal polynomial on $\mathcal{M}_{f}(K)$ (resp. on $\mathcal{M}_{f}\left(d\left(\alpha, R^{-}\right)\right.$) (so $a_{n}=1$).

Without loss of generality we may assume that $\alpha=0$ and that none of the a_{j} have any zero or any pole at 0 . Let $Q(Y)=\sum_{j=0}^{n-1} a_{j}(x) Y^{n}$. Then $T\left(r, g^{n}\right)=n T(r, g)+O(1)$. On the other hand, and by Theorem C, $T(r, Q(g)) \leq(n-1) T(r, g)+o(T(r, f))$, hence $T(r, g)=o(T(r, f))$, i.e. g lies in $\mathcal{M}_{f}(K)\left(\right.$ resp. in $\left.f \in \mathcal{M}_{f}\left(d\left(0, R^{-}\right)\right)\right)$).

Similarly, we can show Theorem 2:
Theorem 2: The field $\mathcal{M}_{b}(K)$ (resp. $\left.\mathcal{M}_{b}\left(d\left(\alpha, R^{-}\right)\right)\right)$) is algebraically closed in $\mathcal{M}(K)$ (resp. in $\left.\mathcal{M}\left(d\left(\alpha, R^{-}\right)\right)\right)$.

We shall notice a property of differential equations of the form $y^{(n)}-\psi y=0$ that is almost classical.

Theorem 3: Let $\psi \in \mathcal{A}(K)$ (resp. let $\psi \in \mathcal{A}\left(d\left(\alpha, R^{-}\right)\right)$) and let \mathcal{E} be the differential equations $y^{(n)}-\psi y=0$. Let E be the sub-vector space of $\mathcal{A}(K)$ (resp. of $\mathcal{A}\left(d\left(\alpha, R^{-}\right)\right)$) of the solutions of \mathcal{E}. If ψ belongs to $\mathcal{A}(K)$ (resp. if ψ belongs to $\mathcal{A}_{u}\left(d\left(\alpha, R^{-}\right)\right)$), then $E=\{0\}$.

If ψ belongs to $\mathcal{A}_{b}\left(d\left(\alpha, R^{-}\right)\right)$and satisfies $\|\psi\|_{d\left(\alpha, R^{-}\right)}>\frac{1}{R^{n}}$, then $E=\{0\}$.
Proof: In each case, we assume that \mathcal{E} admits a non-identically zero solution h. Then $h^{(n)}$ may not be identically zero.

Suppose first that ψ lies in $\mathcal{A}(K)$. Then $|\psi|(r)=\frac{\left|h^{(n)}\right|(r)}{|h|(r)}$ is an increasing function in r in $] 0,+\infty\left[\right.$, a contradiction to the inequality $\frac{\left|h^{(n)}\right|(r)}{|h|(r)} \leq \frac{1}{r^{n}}$ coming from Theorem B.

Now, suppose that $\psi \in \mathcal{A}_{u}\left(d\left(\alpha, R^{-}\right)\right)$. Without loss of generality, we may assume $\alpha=0$. Similarly, $|\psi|(r)$ is unbounded in $] 0, R^{-}\left[\right.$, a contradiction to $\frac{\left|h^{(n)}\right|(r)}{|h|(r)} \leq \frac{1}{r^{n}}$ again.

In the same way, if ψ belongs to $\mathcal{A}_{b}\left(d\left(0, R^{-}\right)\right)$and satisfies $\|\psi\|_{d\left(0, R^{-}\right)}>\frac{1}{R^{n}}$, the inequality $\frac{\left|h^{(n)}\right|(r)}{|h|(r)} \leq \frac{1}{r^{n}}$ is then violated when r tends to R.

The problem of a constant Wronskian is involved in several questions.
Theorem 4: Let $h, l \in \mathcal{A}(K)$ (resp. $h, l \in \mathcal{A}\left(d\left(\alpha, R^{-}\right)\right)$) and satisfy $h^{\prime} l-h l^{\prime}=c \in K$, with h non-affine. If h, l belong to $\mathcal{A}(K)$, then $c=0$ and $\frac{h}{l}$ is a constant. If $c \neq 0$ and if $h, l \in \mathcal{A}\left(d\left(\alpha, R^{-}\right)\right)$, there exists $\phi \in \mathcal{A}\left(d\left(\alpha, R^{-}\right)\right)$such that $h^{\prime \prime}=\phi h, l^{\prime \prime}=\phi l$. Further, if K has a residue characteristic 0 and if h has at least 2 zeroes in $d\left(\alpha, R^{-}\right)$, then $c=0$ and $\frac{h}{l}$ is a constant.
Proof: Suppose $c \neq 0$, if $h(a)=0$, then $l(a) \neq 0$. Next, h and l satisfy
(1) $\frac{h^{\prime \prime}}{h}=\frac{l^{\prime \prime}}{l}$.

Remark first that since h is not affine, $h^{\prime \prime}$ is not identically zero. Next, every zero of h or l of order ≥ 2 is a trivial zero of $h^{\prime} l-h l^{\prime}$. So we can assume that all zeroes of h and l are of order 1 .

Now suppose that a zero a of h is not a zero of $h^{\prime \prime}$. Since a is a zero of h of order $1, \frac{h^{\prime \prime}}{h}$ has a pole of order 1 at a and so does $\frac{l^{\prime \prime}}{l}$, hence $l(a)=0$, a contradiction. Consequently, each zero of h is a zero of order 1 of h and is a zero of $h^{\prime \prime}$. Hence, $\frac{h^{\prime \prime}}{h}$ is an element ϕ of $\mathcal{M}(K)\left(\right.$ resp. of $\left.\mathcal{M}\left(d\left(\alpha, R^{-}\right)\right)\right)$that has no pole in K (resp. in $\left.d\left(\alpha, R^{-}\right)\right)$and therefore ϕ lies in $\mathcal{A}(K)$ (resp. in $\mathcal{A}\left(d\left(\alpha, R^{-}\right)\right)$).

The same holds for l and so, $l^{\prime \prime}$ is of the form ψl with $\psi \in \mathcal{A}(K)$ (resp. in $\left.\mathcal{A}\left(d\left(\alpha, R^{-}\right)\right)\right)$. But since $\frac{h^{\prime \prime}}{h}=\frac{l^{\prime \prime}}{l}$, we have $\phi=\psi$.

Now, suppose h, l belong to $\mathcal{A}(K)$. Since $h^{\prime \prime}$ is of the form ϕh with $\phi \in \mathcal{A}(K)$, we have $\left|h^{\prime \prime}\right|(r)=|\phi|(r)|h|(r)$. But by Theorem B, we know that $\left|h^{\prime \prime}\right|(r) \leq \frac{1}{r^{2}}|h|(r)$, a contradiction when r tends to $+\infty$. Consequently, $c=0$. But then $h^{\prime} l-h l^{\prime}=0$ implies that the derivative of $\frac{h}{l}$ is identically zero, hence $\frac{h}{l}$ is constant.

Suppose now that K has a residue characteristic 0 and h has at least 2 zeroes in $d\left(\alpha, R^{-}\right)$(taking multiplicity into account) and suppose again that $c \neq 0$. We can find a disk $d(0, s)$ with $s<R$ such that h has $q \geq 2$ zeroes in this disk. Let $t \in] s, R[$ be such that h has q zeroes in $d(0, t)$ and let $h(x)=\sum_{k=0}^{\infty} a_{k} x^{k}$. Then by Theorem A we have $|h|(r)=$ $\left|a_{q}\right| r^{q} \forall r \in[s, t]$ and since K has residue characteristic $0,\left|h^{\prime \prime}\right|(r)=\left|a_{q}\right| r^{q-2} \forall r \in[s, t]$ and hence $\frac{\left|h^{\prime \prime}\right|(r)}{|h|(r)}=\frac{1}{r^{2}} \forall r \in[s, t]$. But then, $|\phi|(r)=\frac{1}{r^{2}} \forall r \in[s, t]$, although $\phi \in \mathcal{A}\left(d\left(0, R^{-}\right)\right)$, hence $|\phi|(r)$ may not be a decreasing function in r. This finishes proving that $c=0$ again and therefore $\frac{h}{l}$ is a constant.

Corollary : Let $h, l \in \mathcal{A}(K)$ with coefficients in \mathbb{Q}, also be entire functions in \mathbb{C}, with h non-affine. If $h^{\prime} l-h l^{\prime}$ is a constant c, then $c=0$.

Remarks: The entire functions in $\mathbb{C}: h(x)=\cosh x, l(x)=\sinh x$ satisfy $h^{\prime} l-h l^{\prime}=1$ but are not entire functions in K : the radius of convergence of both h, l is $p^{\frac{-1}{p-1}}$ when K has residue characteristic $p \neq 0$, is and is 1 when K has residue characteristic 0 .

Here we can find again the following result that is known and may be proved without ultrametric properties: Let F be an algebraically closed field of characteristic zero and let $P, Q \in F[x]$ be such that $P Q^{\prime}-P^{\prime} Q$ is a constant c, with $\operatorname{deg}(P) \geq 2$. Then $c=0$.

Theorem 5: Let $\psi \in \mathcal{M}(K)$ (resp. let $\psi \in \mathcal{M}_{u}\left(d\left(\alpha, R^{-}\right)\right.$)) and let \mathcal{E} be the differential equations $y^{\prime \prime}-\psi y=0$. Let E be the sub-vector space of $\mathcal{A}(K)$ (resp. of $\mathcal{A}\left(d\left(\alpha, R^{-}\right)\right)$) of the solutions of \mathcal{E}. Then, the dimension of E is 0 or 1 .
Proof: Let $h, l \in E$ be non-identically zero. Then $h^{\prime \prime} l-h l^{\prime \prime}=0$ and therefore $h^{\prime} l-h l^{\prime}$ is a constant c. On the other hand, since h, l are not identically zero, neither are $h^{\prime \prime}, l^{\prime \prime}$, so h, l are not affine functions.

Suppose first that ψ lies in $\mathcal{M}(K)$. If ψ lies in $\mathcal{A}(K)$, then by Theorem 3, $E=\{0\}$. Now, suppose that ψ lies in $\mathcal{M}(K) \backslash \mathcal{A}(K)$. If $c \neq 0$, by Theorem 4, we have $\psi \in \mathcal{A}(K)$. Consequently, $c=0$. Therefore $h^{\prime} l-h l^{\prime}=0$ and hence $\frac{h}{l}$ is a constant, hence E is at most of dimension 1 .

We now assume that $\psi \in \mathcal{M}_{u}\left(d\left(\alpha, R^{-}\right)\right)$. Without loss of generality, we may assume $\alpha=0$. Suppose $c \neq 0$. By Theorem 4, we can see again that ψ belongs to $\mathcal{A}\left(d\left(0, R^{-}\right)\right)$, hence to $\mathcal{A}_{u}\left(d\left(0, R^{-}\right)\right)$, hence by Theorem $3, E=\{0\}$. Now, suppose $c=0$. Thus $\frac{h}{l}$ is a constant, so E is at most of dimension 1

Remark: The hypothesis ψ unbounded in $d\left(\alpha, R^{-}\right)$is indispensable to show that the space E is of dimension 0 or 1 , as shows the example given again by the p-adic hyperbolic functions $h(x)=\cosh x$ and $l(x)=\sinh x$. The radius of convergence of both h, l is $p^{\frac{-1}{p-1}}$
when K has residue characteristic p and is 1 when K has residue characteristic 0 . Of course, both functions are solutions of $y^{\prime \prime}-y=0$ but they are bounded.

Theorem 6: Let $f \in \mathcal{M}(K)$ be not constant, have no pole of order ≥ 2 and don't let it be a linear fractional function. Then f^{\prime} has no exceptional value.
Proof: We can write it $\frac{h}{l}$ with $h, l \in \mathcal{A}(K)$, having no common zero. Since f is not a linear fractional function, at least one of h, l is not an affine function. Since f has no pole of order $\geq 2, h^{\prime} l-h l^{\prime}$ and l have no common zero, i.e. the zeroes of f^{\prime} are exactly the zeroes of $h^{\prime} l-h l^{\prime}$. Suppose that f^{\prime} has no zero. Then, neither has $h^{\prime} l-h l^{\prime}$ and therefore this is a constant $c \neq 0$, a contradiction by Theorem 4.

Now, suppose f^{\prime} has an exceptional value b. Then $f^{\prime}-b$ is the derivative of $f-b x$ whose poles are those of f, as we just saw, $f^{\prime}-b$ must have at least one zero.

Remark: In Theorem 6, we can't remove the hypothesis f has no pole of order ≥ 2, as shows $f(x)=\frac{1}{x^{2}}$.

Similarly to a theorem in complex analysis, we can show Theorem 7:
Notation: Let $f \in \mathcal{M}(K)$, (resp. $f \in \mathcal{M}\left(d\left(0, R^{-}\right)\right)$) and let \mathcal{P} be a property satisfied by f at certain points.

Let $r \in] 0, R[$. Assume that $f(0) \neq 0, \infty$. We denote by $Z(r, f \mid \mathcal{P})$ the counting function of zeroes of f in $d(0, r)$ at the points where f satisfies \mathcal{P}, i.e. if $\left(a_{n}\right)$ is the finite or infinite sequence of zeroes of f in $d\left(0, R^{-}\right)$with respective multiplicity order s_{n}, where \mathcal{P} is satisfied, we put $Z(r, f)=\sum_{\left|a_{n}\right| \leq r, \mathcal{P}} s_{n}\left(\log r-\log \left|a_{n}\right|\right)$.

Theorem 7: Let $f \in \mathcal{M}(K)$ be transcendental (resp. Let $f \in \mathcal{M}_{u}\left(d\left(\alpha, R^{-}\right)\right)$). If there exists $b \in K$ such that $f-b$ has finitely many zeroes, then for every $c \in K^{*}, f^{\prime}-c$ has infinitely many zeroes.
Proof: Without loss of generality, we may assume $\alpha=0$. Let $b \in K$ and suppose that $f-b$ only has a finite number of zeroes. There exist $P \in K[x]$ and $l \in \mathcal{A}(K) \backslash K[x]$ (resp. and $\left.l \in \mathcal{A}_{u}\left(d\left(0, R^{-}\right)\right)\right)$without common zeroes, such that $f=b+\frac{P}{l}$.

Particularly, considering the counting function of zeroes of certain function g whenever $l(x)=0$ or $l(x) \neq 0$, we shall denote them by $Z(r, g \mid l(x)=0)$ and $Z(r, g \mid l(x) \neq 0)$, respectively.

Let $c \in K^{*}$. Remark that $f^{\prime}-c=\frac{P^{\prime} l-P l^{\prime}-c l^{2}}{l^{2}}$. Let a be a zero of l. Then
(1) $\omega_{a}\left(\left(P^{\prime} l-P l^{\prime}-c l^{2}\right)=\omega_{a}(l)-1\right.$ due to the fact that $\omega_{a}(P) \neq 0$. Consequently, if a is a zero of l, it is not a zero of $f^{\prime}-c$. Else, if a is not a zero of l, then
(2) $\omega_{a}\left(f^{\prime}-c\right)=\omega_{a}\left(P^{\prime} l-P l^{\prime}-c l^{2}\right)$

Consequently, $Z\left(r, f^{\prime}-c\right)=Z\left(r,\left(P^{\prime} l-P l^{\prime}-c l^{2}\right) \mid l(x) \neq 0\right)$. But now, by (1) we have
(3) $Z\left(r,\left(P^{\prime} l-P l^{\prime}-c l^{2}\right) \mid l(x)=0\right)<Z(r, l)$.
and therefore by (2) and (3) we obtain
$Z\left(r, f^{\prime}-c\right)=Z\left(r,\left(P^{\prime} l-P l^{\prime}-c l^{2}\right) \mid l(x) \neq 0\right)>Z\left(r, P^{\prime} l-P l^{\prime}-c l^{2}\right)-Z(r, l)$
Now, let us examine $Z\left(r, P^{\prime} l-P l^{\prime}-c l^{2}\right)$. Let $\left.r \in\right] 0,+\infty[$ (resp. let $r \in] 0, R[$). Since $l \in \mathcal{A}(K)$ is transcendental (resp. $l \in \mathcal{A}_{u}\left(d\left(0, R^{-}\right)\right)$), we can check that when r is big enough, we have $\left|P l^{\prime}\right|(r)<|c|(|l|(r))^{2}$ and $|P l|(r)<|c|(|l|(r))^{2}$, hence clearly $\left|P^{\prime} l-P l^{\prime}\right|(r)<|c|(|l|(r))^{2}$ and hence $\left|P^{\prime} l-P l^{\prime}-c l^{2}\right|(r)=|c|(|l|(r))^{2}$. Consequently, by Theorem A we have $Z\left(r, P^{\prime} l-P l^{\prime}-c l^{2}\right)=Z\left(r, l^{2}\right)+O(1)=2 Z(r, l)+O(1)$. Therefore by (4) we check that
(5) $Z\left(r, f^{\prime}-c\right)>Z(r, l)$.

Now, if $l \in \mathcal{A}(K)$, since l is transcendental, by (5), for every $q \in \mathbb{N}$, we have $Z\left(r, f^{\prime}-c\right)>Z(r, l)>q \log r$, when r is big enough, hence $f^{\prime}-c$ has infinitely many zeroes in K. And similarly if $l \in \mathcal{A}_{u}\left(d\left(0, R^{-}\right)\right.$), then by (5), $Z\left(f^{\prime}-c\right)$ is unbounded when r tends to R, hence $f^{\prime}-c$ has infinitely many zeroes in $d\left(0, R^{-}\right)$.

The following Lemma is useful to prove Theorem 5:
Lemma Let $f \in \mathcal{M}(K)$ (resp. $f \in \mathcal{M}\left(d\left(\alpha, R^{-}\right)\right)$) and let $a \in K$ (resp. $\left.a \in d\left(\alpha, R^{-}\right)\right)$) be a zero of $\frac{f^{\prime}}{f^{2}}+1$ that is not a zero of $f^{\prime}+f^{2}$. Then a is a pole of order 1 of f and the residue of f at a is 1 .
Proof: Without loss of generality, we assume $\alpha=0$. We may find $r>|a|$ (resp. $r \in$ $]|a|, R[)$ such that $f \in \mathcal{A}\left(d\left(0, r^{-}\right)\right)$There exist $h, l \in \mathcal{A}\left(d\left(0, r^{-}\right)\right)$without common zeroes such that $f=\frac{h}{l}$.

Since a is not a zero of $f^{\prime}+f^{2}$, it is a zero of l and hence it is not a zero of h. Consequently, $h(a) l^{\prime}(a)-h^{2}(a)=0$ and hence $l^{\prime}(a)=h(a)$ because $h(a) \neq 0$. Thus, a is a pole of order 1 of f and the residue of f at a, of course, is $\frac{h(a)}{l^{\prime}(a)}=1$.

Theorem 8 Let $f \in \mathcal{M}(K)$ be not constant and assume that $\frac{1}{f}$ is not an affine function. Let $b \in K^{*}$. If $f^{\prime}+b f^{2}$ has no zero, then f must admit at least one pole a of order 1 and the residue of f at a is equal to $\frac{1}{b}$.
Proof: Without loss of generality, up to a change of variable, we may clearly assume that $b=1$. Suppose that $f^{\prime}+f^{2}$ has no zero in K. So, all zeroes of f are of order 1 and hence all poles of $\frac{f^{\prime}}{f^{2}}+1$ are of order 2 . Then, for any zero of $\frac{f^{\prime}}{f^{2}}+1$, by the previous Lemma, a is a pole of order 1 of f and the residue of f at a is 1 . Each pole of $\frac{f^{\prime}}{f^{2}}+1$ is a zero of f and hence is a pole of order 2 of $\frac{f^{\prime}}{f^{2}}+1$. Consequently, $-\frac{1}{f}+x$ only has poles of order 1.

Suppose that $-\frac{1}{f}+x$ is not a linear fractional function. By Theorem 6, $\frac{f^{\prime}}{f^{2}}+1$ has no exceptional value and therefore it admits a zero a, a contradiction. Since $\frac{1}{f}$ is not an affine function, we may assume $-\frac{1}{f}+x$ to be $\frac{u x+e}{s x+t}$ with $e, t \in K, u, s \in K^{*}$ and $\frac{e}{u} \neq \frac{t}{s}$.

Then,

$$
\frac{1}{f}=x-\frac{u x+e}{s x+t}=\frac{s x^{2}+t x-u x-e}{s x+t}
$$

and, putting $D=s x^{2}+t x-u x-e$, we have

$$
f^{\prime}+f^{2}=\frac{-s D+(s x+t)(-s x+u)}{D^{2}}
$$

When the denominator $\left(s x^{2}+x(t-u)-e\right)^{2}$ vanishes, we notice that the numerator may not vanish. Indeed, suppose that both have a zero at a point α. So, we have $D(\alpha)=$ $0=(s \alpha+t)(-s \alpha+u)$; now, if $-s \alpha+u=0$, we can derive $s \alpha+t=0=u \alpha+e$, hence $u t=e s$, a contradiction because $\frac{e}{u} \neq \frac{t}{s}$; and similarly, if $u \alpha+e=0$, we can derive the same. And since $s \neq 0$, the zeroes of $-s D+(s \alpha+t)(-s \alpha+u)$ do exist. Thus, the zeroes of $-s D+(s x+t)(-s x+u)$ are not zeroes of D and consequently, $f^{\prime}+f^{2}$ admits zeroes, which ends the proof.

Remarks: Of course, if $\frac{1}{f}$ is an affine function, $f^{\prime}+f^{2}$ has no zeroes, except if it is identically zero. And if it is not identically zero, the residue at the pole is not 1 in the general case.

On a p-adic field, the Hayman Conjecture was solved for $m \geq 5$. Particularly it was shown that $f^{\prime}+f^{m}$ admits zeroes that are not zeroes of f for any integer $m \geq 5$ and for $m=1$. Moreover, it was shown that for $m=4, f^{\prime}+f^{4}$ admits at least one zero that is not a zero of $f[8]$. Here we can see that $f^{\prime}+f^{2}$ admits at least one zero provided $\frac{1}{f}$ is neither a constant nor an affine function and f has no pole of order 1 with a residue equal to 1 . Thus, if $f \in \mathcal{M}(K)$ has no pole of order 1 with a residue equal to 1 and if $\frac{1}{f}$ is not an affine function, we can say that $f^{\prime}+f^{m}$ admits at least one zero for every $m \in \mathbb{N}^{*}$ except maybe $m=3$.

In the field \mathbb{C} the classical example of $f(x)=\tan (x)$ shows that a meromorphic function f may be so that $f^{\prime}+f^{2}$ admits no zeroes. Precisely, each pole is of order 1 and the residue at each pole is 1 . Consequently, in the field K we can ask whether there exist meromorphic functions that only have poles of order 1, with residue 1 at each pole, such that $f^{\prime}+f^{2}$ have no zero.

References

[1] Amice Y. Les nombres p-adiques, Presses Universitaires de France, Collection SUP, "Le mathématicien", 14 (1975).
[2] Boutabaa A. Théorie de Nevanlinna p-adique. Manuscripta Mathematica 67, p. 251-269, (1990).
[3] Boutabaa, A. and Escassut, A. Urs and Ursim for p-adic meromorphic functions inside a p-adic disk. Proceedings of the Edingburgh Mathematical Society, 44, 485-504 (2001).
[4] Escassut, A. Analytic Elements in p-adic Analysis. World Scientific Publishing Co. Pte. Ltd. (Singapore, 1995).
[5] Hayman W. K., Picard values of meromorphic functions and their derivatives, Ann. of Math. 70, 9 - 42 (1959).
[6] Hayman, W. K. Research Problems in Function Theory, The Athlone Press, London. (1967).
[7] Hu, P.C. and Yang, C.C. Meromorphic Functions over non-Archimedean Fields. Kluwer Academic Publishers, (2000).
[8] Ojeda, J. Hayman's conjecture in a p-adic field. To appear in the Taiwanese Journal of Mathematics.

Alain Escassut
Laboratoire de Mathématiques
UMR 6620
Université Blaise Pascal
Les Cézeaux
63177 AUBIERE CEDEX
FRANCE
Alain.Escassut@math.univ-bpclermont.fr

Jacqueline Ojeda
Laboratoire de Mathématiques
UMR 6620
Université Blaise Pascal
Les Cézeaux
63177 AUBIERE CEDEX
FRANCE
Jacqueline.Ojeda@math.univ-bpclermont.fr

