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Abstract

LetX1, ..., XN , Xi ∈ RD be an uniform drawn on a compact d−dimensional
manifold S with d ≤ D. Here is suggested a new way to estimate both
S and d. The method is based on the computation of a set of simplicial
complexes (one for each dimension d ≤ D) and on an inductive criterion
to select the “good” one. Each computed complex is a subcomplex of
Delaunay’s complex computed using k−nearest neighbors restriction and
local PCA. A proposition for the k value is given in the first part and the
algorithm is detailed in the second part.

1 Introduction

1.1 Intrinsic dimension estimation

Dimension estimation is a challenging problem that has many statistical appli-
cations in data analysis, the most obvious applications are dimension reduction
methods (for instance isomap [13], LLE [20], HLLE [8] or SOM algorithms [15]
all need the initial choice of a dimension), but dimension knowledge is also
helpful for modeling problems as in time series [21] or regression [5]. Dimension
estimation is also related to other mathematical fields as neural network, signal
processing [7] and physics [10] so giving an exhaustive bibliography is vain (for
a complete review see Cutler’s chapter of [4]). We are only going to deal here
with the main ideas of intrinsic dimension estimation.

Mostly we can find two types of dimension estimation methods :

• Topology based dimension estimation : They are mainly based on
the Hausdorf dimension simplification based on Grasberg and Proccacia’s
work [19]. Let us define :

C(r) = lim
N→∞

2

N(N − 1)

∑

1≤i≤j≤N

1||Xi−Xj ||<r

d = lim
r→0

lnC(r)

ln(r)

Since 1992, the limitation of such a method has been studied in [9] (in this
paper the needed N according to the dimension and diameter of the set
is studied) but there exists two kinds of limitations with such a method :
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– It is strictly based on uniformly randomized data (and there is little
hope to remove this hypothesis)

– The first C(r) can’t be computed (because it is only possible to ob-
serve a finite number of points) so if the d formula is applied, the
estimated dimension will be 0 (the true dimension of a discrete set).
A good value for a small r value must be found or the method has
to be improved (as in [18] or [17]) for instance)

• Local PCA : A radically (and more statistical) approach is the local
PCA’s approach [14]. The idea is to compute tangent T space via local
PCA and to observe the decreasing of the variance of the projection on
T⊥. The main problem here is to define well the neighborhood of each
point. The present work may be useful for this via the theoretical result
in section 2.

1.2 Density support estimation and its topological prop-

erties

Density support estimation has a lot of application fields, for instance in med-
ical diagnosis, machine condition monitoring, marketing and econometrics as
noticed Biau and Pelletier in [2]. The support density estimation using union
of small balls centered on observation has been studied in [1], [2], [12]. Such a
method has great asymptotical properties but a huge inconvenient : the topolog-
ical properties of the estimated support may not be those of the “true” support
: for instance the dimension of the estimated support is D the dimension of
the embedding RD in which the support is and not the dimension of the sup-
port. There can be holes in the estimated support that do not exist in the true
supports so the estimated homology groups might differ from the “true” one.

The importance of the computation of the homology groups for application
(and the methods for it) can be seen in [6] and asymptotical properties of an
estimation of Betti numbers can be found in [16]. In [11] it has been applied
and a Klein bottle shape has been observed in a real data base.

1.3 The proposed method

This paper’s aim is to manage to build a complex on the data to estimate the
density support. This complex is expected to have the same dimension and the
same topological invariant as the unknown true support of the density. Contrary
to [22] the final result is a complex on which the homology can be computed
(and not a set of complexes which implies to find “the persistent one”).

Section 2 is dedicated to the theoretical search of a k to restrict Delaunay’s
complex by a k−nearest neighbors and not to create an undesirable hole (which
could skew the computation of Betti Numbers).

Section 3 presents an algorithm that computes a complex for each supposed
dimension d using Delaunay’s complex and local PCA.

Section 4 gives an indicator to choose a dimension and so a complex.
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Finally section 5 presents some results on simultated data.

2 Majoration of the probability to suppress an

inside edge by restricting Delaunay’s complex

by k−nearest neighbor

2.1 Introduction

let X1, ...XN be a sample on RD in a d dimensional submanifold S ⊂ RD

(D ≥ d).
One of the goal of this paper is to build a “good” complex that links the

points of the sample. S will thus be estimated as the union of all the simplexes.
We choose to use initially Delaunay’s complex. Let us denote Delaunay’s

complex T . It satisfies :

• The D− dimensional simplexes of T are the (Xi1 , ..., XiD+1) such as the
hypersphere circumscribed to the points does not contain any Xj

• The k− dimensional simplexes of T are the k−sub-simplexes of theD−dimensional
simplexes

• The 1− dimensional simplexes of T will be called edges of the complex

• Property : Delaunay’s complex gives an estimation of the convex hull of
the sample

• Corollary : Since S is not convex it is necessary to remove some simplexes
to get a good estimation of S using the complex (see figure 1)

This section focuses on the case D = d and the way to remove simplexes
from T to estimate correctly S. We choose the well-known rule of constraining
D by k−nearest neighbors : the removed simplexes will be those that contain
at least one edge [A,B] such as B is not a k−nearest neigbor of A and A is not
a k−nearest neighbor of B.

The choice of a “good” value for k is fundamental to get good results. k
must be small enough to respect the local non-convexity of S but large enough to
avoid unexpected “holes” (which may be a problem if using results to compute
the homology group, for instance).

The following part of this section is dedicated to proving that the probability
to remove an inside edge when D = d and the drawn is uniform is majored by :

P (N, k) ≤ ak−1
d (N − 2)3/2

√

π/2 + aN−2
d

with :

ad =
2d − 1

2d

Unfortunately our definition of an inside edge is a little more restrictive than
the creation of an undesirable hole but it gives an approximation (see appendix
for a discussion about this definition).
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Figure 1: 3 complexes computed on an holed squared sample (500 points  
U([0, 3]2 \ [1, 2]2)). (a) : Delaunay’s complexe. (b) : Delaunay’s complexe
contrained by 42−nearest neighbors. The constrained graph is plain and black
; Delaunay’s complex is dashed and red. (c) : Delaunay’s complexe contrained
by 14−nearest neighbors. The constrained graph is plain and black ; Delaunay’s
complex is dashed and red. 9 undesirable holes can be observed

2.2 Theoretical Study

In all this part we will assume that X1, ..XN is a uniform drawn in Rd on S
a d−dimensional bounded manifold. Without loss of generality, we also will
assume that V (S) the volume of the manifold is 1.

We will first start by two elementary lemmas :

Lemma 1. Let us denote :

• B1 = B(O, r)

• X a point of the boundary of B1

• O′ such as d(O,O′) = d(O′, X) = r′

• B2 = B(O′, r′)

• B′
1 = B1 \ (B1 ∩B2)

then :
V (B′

1)

V (B1 ∪B2)
≤ 1− 1

2d
= ad

Proof. Let first us define O′′ ∈ [O,O′] with d(O,O′′) = r/2 and B3 = B(O′′, r/2)
(see figure 2).

Let us denote cd = πd/2/Γ(1 + d/2) (the volume of the unit d-ball).

B3 ⊂ B1 ∩B2 ⇒ V (B′
1) ≤ cdr

d − cd(r/2)
d

B1 ⊂ B1 ∪B2 ⇒ V (B1 ∪B2) ≥ cdr
d

Lemma 2.

Sn =
1

n

n−1
∑

k

1
√

(1/n)(1− k/n)
< π
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Figure 2: Illustration for lemma 1. Remark for d > 2 this graphic corresponds
to the projection in the plane containing O,O′ and X

Proof. let us denote : f(x) = 1/
√

x(1 − x) defined on ]0, 1[.
We define gn stepwise by :
gn(x) = min{f(t), t ∈ [(k − 1)/n, k/n]} when x ∈ [(k − 1)/n, k/n]

Obviously : gn(x) ≤ f(x) so
∫ 1

0
gn ≥

∫ 1

0
f = π.

Sn + f(0.5)/n =
∫ 1

0
gn (see figure 3) finishes to prove it.
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Figure 3: Illustration for lemnm 2 with n even and n odd. The red line represents
the function, the step function gn and the grey area’s surface Sn

Hypothesis, definitions and notations

• X = {X1, .., XN} is a uniform sample on a d−dimensional manifold S
with V (S) = 1. For all that follows Delaunay’s complex is Delaunay’s
complex computed on X .

• Xj is the k̂(Xi, Xj)
the neighbor of Xi.

• k∗(Xi, Xj) = min(k̂(Xi, Xj), k̂(Xj , Xi)).

• If t = [Xi, Xj ] is included in Delaunay’s complex then k∗(t) = k∗(Xi, Xj).

• an edge t = [Xi, Xj] of Delaunay’s complexe is an inside edge if B(Xi, d(Xi, Xj))∪
B(Xj, d(Xi, Xj)) ⊂ S (see appendix for a discussion of this notion).
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Figure 4: Illustration for lemna 3

Lemma 3. Considering all the previous hypotheses, definitions and notations,

let t be an edge of Delaunay’s complexe inside S and 2 ≤ k ≤ N − 2 then :

P (k∗(t) = k) ≤ ak−1
d

√
N − 2√

2π
√

(k − 1)(N − k − 1)
exp

(

1

12(N − 2)

)

.

Proof. Let us first assume that :

• t = [X1, X2],

• k̂(X1, X2) = k.

As t is in Delaunay’s complexe there exists an empty ball B2 such as X1 and
X2 are on the boundary of B2. As k̂(X1, X2) = k then B1 = B(X1, d(X1, X2))
contains k − 1 other points (see figure 4).

Knowing B2, the probability to get such a configuration is :

PB2(k∗(t) = k) = Ck−1
N−2(V (B1 \ (B1 ∩B2)))

k−1(1− V ((B1 ∪B2) ∩ S))N−1−k.

Let us denote x = V (B1 ∪B2) and apply lemma 2 :

PB2(k∗(t) = k) ≤ Ck−1
N−2a

k−1
d xk−1(1− x)N−1−k.

A maximisation of the expresion leads to :

P (k∗(t) = k) ≤ ak−1
d Ck−1

N−2

(k − 1)k−1(N − k − 1)N−k−1

(N − 2)N−2
.

Finally, we use the Stirling unequality (for k ≥ 2 and k ≤ N − 2) to get :

P (k∗(t) = k) ≤ ak−1
d

√
N − 2√

2π
√

(k − 1)(N − k − 1)
exp

(

1

12(N − 2)

)

.
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Theorem 1. Let X = (X1, ..., XN ) be a uniform sample on a d−dimensional

manifold S with V (S) = 1, the probabilty P (N, k) that an inside edge of Delau-

nay’s complex is suppressed when restricting by the k−nearest neighbors graph

satisfies : P (N, k) ≤ ak−1
d (N − 2)3/2

√

π/2exp
(

1
12(N−2)

)

+ aN−2
d .

Proof. An inside edge t is suppressed when restricting by the k−nearest neigh-
bors graph if k∗(t) ≥ k so :

P (N, k) =

N−1
∑

j=k

P (k∗(t) = j)

Lemma 3 gives

P (N, k) ≤
N−2
∑

j=k

aj−1
d

√
N − 2√

2π
√

(j − 1)(N − j − 1)
exp

(

1

12(N − 2)

)

+ aN−2
d .

P (N, k) ≤ ak−1
d

N−2
∑

j=k

√
N − 2√

2π
√

(j − 1)(N − j − 1)
exp

(

1

12(N − 2)

)

+ aN−2
d

,
and lemma 2 leads to the conclusion.

Corollary 1. The restriction of the delaunay complex by the k−nearest neighbor

graph with :

k ≥ 1 +
ln(ε)− 3

2 ln(N − 2)− 1
2 ln(π/2)

ln(ad)
= k0(N, d, ε)

creates an inside edge with a probability :

P ≤ εe
1

12N + aN−2
d ∼ ε

2.3 Numerical results

2.4 Graphical results

We prensent here 4 graphes, illustrating Delaunay’s restriction to k0(N, 2, ε =
0.1) for the same holed squares as in figure 1 (N varying in {100, 200, 500, 1000}).
First, it can be observed that there is no undesirable hole creation in the ob-
tained complexes. In the first case N = 100 doesn’t allow to obtain a complex
that respects the topology of the initial set S : there is no hole at all. We think
that this is due to the fact that the size of the hole is too small in regard to
the density around the hole. The convergence of the computed complex to the
density support seems here to occur (the convergence of the algorithm will be
studied in a further paper).
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Figure 5: ε = 0.1, N = 100, N = 200, N = 500, N = 1000 : black edges are
those of the restricted Delaunay’s complex, dashed red ones are those of the
Delaunay’s complex. It can be observed that the removed simplex are on the
boundary and that the topological properties of the estimated support are the
same as the true support since N ≥ 200

2.5 Simulation on Spheres

Let Kd,N(X1, ...XN ) be the maximum number of neighbors observed on in-
side edges of Delaunay’s complex when the density support is d−dimensional
and the sample is uniformly distributed on S. Our majoration implies that :
k0(N, d, ε) ≥ Q1−ε(Kd,N) (with Q1−ε(Kd,N) the (1− ε) percentile of Kd,N). It
is expected that this majoration is not too big. To compute Kd,N(X1, ...XN )
without boundary effect and so avoiding the problem of looking for the inside
edges, the Xi has been uniformly randomized on d−dimensional ball Sd which
lies in Rd+1. The d−dimensional Delaunay’s complex is here the boundary of
the (d + 1)−complex. Results of our computation are presented in figure 6 for
dimension 1 (1000 draws), 2 (1000 draws) and 3 (500 drawns) and each time
N ∈ {100, 200, 300, 500, 1000, 2000}. Plain lines represent the “theoretical” k0

for ε ∈ {0.1, 0.05, 0.01, 0.005} and dashed lines the simultated percentiles for
same ε. It can be observed that :

• The majoration is verified and is not too big

• The growth speed seems to be the right one (for the dimension 3 the
Q0.99 and Q0.995 simulated values might not be good because they are
only computed on 500 samples

2.5.1 Some values for k0 and ε = 10−2

Some numerical values for k0 are presented in figure 7 : the empty cells corre-
spond to k0(N) < N . Cells in Italics correspond to k0 < 2N and bold k0 > 10N
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Figure 6: Theoretical (plain) and simulated (dashed) values for k and different
values for ε for 1, 2 and 3.

N d = 1 d = 2 d = 3 d = 4 d = 5 d = 6

50 16 37

100 17 41 88

500 21 50 106 220 446

1000 22 53 114 236 479
2000 24 57 122 252 512 1031
5000 26 62 132 273 555 1118
10000 27 65 140 289 588 1185
20000 29 69 148 306 621 1251

Figure 7: Some Values for k0(N, d, 10−2).

3 Computation of a simplicial complexe on the

data

Let X = (X1, ..., XN ), Xi ∈ RD be a uniform draw on a compact d dimension
manifold S with d ≤ D.

Let us denote T the D−dimensional Delaunay’s complex of X . We will
denote :

T =
⋃

p∈{1,..,D}

(

⋃

i

tpi

)
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with :

• the tDi are the D−dimensional Delaunay-simplexes : i.e. such as the
D−ball circumscribed of ti is empty (doesn’t contain any points of X),

• tki is the face of a tk+1
j .

The goal is now to extract of T , T ∗ a “good” subset of simplexes. By “good”
we expect that :

• T ∗ is a d−dimensional simplex with d the true dimension of S,

• T ∗ gives a correct estimation for S.

For that we will compute D subcomplexes of T (one for each supposed di-
mension from 1 toD) and the choice of the final complex will be done afterwards.

3.1 Computation of the D−dimensional complex

According to section 2 the D− dimensional simplex is the restriction of T by
the k0(N,D, ε)−nearest neighbor graph.

3.2 Computation of the p−dimensional complexes for p <

D

The idea that leads us to the following algorithm is very simple : let us assume
that S is a p−dimensional smooth manifold. Then locally the manifold and its
tangent hyperplan are close and we are going to consider some simplexes of De-
launay’s compexe of the local projection on tangent hyperplan. More precisally :

for each point i :

• 1- search Vi = {Xj1(i), ..., Xjk(i)(i)} a neighborhood of Xi

– Practically : according to section 2, we propose to use the k0(N, d, ε)−nearest
neighbors of Xi as Vi.

• 2- H
(p)
i the hyperplan tangent to S at the point Xi according to the

hypothesis that it is p−dimensional:

– Practically : using local PCA (PCA on Vi).

• 3- Wi is the set of all the projections of the Vi points on H
(p)
i .

• 4- compute Delaunay’s complex of Wi : Ti.

• 5- keep the p−dimensional simplexes of Ti that satisfy the following prop-
erties :

– i is in the simplex,

– the simplex is in the set of Delaunay’s simplexes T .

The final p−dimensional complex will be the union of all the p−dimensional
simplexes kept in the algorithm.
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4 Choice of the intrinsic dimension and complex

It is now needed to choose a complex in the set of all computed complexes
(one for each supposed dimension). We suggest here two ways to choose. The
first one is only classical local PCA method and the second one is based on
the geodesic distances. The local PCA method is not linked to the simplicial
approach and can be used beforehand to reduce the set of tested dimension
(which can be usueful to reduce the computational time). The second method
depends on the simplicial approaches and can be used afterwards to confirm the
choice.

4.1 Local PCA

The local PCA method for estimation of the dimension is well known [14]. We
here only apply it using the neighborhood according to section 2. Each tested
dimension d is associated to a k0(N, d, ε)−neighborhood and for each point of
the sample the eigenvalues of a PCA on its neighborhood can be computed.
Boxplotting these eigenvalues can help to choose possible dimensions

4.2 Geodesic distance recognition

Let us suppose that the true dimension is d, then the k0(N, d, ε)−nearest neigh-
bor graph and the d−dimensional complex’s graph obtained with our method
might both be used to compute approximation of the geodesic distance cor-
rectly and so geodesic distances computed using the two graphs might be close.
For each dimension, the plot of the geodesic distances computed with nearest-
neighbor method and simplicial method will be plotted and a dimension has to
be chosen between dimensions that lead to a plot near the bisector.

5 Some examples

5.1 Examples for dimension D = 2

We computed here two examples for D = 2 (N = 500 and ε = 0.01) : the
holed square and the circle. For the holed square, let us first look at the local
PCA results : they both indicate a dimension 2. Looking at the geodesic
distances scatterplots also indicates a dimension 2. The complex associated to
the dimension 2 respects the topology of the (known) density support.

For the circle example, the local PCAmethod and the simplicial method also
agree to decide for a dimension 1 (if the hole observed for the dimension 2 had
not existed, only the PCA method would have been discriminant to conclude).

5.2 Examples for dimension D = 3

We computed here three examples for D = 3 (N = 500 and ε = 0.01) : the
cylinder, the sphere and the spiral.

The sample on the cylinder has been realized as follows : θ  U [0, 2π]
r  U [0.7, 1] and X3  U [0, 1]. X1 = cos(θ), X2 = sin(θ) and X3. Local PCA
hesitates between dimension 2 and 3 (the third eigenvalues is realy small com-
pared to the two first ones, we can wonder if it is due to a “thin“ 3−dimensional
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Figure 8: example of the holed square
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Figure 9: example of the circle

S or a non linear 2− dimensional S?). Geodesic distance criterion helps to con-
clude to a dimension d = 3.

For the sphere example, the geodesic criterion hesitates between dimension
2 and 3 ; the local PCA helps to conclude to dimension 2.

Conclusions : For all the presented examples (dimension D = 2 and D = 3)
the topological properties of the chosen complexes are the good ones. The choice
of the elected complex has to be done according to both local PCA and geodesic
approach.

6 Conclusions and persepectives

Our theoretical value for k is coherent with the known good properties that are
expected for the choice of k, the k−nearest neighborhood (generally expected
to satisfy k → ∞ and k/N → 0 ([3]). Fortunately, our majoration in section 2
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Figure 10: example of the cylindre
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Figure 11: example of the ball

Finally for the spiral example it is only the local PCA approach that helps to
conclude.

that can be considered as a quite strong majoration is not so far from the simu-
lated value for k. Applications using this value gives quite good results for not

13



dim Local PCA geodesic complex

1

0

10

20

30

40

50

60

70

80

90

100

1 2 3
0 5 10 15 20 25 30

0

5

10

15

20

25

30

−1
−0.5

0
0.5

1 −1
−0.5

0
0.5

1

0

5

10

15

20

2

0

10

20

30

40

50

60

70

80

90

100

1 2 3
0 5 10 15 20 25 30

0

5

10

15

20

25

30

−1
−0.5

0
0.5

1

−1

−0.5

0

0.5

1
0

5

10

15

20

3

0

10

20

30

40

50

60

70

80

90

1 2 3
0 5 10 15 20 25

0

5

10

15

20

25

Figure 12: example of the spiral

too exotic S but there is still a lot of open questions and possible improvements.

Two main furter theoritical axes can be envisaged :

• On k value to avoid undesirable holes : can we improve the definition
of an inside edge to be closer to the hole creation ? Can we prove that
1.5ln(N)/ln(ad) speed is really the good one ? Can our result be extended
to non-uniform samples ?

• On the S estimation : does our ŜN converge ? do Betty number’s esti-
mation converges ? what is the speed ? Graphical results of section 5 are
encouraging. The intuition is that it is required that N > c(S)k0 with
c(S) a constant reflecting the complexity of S.

For the applied part : can the complex building be improved ? can it be
adapted to sets S where the local intrinsic dimension is not constant [7]?
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A Discussion of the inside edge notion

The aim of this appendix is to show that not removing an inside edge (that
allows to get the theorem 1) is not so far from not creating an undesirable hole
(that is the really interesting notion). The discussion here is not (at all) a proof
but helps to understand why, at least for dimension 2, the two notions are close.

Let us remember the definition :

• an edge t = [Xi, Xj ] of Delaunay’s complexe is denoted “inside” S if
B(Xi, d(Xi, Xj)) ∪ B(Xj, d(Xi, Xj)) ⊂ S

And Let us add two other definitions :

• an edge t = [Xi, Xj] of Delaunay’s complexe is denoted “semi-inside” S if
B(Xi, d(Xi, Xj)) ⊂ S or B(Xj, d(Xi, Xj)) ⊂ S

• an edge t = [Xi, Xj ] of Delaunay’s complexe is denoted “not-inside” S if
B(Xi, d(Xi, Xj)) * S and B(Xj, d(Xi, Xj)) * S

Illustrations for these 3 possible cases can be seen in figure 13. Our proof
in section 2 can easily be adapted for semi-inside edges because the volume
majoration in lemma 1 can be adapted (see figure 13) and because there is at
least k point in each presented ball (but the writing is a little more difficult).

Let us now focus on the not-inside edge case and the dimension 2. Let
us assume that t = [X1, X2] is a not-inside, Delaunay’s edge, that satisfies
k∗(t) ≥ k. and that removing t create an undesirable hole. As there is a
creation of an undesirable hole t is not on the boundary of the complex. So there
are two Delaunay triangles [X1, X2, X3], and [X1, X2, X

′
3]. Let us assume that

[X1, X2, X3] is the one “closest to the boundary” (see figure 14). [X1, X2, X3] is
removed by our algorithm so it is not on the boundary of the complex (otherwise
we will not create a hole). Iterating such reasoning leads to the fact that there
exists X4 and X5 as on figure 14 which satisfies [X4, X5] is an edge of Delaunay’s
complex which is not removed by restrinction to k−nearest neighbors. As the
construction implies that d(X4, X5) > d(X1, X2) the fact that k∗([X4, X5]) <
k∗([X1, X2]) may be small.
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Figure 13: Illustration for inside, semi-inside and not-inside edges
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