SOME DIOPHANTINE EQUATIONS ASSOCIATED TO
SEMINORMAL COHEN-KAPLANSKY DOMAINS
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ABSTRACT. A Cohen-Kaplansky domain (CK domain) R is an integral domain
where every nonzero nonunit element of R is a finite product of irreducible
elements and such that R has only finitely many nonassociate irreducible ele-
ments. In this paper, we investigate seminormal CK domains and obtain the
form of their irreducible elements. The solutions of a system of diophantine
equations allow us to give a formula for the number of distinct factorizations of
a nonzero nonunit element of R, with an asymptotic formula for this number.

1. INTRODUCTION

Let R be an atomic integral domain, that is, each nonzero nonunit element of R
can be written as a finite product of irreducible elements (or atoms). The simplest
situation is when R has only a finite number of (nonassociate) atoms. Such a domain
R was called a Cohen-Kaplansky domain (CK domain) by D.D. Anderson and J.L.
Mott in [2] who obtained many conditions equivalent to R being a CK domain,
after I.S. Cohen and I. Kaplansky [4] inaugurated the study of CK domains. In
Section 2 we recall and give basic results on CK domains.

An atomic domain R is called a half-factorial domain (HFD) if each factorization
of a nonzero nonunit element of R into a product of atoms has the same length
(Zaks [15]). A ring R is called seminormal if whenever z,y € R satisfy x3 = 32,
there is a € R with = a?, y = a® [14]. Section 3 is devoted to the study of
seminormal CK domains. In particular, we show that a seminormal CK domain
is half-factorial and obtain some equivalent conditions for a CK domain to be
seminormal. As factorization properties of CK domains and seminormality are
preserved by localization, we consider a local seminormal CK domain R. Let R be
its integral closure. Then R is a DVR with maximal ideal Rp, which is also the
maximal ideal of R. Moreover the atoms of R are of the form vp, where v is a
unit of R. If U(R) (resp. U(R)) is the group of units of R (resp. R), the factor
group U(R)/U(R) is a finite cyclic group. Let @ be a generator of U(R)/U(R) and
n the order of @. If 2 = vp” is a nonzero nonunit element of R with v = @", r €
{0,...,n — 1}, in U(R)/U(R), the distinct factorizations of z in R into atoms are
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deduced from the system of diophantine equations in (ai, ... ,a,) € HN":

zn:ai =k
i=1

ZE:f in Z/n#

i=1

(5)

The calculation of the number of solutions of this system is the object of Section
4. If we denote by n(z) the number of non-associated irreducible factorizations of
x into atoms, we get that n(z) is the number of solutions of the system (S5).

Section 5 ends this paper with the asymptotic behaviour of the function 1 where
we use the following result by F. Halter-Koch :

Theorem 1.1. [6, Theorem 1]. Let H be an atomic monoid such that each nonunit
x has finitely many non-associated factorizations into irreducibles. Suppose that
there are only finitely many irreducible elements of H which divide some power
of . There exists two constants A € ) and d € N, A > 0 such that n(z™) =
An? + O(nd1).

An explicit value for A and d is obtained for a local seminormal CK domain.

For a ring R, we denote by Max(R) the set of maximal ideals of R and by U(R)
its group of units. Let z,y € R. We say that x and y are associates (x ~ y) if
there exists u € U(R) such that = uy. For an integral domain R, we denote by R
its integral closure. The conductor [R : R] of an integral domain R in its integral
closure is called the conductor of R. For a finite set S, we denote by |S| the number
of elements of S. For z € K, we set [x] =sup{n € & |n < z}.

2. Basic RESULTS ON CK DOMAINS
We first recall some of useful results concerning CK domains.

Theorem 2.1. [2, Theorem 4.3] For an integral domain R, the following state-
ments are equivalent.

1. Ris a CK domain. B B B
2. R is a semilocal PID with R/[R : R] finite and | Max(R)| = | Max(R)|.
3. R is a one-dimensional semilocal domain with R/M finite for each nonprin-

cipal mazimal ideal M of R, R is a finitely generated R-module (equivalently,
[R: R]#0), and | Max(R)| = | Max(R)|.

This theorem implies the following properties.

Proposition 2.2. [2, Theorem 4.3, Theorem 3.1, Theorem 2.1 and Corollary 2.5 ]
Let R be a CK domain. Then

1. R is Noetherian and for each x € R, there exists an n € N* with " € R.

2. U(R)/U(R) is a finite group.

3. Ry is a CK domain for each mazimal ideal M of R. In particular, Ry is a
DVR.

4. Let T be an overring of R. Then T is also a CK domain.

5. The atoms of R are primary.
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D.D. Anderson and J.L. Mott [2] say that a pair of rings R C S is a root extension
if for each s € S, there exists an n = n(s) € N* with s" € R. For such an extension
we have | Max(R)| = | Max(S)|. Hence R C R is a root extension when R is a CK
domain.

Proposition 2.3. Let R; and Ry be two CK domains with the same integral closure
R'. Then R= R1 N Ry is a CK domain with integral closure R’.

Proof. Set R = Ry N Ry. Define Iy = [Ry; : R'], I =[Ry: R’ and I = [R: R'].
Then I; N I is a common ideal of R’ and R contained in I so that I # 0. Let
a,b € R’ with b # 0 and ¢ a nonzero element of I. Then ia and b are in R and
hence a/b = ia/ib shows that R has the same quotient field as R’. Moreover,
R C R’ is a root extension. Then R’ is obviously the integral closure of R and is a
semilocal PID. Since R'/I; and R’'/I; are finite, this gives that R’/(I; N I3) is also
finite because isomorphic to a subring of R'/I; x R'/I,, so that R’/I is finite.

Moreover, we have | Max(R)| = | Max(R')| because R C R’ is a root extension.
Applying Theorem 2.1, (2), we get that R is a CK domain with integral closure
R O

Corollary 2.4. Let D be a DVR with mazimal ideal M such that D/M is finite.
Let I be a nonzero ideal of D. The set of underrings of D with integral closure D
and with conductor I has a least element and all these underrings are CK domains.

Proof. Set & = {R underring of D | R = D, [R: D] = I}. Since D/M is finite, so
is D/I. Indeed, if M = Dp for some atom p € D, then I = Dp™, for some integer n
and an obvious induction shows that |D/I| = |D/M|™. Consider R € £. Then the
finiteness of D/I implies the finiteness of R/I. So D is a finitely generated R-module
because D/I is a finitely generated R/I-module. It follows that | Max(R)| = 1 and
R is a CK domain by Theorem 2.1, (2).

Since D/I is finite, there are finitely many subrings of D/I, and so finitely many
Re & Let Rand S € £ and set T = RN S. By Proposition 2.3, T is a CK
domain with conductor J D I. But T' C R implies J C I, sothat J =T and T € £.
Therefore the intersection of all elements of £ is a CK domain with conductor I
and integral closure D and is the least element of £. |

3. CHARACTERIZATION OF SEMINORMAL CK DOMAINS

Let R be an integral domain with quotient field K. We say that R is t-closed
if whenever z € K and 2% — rz, 23 — ra? € R for some r € R, then z € R [9]. A
t-closed integral domain is seminormal. Recall that an integral domain R is said
to be a pseudo-valuation domain (PVD) if there exists a valuation overring V of R
such that Spec(R) = Spec(V) [8] and an integral domain R is said to be a locally
pseudo-valuation domain (locally PVD) if each of its localizations at a prime ideal
is a PVD [5].

Proposition 3.1. Let R be a one-dimensional Noetherian integral domain such
that its integral closure R is a finitely generated R-module. The following conditions
are equivalent :

. R is seminormal and the canonical map Spec(R) — Spec(R) is bijective.
. R is t-closed.

. R is a locally PVD.

The conductor I of R is a radical ideal in R and | Max(R)| = | Max(R)|.

=W N =
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In particular, a CK domain R is seminormal if and only if R is t-closed.

Proof. (1) < (2) is [9, Proposition 3.7].

(2) & (3) is [10, Corollary 3.4].

(2) & (4) comes from [9, Corollary 3.8 and Proposition 2.8]. Indeed, for any
P € Max(R), the conductor of Rp is Ip. O

We obtain as a corollary a first characterization of local seminormal (or t-closed)
CK domains.

Corollary 3.2. Let R be a local CK domain with integral closure FE # R. Let Rp
be the maximal ideal of R. Then R is seminormal if and only if U(R)p C R.

Proof. Assume that R is seminormal. By Proposition 3.1 (4), Rp is the conductor
of R, so that U(R)p C Rp C R.

Conversely, if U(R)p C R, we get that U(R)p"™ C R for any integer n and Rp C R
gives that Rp is the conductor of R so that R is seminormal. ([

In the nonlocal case, this condition is not fulfilled :

Corollary 3.3. Let R be a CK domain with integral closure R+#R.
Let Rp;, i =1,...,n, be the mazimal ideals of R.

ThenU(R)p; C R for anyi=1,... ,n, implies that R is seminormal and n = 1.

Proof. The case n = 1 is the previous Corollary. Assume n > 1. Any nonunit of R
is in R. Moreover, Rip; and Rp; are comaximal ideals of R. For any u € U(R), there
exists v, w € R such that u = vp; + wpy € R. Then R = R, a contradiction. (I

Corollary 2.4 has a new formulation in the seminormal case.

Corollary 3.4. Let D be a DVR with mazimal ideal M such that D/M s finite.
The set of seminormal underrings of D with integral closure D is linearly ordered.

Proof. Let R be a seminormal proper underring of D. Since its conductor is a
radical ideal of D, it has to be M, a maximal ideal in R so that R/M is a subfield
of the finite field D/M. But the set of subfields of D/M is linearly ordered.

Let Ry, Ry be two seminormal proper underrings of D with integral closure D.
Their conductor is M and we have, for instance, Ry/M C Ry/M, which gives
Ry C R». O

Here is a fundamental link between seminormal CK domains and factorization.

Proposition 3.5. A seminormal CK domain is half-factorial.

Proof. Let R be a seminormal CK domain and P € Max(R). Then Rp is a PVD
by Proposition 3.1 and a CK domain by Proposition 2.2 (3). So Rp is a HFD for
any P € Max(R) [2, Theorem 6.2]. The same holds for R [2, Theorem 6.1]. O

The following theorem gives the additional condition necessary for a CK half-
factorial domain to be seminormal.

Theorem 3.6. Let R be a CK domain with integral closure R.
Let Rp;, i =1,...,n, be the mazimal ideals of R. Then R is seminormal if and

only if R is a HFD and U(R)p1---pn C R. Moreover, if these conditions are
satisfied, we can choose p; € R for eachi=1,... ,n.
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Proof. We can assume R # R (the case R = R is trivial).

Let R be a seminormal CK domain. Then R is a HFD by the previous Propo-
sition and the conductor I of R is a product of some of the Rp;. It follows that
U(R)pl ~++pn C R. 3

Conversely, assume that R is a HFD and U(R)p; ---pn, C R and let I be the
conductor of R. For eachi =1,... ,n,set P, = RNRp;, R; = Rp, and R; = Rp, =
Rp..

First, we show that we may assume p; € R for each i =1,... ,n.

- If P; is comaximal with I, then R; = R; and p;/1 is an atom in R; [2, Theorem
2.1 (2)]. Then there exists a P;-primary atom p € R and s € R\ P; such that
sp; = p, which implies s € U(R), so that Rp; = Rp.

- Let P; be non comaximal with I and let  be a P;-primary atom in R. There
exist u € U(R) and an integer k such that = up! since = ¢ P; for any j # . But
R; is a HFD, which implies that /1 ~ p;/1 in R; [2, Theorem 6.3] and so k = 1.
Then z ~ p; in R.

The assumption can be rewritten U(R)p;---p, C R with p; € R for each
i =1,...,n. This gives finally Rp;---p, C I C R and I is a radical ideal in
R. Moreover, R being a CK domain, we get | Max(R)| = | Max(R)| and thus R is
seminormal by Proposition 3.1 (4). O

In the local case, we obtain another characterization for a CK half-factorial
domain to be seminormal.

Proposition 3.7. Let R be a local CK domain with integral closure R. Then R is
seminormal if and only if R is a HFD and has [U(R)/U(R)| nonassociate atoms.

Proof. We can assume R # R (the case R = R is trivial). B
Let R be seminormal. Then R is a HFD by the previous Theorem. Let Rp be
the maximal ideal of R and let a1,... ,a, be the nonassociate atoms of R. They

are of the form a; = w;p, uw; € U(R) by [2, Theorem 6.3 (3)]. But since R is

seminormal, its conductor is Rp. It follows that up € R for any v € U(R). Let
up, vp be two atoms of R, where u,v € U(R). Then up and vp are associates in R if
and only if there exists w € U(R) such that up = wup, which is equivalent to & = v
in U(R)/U(R). Hence two atoms up,vp of R, with u,v € U(R), are nonassociates
in R if and only if @ # v in U(R)/U(R). Then R has [U(R)/U(R)| nonassociate
atoms (see also [2, Corollary 5.6]).

Conversely, let R be a HFD with n = [U/(R)/U(R)| nonassociate atoms. They
are of the form a; = w;p, w; € U(R), i =1,... ,n and {u,... U, } = U(R)/U(R).
It follows that up € R for any u € U(R). In particular, p € R so that p" € R for
any integer n > 0 and we get that Rp C R. Then Rp is the conductor of R and R
is seminormal. O

A seminormal CK domain has a property which is not too far from unique
factorization. In [3], S.T. Chapman, F. Halter-Koch and U. Krause defined an
integral domain R to be inside factorial with Cale basis Q, if, for every nonzero
nonunit z € R, there exists some n € M* such that " has a unique factorization,
up to units, into elements of Q.

Proposition 3.8. Let R be a seminormal CK domain with integral closure R.
Then R is inside factorial with Cale basis {p1,... ,pn}, where the Rp; are the
maximal ideals of R with p; € R fori=1,... ,n.
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Proof. We have seen in Theorem 3.6 that we can choose p; in R, where the Rp; are
the maximal ideals of R. B
The atoms of R are of the form w;;p;, with u;; € U(R), i =1,... ,n [2, Theorem

2.1 (2)]. Let 7 = [U(R)/U(R)|. Then u" € R for any u € U(R). Let = be a nonzero
nonunit of R. As an element of R, it can be written z = w[[pf, u € U(R).
Then =" = u" [[p;*" with «" € U(R) and this factorization into the p; is obviously

unique. |

Remark 3.9. Under assumptions of the previous Proposition, let e be the expo-
nent of the factor group U(R)/U(R). Then e is the least integer r such that ="

has a unique factorization, up to units, into elements of {p1,...,p,}, for every
nonzero nonunit x € R. Indeed, e is the least integer 7 such that u" € U(R) for
any u € U(R).

We can calculate this exponent. D.D. Anderson, D.F Anderson and M. Zafrullah
call in [1] an atomic domain with almost all atoms prime a generalized CK domain.
A CK domain is obviously a generalized CK domain. We can still assume R #
R. Then, if I is the conductor of R, we have the isomorphism U(R)/U(R) =~
U(R/I)JU(R/I) by [11, Theorem 2] (the result was obtained for algebraic orders
but a generalization to one-dimensional Noetherian domains R with integral closure
which are finitely generated R-modules can be easily made). Since R is seminormal,

I is a radical ideal in R. After a reordering, write I = H Rp;.
i=1
Then U(R)/U(R) =~ H [U(R/Rp;)/U(R/P;)], where P, = RN Rp; since I =

i=1

m

H P; as an ideal of R.

i=1

Set ¢ = |[R/P;| and k; = [R/Rp; : R/P;]. Then ¢; = (¢ —1)/(q; — 1) is the

order (and the exponent) of the finite cyclic group U(R/Rp;)/U(R/P;) and e =
lem(ey, ... em).

We are now able to obtain all the factorizations into atoms of a nonzero nonunit
element of a seminormal CK domain with the number of distinct factorizations into
atoms. We can restrict to the local case by the following proposition.

Proposition 3.10. Let R be a CK domain with mazximal ideals Py,...,P,. Set
R; = Rp, and define n;(z) to be the number of distinct factorizations into atoms of
n

R; of a nonzero z € R;. Then n(x) = Hm‘(l‘/l) for a nonzero x € R.
i=1

Proof. By [2, Theorem 2.1 (2)], the atoms of R are primary and the atoms of R; are
the P;-primary atoms of R. Moreover, if = is a nonzero nonunit element of R, then
x is written in a unique way © = x; - - - ©,, where x; is a P;-primary element of R
for each i =1,... ,n [7, Corollary 1.7]. Indeed, by [1, Corollary 5], a CK domain is
weakly factorial (such that every nonunit is a product of primary elements), and a
weakly factorial domain is a weakly factorial monoid for the multiplicative structure.

So, we get n(z) = Hﬂ(%) and n(z;) = n;(z;/1) for each i by [2, Theorem 2.1 (2)]
i=1

since a factorization of x; into atoms of R leads to a factorization of z;/1 into atoms

of R; and conversely. (|
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To end, we give the form of atoms in a local seminormal CK domain.

Theorem 3.11. Let R be a local seminormal CK domain with integral closure R.
Let Rp be the mazimal ideal of R, with p € R. Set n = [U(R)/U(R)| and choose
u € U(R) such that @ is a generator of the cyclic group U(R)/U(R). Then

1. A set of all nonassociate atoms of R is {u'p |i=0,... ,n—1}.

2. Let z =vpF, k€ N*, v € U(R). Letr €{0,... ,n—1} be such that v = u".
The number of nonassociated factorizations of x into atoms of R is equal
to the number of solutions (ai,...,a,) € N"™ of the system of diophantine
equations :

ZE =7in Z/nZ
i=1

Proof. As above, we can assume R # R. Then Rp is the conductor of R so that
R/Rp is a finite field by Theorem 2.1 (3) and U(R/Rp) is a finite cyclic group. It
follows that U(R)/U(R) ~ U(R/Rp)/U(R/Rp) (Remark 3.9) is also a finite cyclic
group. Let u € U(R) be such that @ is a generator of U(R)/U(R).

(1) In view of Proposition 3.7, we can choose A = {u’p}, i =1,... ,n, as a set
of nonassociate atoms of R since the u’ are the representatives of the elements of
U(R)/U(R) and u"p is an associate of p in R.

(2) Set p; = u'p, i = 1,... ,n, and let z be a nonzero nonunit element of R which
is not an atom. Then x = vp*, k > 1 with a unique v € U(R). A factorization of

x into elements of A is of the form z = w Hp;“, w € U(R), a; € M. This gives
i=1

n
T=w H(uip)‘“ = vp® (%), which implies, by identification in R, the equalities
i=1

n n
v :wHu““ and k = g a; (%)
i=1 i=1

n
Consider another factorization x = w’ Hp?", w' € U(R), a, € N. We get then

i=1

n n n n
k= a; = a) and v = w[[u'® = w J[u'*. These two factorizations
1
i=1 i=1 i=1 i=1
coincide if and only if a; = a} for each 4. In this case, we have w = w'.
n

In U(R)/U(R) we have the relation v = Ha“ = 4" where r € {0,...,n — 1}

i=1
n n
by (xx), that is r = Ziai (mod n), or equivalently, 7 = ZE in Z/nZ. Then
i=1 i=1
(a1,...,a,) € N™ is a solution of the system (S5).
Conversely, let (a},... ,a),) € N" satisfying (.59).

n n
4 . ’ ’ [ / ’ [ ’
Set 33/ — I |p;_7«1 — | |(u1p)ai — ua1+2a2+ +nan’pa1+a2+ +an.
1=1

i=1
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n
But Ziag =r+sn, s €&, gives 2’ = u"(u")*p* and © = 4" implies u" = w'v,
i=1
where w’' € U(R). So we get 2’ = w'(u™)*vpF = w'(u™)*z, with w'(u")* € U(R)
and z ~ 2’ in R. We deduce that two distinct solutions of (S) give two distinct
factorizations of = into atoms of R and the number of nonassociated factorizations
of z into atoms of R is equal to the number of solutions (ai,...,a,) € N™ of

(). O

We are going to calculate the number of solutions of such a system in the next
section.

4. ON THE NUMBER OF SOLUTIONS OF A SYSTEM OF TWO SPECIAL
DIOPHANTINE EQUATIONS

In this section, we use the following notation. Let n,r € M, k,s € Z with n >0
and 0 < r <n — 1. We consider the following systems of diophantine equations in
(a1y...,a,) € N™:

iai:k Zazzk
i=1 P—

S(n,k,r) and  S'(n,k,s)
ZE:finZ/nZ Ziaizs
i=1 i=1

We denote respectively by N(n,k,r) and p(n,k,s) the numbers of solutions
(a1,...,a,) € N" of S(n,k,r) and S’(n,k,s). Obviously, we have N(n,k,r) =
p(n,k,r) =0 for k < 0. It is easy to see that

(k=21
N(n,k,r) = Zp(n,k,r—FiH) = Z p(n, k,r+in)

>0 lcfr]

=[5

At last, for n,k e M, k > 0, we set :

(L’k(]. _ xn«kk:fl)(l _ l,n+k72) . (1 _ xn)

F(n,k,xz) = (1—z)(1—a2)- (1 — zF)

where x is a variable.

Remark 4.1. Tt follows that p(n, k, s) is also the number of partitions of s into k
summands b; € N such that 1 <b; <--- < b, < n.

Proposition 4.2. With the previous notation, for k > 0, we have F(n,k,z) =
Zp(n,k, s)x®. Moreover, F(n,k,x) is a polynomial in x.
s>0

Proof. The generating function for the numbers p(n, k, s) is the two-variable series

1
T,Y) = p(n, k, s)x*y* = because of
A= 2 ek 1 = ey (=)

L - a; pta; |
=g (1 —ge AL 20" ) =

=1 \a; >0
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Z gt tan part2aattnan Z p(n, k7s)ykx5

a1>0,...,an>0 k>0,5>0
We can write p(z,y) Z or(z y with g (z Zp n, k,s)z’, for all k > 0.
k>0 5>0

We can easily check that (1 — yz"*1)p(z,2y) = (1 — yx)p(x,y), which implies
(1 —28)pr(x) = (2 — 2" F)pp_1 (z) for k > 0, so that
(.’L‘ _ .’En+k)($ _ .I"J'_k_l) . (m _ xn+1)
wi(z) = =)0 (1) wo(z), for k > 0.

But pg(z) = 1. Hence ¢i(x) = F(n,k,x) for k > 0.

To end, F is a polynomial in z since p(n, k, s) = 0 for large s. O
We can now calculate N(n, k,r).

Theorem 4.3. With the previous notation for k>0, let Fy,...,F,_1 be the n-

components of F(n,k,x), i.e. F(n,k,x) Z:CTF . Then N(n,k,r) = F.(1).

Proof. Write F(n,k,x) ij f; € . Then

7>0
= ZfTerxm = Zp(n,k:,r +in)z™ and F( Zp n,k,r +in) =
i>0 i>0 i>0
N(n,k,r). O

The value of F,.(1) gives then the value of N(n,k,r).
Theorem 4.4. With the previous notation, set d = ged(n, k) for k,n > 0. Then

N(n,k,r) = n(”“,j_l) %E_: (2?) I1 (nj‘7>

1<i<k—1,d|jl
1 k—1
In particular, N(n,k,r) = — (n +k > foranyr €{0,... ,n—1} whend=1.
n
n—1 )
Proof. We use the relation F(n,k,x) Zx Fi(z™). We set a = e’ . For
n—1
all mm € {0,...,n — 1}, we have a " F(n,k,a™) = Zatm*rmFt(a"m) =
t=0

n—1
Z a(t—r)mFt(l)

Summing on m we get
n—1

n—1 —
Z a " F(n, k,a™) Z (Z alt= T)mF )
m=0 m=0

nil (Z (t— r)mF ) i F(1 (nzl a@r)m) — SFt(l)nért =nF.(1)

t=0 \m=0 m=0 t=0
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n—1
1
So we obtain F,.(1) = — E a " F(n,k,a™).
n
m=0

Now, we have to calculate u,, = F(n,k,a™) , where
_ Jj"+k—1)(1 _ xn+k—2) . (1 _ xn+1)(1 _ I")
(L= )1 —252) - (1 - 2)(1 — F)

k—1 :
n 1 n—+j 1
l‘kx x ‘
xk —1 J-I:Il xd —1

which is a polynomial in z, so that F(n, k,a™) has a sense.

1
F(n,k,z) = ack(

n—1
Using L’Hopital’s rule, we are going to calculate the values of xk and
ok —

"t —1

: forj=1,...)k—1l,atx =a™, m=0,1,... ,n—1.

) —1 S
Q™ —
° Ifn/rmk;, then m =0.
n_1 n—1
If njmk, then a: = lim nro_ ﬁ. Moreover, in this case,
T B —am fph—1 L

a™k =1,

Let je{l,... . k—1}.
(i)

e If nfmj, then ——— =1
a™ —1
n+j _ 1 S ontj—1 .
If n|mj, then |°———— TN ) _ntJ
) — 1 - T—a™ jx]*l j

To sum up, we obtain u,, = 0 if n fmk and u,, = % H n -1.-3 it njmk.
1<j<k—1,n|jm
ntj ntD)(tk-1)  (ntk—1
=T 1 (k—1)k - k :
Set d = ged(n, k) and n =n'd, k = k'd so that ged(n’, k') = 1.
Then n|mk < n'|mk’ < n'|m.
If n' fm, then u,, =0
If n'|m, set m = In'. |
Then n|mj < n'd|ln'j < d|lj so that up, = n H n_ﬂ
1<j<k-tdi; 7

k—1
. n
In particular, ug = T li[l

This implies

d—1
1/m+k-1 1 /
N(n,k,r) = ﬁ( i )+EZO‘ " gy
=1
d—1 .
1(n+k—1) In — n+j
S GAR RET0 S R
" k nkiz 1<j<k-vdjt 7
1 (n +k— 1) 1 Kt m = +j
= = - e .
K k ki 1<j<k vt ?

which is a real number.
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d— .
So, we get N(n, k,r) = n(n—!—k—l) %Z <2l7‘7r> H n—i.-]

1<j<kovdit 7

In particular, if d = 1, we get N(n,k,r) = — (n+: B 1) since we have an
n

empty sum.

By the way, keeping the same notation, the following corollary results :

n—1
k—1
Corollary 4.5. With the previous notation, we have Z N(n,k,r) = (n + i > .
r=0

Proof. Tt is enough to sum the formula of Theorem 4.4. We can also get it in view
n—1 n—1
n+k—1
f N(n,k, F( k,1 . O
o ; (n,k,r) Z F(n,k,1) = ( i )
Remark 4.6. N(n,k,r) is a d-periodic function in 7.

Corollary 4.7. With the previous notation, we have N(n,k,r) = N(k,n,r).

Proof. We use the formula of Theorem 4.4

N o) — n<n+k—1> kZ (217«77) 0 (n;i—j)

1<j<k—1,d|jl

where d = ged(n, k). If n = k, there is nothing to prove. So, assume n # k.

k-1 k -1
e It is easily seen that Lt = tn .
n k k‘ n

e The result is gotten if we prove that

oI ) m ()

1<j<k—1,d|jl 1<j<n—1,d|jl

for any [ € M such that 1 <[ <d—1.
For such an ! and a,b € M, set A(a,b) = {j € M| a <j <b and d|jl}. We may
assume n > k. Then
I &+5

1 H <k‘+j)_1 H (k-l—]) _ lijeaan-1
"ig j J " ean-1) J K H J

1<j<n—1,d|jl
JEA(1,n—1)

But

Al,n—-1) = AQun—-k—-1)UAn—-k+1,n—1)U{n—k}
= Ak+1,n—-1)UAQLk-1)U{k}

It follows that

IT G+i=n I *+5 II &+

JjEA(1,n—1) JjEA(l,n—k—1) jEA(n—k+1,n—1)
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and

I i=¢ I I
jEA(1,n—1) jEA(k+1,n—1) JEA(L,k—1)

Moreover, j € A(L,n—k—1) < k+j € A(k+1,n— 1) since d|jl < d|(k + j)I.
So we get H (k+3j) = H j.

JjEA(l,n—k—1) jEA(k+1,n—1)
In the same way, we have j € A(n—k+1ln—1)<t=k+j—nec A(l,k—1)
since d|jl < d|(k+ j — n)l.
So we get 1T k+i)= J[I m+v= ][] @®+i.
JEA(n—k+1,n—1) teA(1,k—1) JEA(Lk—1)
It follows that

n H J H (k+3)

l H k+j _ JEA(k+1,n—1) jEA(n—k+1,n—1)
n'EA(l 1) J -
J sN= . .
nk H J H J
jeA(k+1,n—1) JEA(1,k—1)
I  *x+5 [T ®+5
_ ljeA(m—k+1in-1) _ Ljeagr-1)
g IT S | B
JEA(k—1) JEA(1,k—1)
1 n+j
-3 I (%)
JEA(1,k—1)
and we are done. O

When ged(n, k) > 1, we obtain a simpler evaluation for N(n,k,r).

Theorem 4.8. With the previous notation, set d = ged(n, k) for k,n > 0 and
assume d > 1. Then

<n+ k— 1) N % > (8)u(8/ ged(r, d)) (g +5- 1)

N(n,k,r) = 1

n k @(8/ ged(r, d)) 5

1<6<d,8|d

where @ and p are respectively the Euler function and the Mdobius function.
In particular, we have
_ 1>

Voo = (" ) e S et
voukn =2 (") e Y u(a)(%+§‘1)

>[3
+
SOASRNES

n
1<6<d,6|d
and

1<6<d,8|d

when r > 0 and ged(r,d) = 1.



DIOPHANTINE EQUATIONS AND SEMINORMAL CK DOMAINS 13

d—1 )

21

Proof. Set S = E oS (?) A H . (n—l— j) with the notation of The-
1=1 1<j<k—1,d|;1

orem 4.4. We can write

- n (Lm0 )

1<6'<d—1,8'|d \1<i<d—1,gcd(l,d)=6" 1<j<k—1,d|5l

- Y

1<6<d,b|d

d
where 6 = 5 and

21 j
os = Z cos (—§W> | H | (nj‘3>
1<1<d—1,ged(l,d)=6' 1< <k—1,d|jl
d l
For 8’ = ged(l,d), we have d|jl and 1 < j < k < 5 divides jﬁ and 1 <j<k
@6dividesjand1§j§k®j=i6and1§i§5.
It follows that

n (459 1 ()07

1<j<k—1,dlji

nyk_ 21
0‘6:(6+T‘E ) Z cos( §W>
6 (1,d)=6"

1<I<d—1,gcd

and

Consider

ve Y e s ()

1<1<d—1,gcd(l,d)=6" 1<i<d—1,gcd(l,d

B Z cos rm
- )

1<U/<6—1,ged(l/,6)=1

l
where I' = —.
But 75 is also the real part of the Ramanujan sum

c(r,6) = Z e%

1<U<6—1,ged(l/,6)=1

We have an explicite representation for ¢(r, §) due to Holder (see [13, Theorem 7.37,

5
chapter 7, page 464]) by ¢(r,§) = m, where ¢ and 1 are respectively the Eu-

ler function and the Mobius function, and where m = d/ ged(d, ré") = 6/ ged(r, 6).
Since ¢(r, 8) is a real number, we obtain 75 = ¢(r, §) and the result is gotten.
In particular, we have the following two special cases
o r =0 gives 75 = p(9)
and
e ged(r,d) =1 with 7 > 0 gives 75 = u(9). O
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Example 4.9. We are going to find the distinct factorizations into atoms of an
element of a local seminormal CK domain.

Let w = (1 ++/5)/2 and consider the PID Z[w]. Since 2 is inert in Z[w], the
ring S = Z[2w] is weakly factorial and t-closed, and so is a generalized CK domain
with conductor 2Z[w|, a maximal ideal in Z[w] [11, Theorem 2| and [12, Example
(2), page 177]. Set R = Sog,], which is a local seminormal CK domain and 2 is
an atom in R and R. In view of [12, Theorem 1.2, Proposition 2.1 and Proposition
3.1], we have |U(R)/U(R)| = 3. Set x = 32 = 2°. By Theorems 3.11 and 4.4, we get

7
n(z) = 3ls) = 7 since ged(3,5) = 1. As w is the fundamental unit of Z[w], its class

generates the cyclic group U(R)/U(R). We can choose p = 2, p' = 2w, p" = 2w?
for the nonassociate atoms of R. The different nonassociated factorizations of x
into atoms of R are the following:
T = p5 _ w—3p3p/p// _ w—3p2p/3 _ w—6p2p//3 _ (4‘)—6pp/2p//2 _ w—6p/4p// _
w—9p/p//4.
5. ON THE ASYMPTOTIC BEHAVIOUR OF THE NUMBER OF DISTINCT
FACTORIZATIONS INTO ATOMS IN A SEMINORMAL CK DOMAIN

As we saw in Section 3, we can restrict to the local case to evaluate the number
of distinct factorizations into atoms of an element of a CK domain. To calculate
this number for some special elements, we use results of Section 4.

Theorem 5.1. Let R be a local seminormal CK domain with integral closure R.
Let Rp be the mazimal ideal of R, with p € R. Set n = |U(R)/U(R)|.

Let x = vp¥, k € N*, v € U(R). The number of nonassociated factorizations of
n—1

k
2™, m € N* into atoms of R is of the form n(z™) = —|m"_1 +0(m"™?).
n

In particular, if x is an atom of R, then n(z™) = —'m’“1 +0(m™2).
n!

Proof. We can use Theorem 1.1 since its assumptions are satisfied by a CK domain.
So n(x™) is of the form n(z™) = Am? + O(m?~1) for m € N*, where A € (,
d e ™, A>0. Then, it is enough to find an equivalent of n(z™). For any m € nHM,
we have v™ € U(R) and 2™ is associated to p™*, so that we can assume that n
divides m to get A and d. In view of Theorem 3.11, we are led to calculate the
number N(n, km,0) = n(z™) of solutions (ay,... ,a,) € N" of the system gotten
in Theorem 4.4 :

Zai =km (1)

() ¢
ZZE—:(_) (2) inZ/nZ
i=1

But, by Corollary 4.7, we have, since n = ged(n, mk)
N(n,km,0) = N(km,n,0) =

n—1 .
1 fmk4+n—-1 1 2lrm mk + J
mk( n )mZ COS(n) I ( J >
=1 1<j<n—1,n|jl

where r = 0.
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First, we have
1 <mk+n—1>  (mk4+n—1)---(mk+1) (mk)"! _mnflk"_l
mk - ~ N nl

1 mk+ j
N ider — _— i =0.
ow, consider — Z H ( , ) since r

=1 \1<j<n-—1,n|jl J
Because of ] < n — 1 < n, we cannot have n|l, so that j # 1 and we have at most
n — 2 factors in the product.

k .
It follows that H (Lﬂ) < (mk + n)n—Q = O(mn_Q), As we have a
1<j<n—1,nljl J

n n! n! n!

kn—l

mP L. O
n!

sum of n — 1 terms, we get that n(z™) ~
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