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AN ACCURATE FINITE ELEMENT METHOD FOR ELLIPTIC

INTERFACE PROBLEMS

GUNTHER H. PEICHL ∗ AND RACHID TOUZANI †

Abstract. A finite element method for elliptic problems with discontinuous coefficients is pre-
sented. The discontinuity is assumed to take place along a closed smooth curve. The proposed
method allows to deal with meshes that are not adapted to the discontinuity line. The (nonconform-
ing) finite element space is enriched with local basis functions. We prove an optimal convergence
rate in the H1–norm. Numerical tests confirm the theoretical results.

1. Introduction. Boundary value problems with discontinuous coefficients con-
stitute a prototype of various problems in heat transfer and continuum mechanics
where heterogeneous media are involved. The numerical solution of such problems
requires much care since their solution does not generally enjoy enough smoothness
properties required to obtain optimal convergence rates. Although fitted or adapted
meshes can handle such difficulties, these solution strategies become expensive if the
discontinuity front evolves with time or within an iterative process. Such a (weak)
singularity appears also in the numerical solution of other types of problems like free
boundary problems when they are formulated for a fixed mesh or for fictitious domain
methods.

We address, in this paper, a new finite element approximation of a model elliptic
transmission problem that allows nonfitted meshes. It is well known that the stan-
dard finite element approximation of such a problem does not converge with a first
order rate in the H1-norm in the general case. We propose a method that converges
optimally provided the interface curve is a sufficiently smooth curve. Our method is
based on a local enrichment of the finite element space in the elements intersected by
the interface. The local feature is ensured by the use of a hybrid approximation. A
Lagrange multiplier enables to recover the conformity of the approximation. The de-
rived method appears then rather as a local modification of the equations of interface
elements than a modification of the linear system of equations. This property ensures
that the structure of the matrix of the linear system is not affected by the enrichment.

Let us mention other authors who addressed this topic in the finite element con-
text. We point out the so-called XFEM (eXtended Finite Element Methods) devel-
oped in Belytschko et al. [3] where the finite element space is modified in interface
elements by using the level set function associated to the interface. Such methods,
that are used also for crack propagation, have in our point of view, the drawback of
resulting in a variable matrix structure. Moreover, although no theoretical analysis
is available, numerical experiments show that they are not optimal in terms of accu-
racy. Other authors like Hansbo et al. [13, 12], have similar approaches to ours but
here also the proposed method seems to modify the matrix structure by enriching
the finite element. In Lamichhane–Wohlmuth [16] and Braess–Dahmen [5], a simi-
lar Lagrange multiplier approach is used for a mortar finite element formulation of
a domain decomposition method. Finally, in a work by Li et al [15], an immersed
interface technique, inspired from finite difference schemes, is adapted to the finite el-
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CNRS (UMR 6620), Campus Universitaire des Cézeaux, 63177 Aubière cedex, France.
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ement context. Note also that the references where Lagrange multipliers are employed
have for these multipliers as supports the edges defining the interface. In our method,
the interface supports the added degrees of freedom but the Lagrange multipliers are
defined on the edges intersected by the interface and thus serve to compensate the
nonconformity of the finite element space rather than enforcing interface conditions,
which are being naturally ensured by the variational formulation.

In the following, we use the space L2(Ω) equipped with the norm ‖ · ‖0,Ω and the
Sobolev spaces Hm(Ω) and Wm,p(Ω) endowed with the norms ‖ · ‖m,Ω and ‖ · ‖m,p,Ω

respectively. We shall also use the semi-norm | · |1,Ω of H1(Ω). Moreover, if Ω1 and Ω2

form a partition of Ω, i.e., Ω = Ω1∪Ω2, Ω1∩Ω2 = ∅ and if v is a function in Wm−1,p(Ω)
with v|Ωi

∈ Wm,p(Ωi), then we shall adopt the convention v ∈ Wm,p(Ω1 ∪ Ω2) and
denote by ‖v‖m,p,Ω1∪Ω2

the broken Sobolev norm

‖v‖m,p,Ω1∪Ω2
= ‖v‖m−1,p,Ω + ‖v‖m,p,Ω1

+ ‖v‖m,p,Ω2
.

Similarly, we denote by ‖ · ‖m,Ω1∪Ω2
and | · |m,Ω1∪Ω2

, the broken Sobolev norm and
semi-norm respectively for the Hm–space. Finally, we shall denote by C, C1, C2, . . .
various generic constants that do not depend on mesh parameters and by |A| the
Lebesgue measure of a set A and by A◦ the interior of a set A.

Let Ω denote a domain in R
2 with smooth boundary Γ and let γ stand for a closed

C2-curve in Ω which separates Ω into two disjoint subdomains Ω+, Ω− such that
Ω = Ω+ ∪ γ ∪Ω− and ∂Ω+ = γ. For given f ∈ L2(Ω) and a ∈ L∞(Ω) we consider the
transmission problem:





−∇ · (a∇u) = f in Ω+ ∪ Ω−,

u = 0 on Γ,

[u] =
[
a
∂u

∂n

]
= 0 on γ,

where [v] denotes the jump of a quantity v across the interface γ and n is the normal
unit vector to γ pointing into Ω−. For definiteness we let [v] = v−−v+ with v± = v|Ω± .
In addition to boundedness of the diffusion coefficient we assume

a± ∈ W 1,∞(Ω±),

a(x) ≥ α > 0, for x ∈ Ω,
(1.1)

i.e. a is uniformly continuous on Ω \ γ, but discontinuous across γ.
The standard variational formulation of this problem consists in seeking u ∈

H1
0 (Ω) such that

∫

Ω

a∇u · ∇v dx =

∫

Ω

fv dx ∀ v ∈ H1
0 (Ω). (1.2)

In view of the ellipticity condition (1.1), Problem (1.2) has a unique solution u in
H1

0 (Ω) but clearly u /∈ H2(Ω). We shall assume throughout this paper the regularity
properties:

u|Ω− ∈ H2(Ω−), u|Ω+ ∈ H2(Ω+),

‖u‖2,Ω−∪Ω+ ≤ C ‖f‖0,Ω. (1.3)
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Note that these assumptions are satisfied in the case where a|Ω− and a|Ω+ are constants
(see [14, 18] for instance).

In the following, we describe a fitted finite element method. defined by adding
extra unknowns on the interface γ. It turns out that this method leads to an optimal
convergence rate. Although it is well suited for the model problem it seems to be
inefficient in more elaborate problems which, for example, involve moving interfaces.
To circumvent this difficulty, we define a new method where the added degrees of
freedom have local supports and then yield a nonconforming finite element method.
We show that the use of a Lagrange multiplier removes this nonconformity and ensures
an optimal convergence rate.

2. A fitted finite element method. Assume that the domain Ω is a convex
polygon and consider a regular triangulation Th of Ω with closed triangles whose
edges have lengths ≤ h. We assume that h is small enough so that for each triangle
T ∈ Th only the following cases have to be considered:

1) T ∩ γ = ∅.
2) T ∩ γ is an edge or a vertex of T .
3) γ intersects two different edges of T in two distinct points different from the

vertices.
4) γ intersects one edge and its opposite vertex.

Let Vh denote the lowest degree finite element space

Vh = { v ∈ C0(Ω); v|T ∈ P1(T ) ∀ T ∈ Th, v = 0 on Γ},

where P1(T ) is the space of affine functions on T . A finite element approximation of
(1.2) consists in computing uh ∈ Vh such that

∫

Ω

a∇uh · ∇v dx =

∫

Ω

fv dx ∀ v ∈ Vh. (2.1)

It is well known that, since u /∈ H2(Ω), the classical error estimates (see [8]) do not
hold any more even though we still have the convergence result,

lim
h→0

‖u − uh‖1,Ω = 0.

A fitted treatment of the interface γ can however improve this result. Let for this
purpose T

γ
h denote the set of triangles that intersect the interface γ corresponding

to cases 3) and 4) above,

T
γ

h := {T ∈ Th; γ ∩ T ◦ 6= ∅},

and consider a continuous piecewise linear interpolation of γ, denoted by γh, as shown
in Figure 2.1. Clearly, γh is the line that intersects γ at two edges of any triangle that
contains γ. Unless the intersection of γ with the boundary of a triangle T does not
coincide with an edge, T is split into two sets T + and T− separated by the curve γ. In
case 3), the straight line γh∩T splits T into a triangle K1 and a quadrilateral that we
split into two subtriangles K2 and K3, where we choose K2 such that K1 ∩K2 = γh.
In case 4), γh ∩ T splits T into two triangles K1 and K2. In this case we set K3 = ∅.
This construction defines the new fitted finite element mesh of the domain Ω (see
Figure 2.1). The splitting T = K1 ∪ K2 ∪ K3 is not unique but the convergence
analysis does not depend on it. Let us denote by T

γ
T the set of the three subtriangles
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of T . Below Eh will stand for the set of all edges of elements and E
γ
h is the set of all

edges that are intersected by γ (or γh), i.e.

E
γ
h := {e ∈ Eh; γ ∩ e◦ 6= ∅}.

For each T ∈ Th, ET is the set of the three edges of T . The fitted mesh is denoted by

K1

K3

K2

γh

γ

Fig. 2.1. Subdivision of interface triangles.

T F
h , i.e.

T
F

h := Th ∪
⋃

T∈T
γ

h

(
∪K∈T

γ

K
K
)
.

and by Sγ
h :=

⋃{T ; T ∈ T
γ

h }. Let us finally note that the curve γh defines a new
splitting of Ω into two subdomains Ω−

h and Ω+
h where Ω±

h is defined analogously to
Ω± with γ replaced by γh.

Next we construct an approximation of the function a on the elements of T F
h :

For this purpose, let ã± be extensions of a± to Ω such that ã± ∈ W 1,∞(Ω). Such
extensions exist due to the regularity of γ (see [1]). Define ãh ∈ W 1,∞(Ω) by

ãh =

{
ã+ in Ω+

h ,

ã− in Ω−
h ,

and denote by ah the piecewise linear interpolant of ã on T F
h . Hence ah is continuous

on Ω+
h ∪ Ω−

h and coincides with a on the nodes of T F
h . In addition, the function ah

is discontinuous across the line γh and satisfies the properties,

ah|Ω+

h
∈ W 1,∞(Ω+

h ), ah|Ω−

h
∈ W 1,∞(Ω−

h ), (2.2)

‖ah‖0,∞,Ω ≤ C ‖a‖0,∞,Ω, (2.3)

ah ≥ α > 0 a.e. in Ω. (2.4)

We now define the finite element space

Wh = Vh + Xh,

Xh := {v ∈ C0(Ω); v|Ω\Sγ

h
= 0, v|K ∈ P1(K) ∀ K ∈ T

γ
T , ∀ T ∈ T

γ
h }.

Note that we have Wh ⊂ H1
0 (Ω). A fitted finite element approximation is defined as

the follows:




Find uF
h ∈ Wh such that

∫

Ω

ah∇uF
h · ∇v dx =

∫

Ω

fv dx ∀ v ∈ Wh.
(2.5)
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In order to study the convergence of Problem (2.5), we consider the auxiliary
problem:






Find ûh ∈ H1
0 (Ω) such that

∫

Ω

ah∇ûh · ∇v dx =

∫

Ω

fv dx ∀ v ∈ H1
0 (Ω).

(2.6)

We note that both problems (2.5) as well as (2.6) have a unique solution. The
regularity properties (1.3) imply u+ ∈ C0(Ω̄+), u− ∈ C0(Ω̄−) and that u+ and u−

have a common trace on γ. Therefore u is continuous on Ω and the piecewise P1

interpolant Ihu ∈ Wh is well defined. In the following let ũ± ∈ H2(Ω) stand for the
extensions of u± from Ω± to Ω.

In the sequel, we assume that the fitted family of meshes (Th ∪T
γ

h )h satisfies the
condition

h

̺
≤ C h−θ (2.7)

for some θ ∈ [0, 1) and for which C is independent of h, where ̺ denotes the radius
of the largest ball contained in any triangle in any triangle T ∈ T F

h .
Lemma 2.1. Let u ∈ H2(Ω+ ∪ Ω−).
1. We have the local interpolation error

|u − Ihu|1,T ≤
{

Ch |u|2,T for T ∈ Th \ T
γ

h

C h2

̺K
(|ũ+|2,K + |ũ−|2,K) for K ∈ T

γ
T , T ∈ T

γ
h ,

(2.8)

where ̺K is the radius of the inscribed circle of K.
2. The global interpolation error is given by

|u − Ihu|1,Ω ≤ C h1−θ |u|2,Ω+∪Ω− . (2.9)

Moreover, if u ∈ W 2,∞(Ω+ ∪ Ω−) then

|u − Ihu|1,Ω ≤ C h |u|2,∞,Ω+∪Ω− . (2.10)

Proof. Since the local interpolation error estimate for T ∈ Th \ T
γ

h is classic in
finite element theory (see [6] or [8] for instance), we only need to prove the second
estimate on triangles where u is only piecewise smooth. Consider an element T ∈ T

γ
h

and any subtriangle K ∈ T
γ

T . Without loss of generality we assume K ⊂ Ω+
h , then

K = (K ∩ Ω+) ∪ (K ∩ Ω−).

Since K ∩ Ω− ⊂ T ∩ Ω− ∩ Ω+
h and γh interpolates the interface γ we obtain for the

measure of K ∩ Ω−

|K ∩ Ω−| ≤ |T ∩ Ω− ∩ Ω+
h | ≤ Ch3, (2.11)

with a constant C > 0 which depends on γ only. In view of Ihu = Ihũ+, the standard
interpolation theory (see [8] or [6]) implies

|u − Ihu|1,K ≤ |u − ũ+|1,K + |ũ+ − Ihũ+|1,K

≤ |u − ũ+|1,K + C
h2

̺K
|ũ+|2,K .

(2.12)
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Since ũ+ = u holds on K ∩ Ω+ we obtain

|u − ũ+|1,K = |u − ũ+|1,K∩Ω− ≤ |u−|1,K∩Ω− + |ũ+|1,K∩Ω− .

Applying Hölder’s inequality with p = 3
2 and q = 3, the imbedding of H1(K) into

L6(K) (Note that the imbedding constant can be bounded independently of h) and
(2.11) one can bound |u−|1,K∩Ω− (and analogously |ũ+|1,K∩Ω−) by

|u−|1,K∩Ω− ≤ |K ∩ Ω−| 13 ‖∇u−‖0,6,K∩Ω−

≤ C h ‖∇ũ−‖0,6,K ≤ C h |ũ−|2,K .

Hence

|u − ũ+|1,K ≤ C h (|ũ−|2,K + |ũ+|2,K).

Inserting this estimate into (2.12) leads to

|u − Ihu|1,K ≤ C
h2

̺K
(|ũ−|2,K + |ũ+|2,K).

To prove the global interpolation error bound, we write

|u − Ihu|21,Ω =
∑

T∈Th\T
γ

h

|u − Ihu|21,T +
∑

T∈T
γ

h

∑

K∈T
γ

T

|u − Ihu|21,K

≤ Ch2
∑

T∈Th\T
γ

h

|u|22,T + C
∑

T∈T
γ

h

∑

K∈T
γ

T

h2

̺K
(|ũ−|22,K + |ũ+|22,K)

≤ C
h2

̺
(|ũ−|22,Ω + |ũ+|22,Ω)

≤ C
h2

̺
|u|22,Ω+∪Ω− ,

where

̺ = min{̺K : K ∈ T
γ

T , T ∈ T
γ

h }.
The calculation above indicates how the convergence rate can be improved in case
u ∈ W 2,∞(Ω+ ∪ Ω−) observing that |Sγ

h | ≤ Ch holds.
Remark 2.1. It is classic in finite element theory to assume that the meshes are

regular in the sense that Condition (2.7) is satisfied for θ = 0. For the fitted meshes
T

γ
h one cannot guarantee that such a condition is satisfied. To relax this constraint,

we assume here (2.7) for a θ ∈ [0, 1) thus allowing a larger class of fitted meshes than
permitted by θ = 0.

The following result gives the convergence rate for Problem (2.5).
Theorem 2.1. Assume that the family of fitted meshes (T F

h )h satisfies the reg-
ularity property (2.7). Then we have the error estimate

|u − uF
h |1,Ω ≤

{
Ch1−θ ‖u‖2,Ω+∪Ω− if u ∈ H2(Ω+ ∪ Ω−),

Ch ‖u‖2,∞,Ω+∪Ω− if u ∈ W 2,∞(Ω+ ∪ Ω−).
(2.13)
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Proof. We have from the triangle inequality

|u − uF
h |1,Ω ≤ |u − ûh|1,Ω + |ûh − uF

h |1,Ω. (2.14)

To bound the first term on the right-hand side of (2.14), we proceed as follows: Let
us subtract (2.6) from (1.2) and choose v = u − ûh. We have

∫

Ω

(a∇u − ah∇ûh) · ∇(u − ûh) dx = 0.

Then
∫

Ω

ah|∇(u − ûh)|2 dx = −
∫

Ω

(a − ah)∇u · ∇(u − ûh) dx

= −
∫

Ω\Sγ

h

(a − ah)∇u · ∇(u − ûh) dx −
∑

T∈T
γ

h

∫

T

(a − ah)∇u · ∇(u − ûh) dx.

The usual estimate for the interpolation error gives

‖a− ah‖0,∞,Ω ≤ Ch (‖ã‖1,∞,Ω+

h
+ ‖ã‖1,∞,Ω−

h
)

≤ Ch ‖a‖1,∞,Ω+∪Ω− .

with a constant C which only depends on a reference triangle, (see [8], p. 124). Thus
we obtain
∣∣∣∣
∫

Ω\Sγ

h

(a−ah)∇u·∇(u−ûh) dx

∣∣∣∣ ≤ C h ‖a‖1,∞,Ω+∪Ω− |u|1,Ω\Sγ

h
|u−ûh|1,Ω\Sγ

h
. (2.15)

Next we consider a triangle T ∈ T
γ

h which we split as

T = (T ∩ Ω+ ∩ Ω+
h ) ∪ (T ∩ Ω− ∩ Ω−

h ) ∪ (T ∩ Ω+ ∩ Ω−
h ) ∪ (T ∩ Ω− ∩ Ω+

h ).

As before, we obtain
∣∣∣∣
∫

T∩Ω+∩Ω+

h

(a−ah)∇u·∇(u−ûh) dx

∣∣∣∣ ≤ Ch ‖a‖1,∞,Ω+∪Ω− |u|1,T∩Ω+∩Ω+

h
|u−ûh|1,T∩Ω+∩Ω+

h
.

Arguing as in the proof of Lemma 2.1, the generalized Hölder inequality together with
(2.11) yields the estimate
∣∣∣∣
∫

T∩Ω+∩Ω−

h

(a − ah)∇u · ∇(u − ûh) dx

∣∣∣∣

=

∣∣∣∣
∫

T∩Ω+∩Ω−

h

(a+ − a−
h )∇u+ · ∇(u+ − ûh) dx

∣∣∣∣

≤ C ‖a‖0,∞,Ω |T ∩ Ω+ ∩ Ω−
h |1/3 ‖∇u+‖0,6,T∩Ω+∩Ω−

h
‖∇(u+ − ûh)‖0,T∩Ω+∩Ω−

h

≤ C h ‖a‖0,∞,Ω |ũ+|2,T ‖∇(u+ − ûh)‖0,T .

Analogous estimates hold with + and − interchanged. Collecting the four contribu-
tions to the triangle T one obtains

∣∣∣∣
∫

T

(a − ah)∇u · ∇(u − ûh) dx

∣∣∣∣

≤ Ch (‖a‖0,∞,Ω + ‖a‖1,∞,Ω+∪Ω−)

×
(
|ũ+|2,T ‖∇(u+ − ûh) ‖0,T∩Ω+ + |ũ−|2,T ‖∇(u− − ûh)‖0,T∩Ω−

)
.
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Combining this estimate with (2.15) leads to

∫

Ω

ah |∇(u − ûh)|2 dx ≤ Ch ‖a‖1,∞,Ω+∪Ω− |u|1,Ω\Sγ

h
|u − ûh|1,Ω\Sγ

h

+ C h (‖a‖0,∞,Ω + ‖a‖1,∞,Ω+∪Ω−)

×
∑

T∈T
γ

h

(
|ũ+|2,T ‖∇(u+ − ûh)‖0,T∩Ω+ + |ũ−|2,T ‖∇(u− − ûh)‖0,T∩Ω−

)

≤ C h ‖a‖1,∞,Ω+∪Ω− |u|1,Ω\Sγ

h
|u − ûh|1,Ω\Sγ

h

+ C h (‖a‖0,∞,Ω + ‖a‖1,∞,Ω+∪Ω−)(|ũ+|2,Sγ

h
+ |ũ−|2,Sγ

h
) ‖∇(u − ûh)‖0,Sγ

h

≤ C h (‖a‖0,∞,Ω + ‖a‖1,∞,Ω+∪Ω−) |u|2,Ω+∪Ω−‖∇(u − ûh)‖0,Ω,

which by (2.4) implies

|u − ûh|1,Ω ≤ C h (‖a‖0,∞,Ω + ‖a‖1,∞,Ω+∪Ω−) |u|2,Ω+∪Ω− . (2.16)

To bound the norm |ûh − uF
h |1,Ω, we have from problems (2.6) and (2.5),

∫

Ω

ah∇(ûh − uF
h ) · ∇v dx = 0 ∀ v ∈ Wh.

Standard finite element approximation theory combined with (2.2)–(2.3) gives

|ûh − uF
h |1,Ω ≤ C inf

v∈Wh

|ûh − v|1,Ω, (2.17)

which together with (2.16) implies

|ûh − uF
h |1,Ω ≤ C |ûh − Ihu|1,Ω

≤ C |ûh − u|1,Ω + C |u − Ihu|1,Ω

≤ C h |u|2,Ω+∪Ω− + C |u − Ihu|1,Ω.

The interpolation error is bounded using (2.9) or (2.10).

3. A hybrid approximation. The method presented in the previous section
has proven its efficiency as numerical tests will show in the last section. In more
elaborate problems like time dependent or nonlinear problems where the interface
γ is a moving front, the subtriangulation T

γ
h moves within iterations and then the

matrix structure has to be frequently modified. To remedy to this difficulty, we resort
to a hybridization of the added unknowns. More specifically, the added discrete space
Xh is replaced by a nonconforming approximation space. In addition, a Lagrange
multiplier is used to compensate this inconsistency. The hybridization enables to
locally eliminate the added unknowns in each triangle T ∈ T

γ
h . In the sequel we

fix an orientation for the interface γ. This induces an orientation of the normals to
the edges e ∈ E

γ
h by following the interface in the positive direction. The jump of a

function v across an edge e ∈ E
γ
h can then be defined as

[v]e(x) := lim
s→0,s>0

v(x + sn(x)) − lim
s→0,s<0

v(x + sn(x)) ≡ v+(x) − v−(x), x ∈ e,

where n is the unit normal to e.
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To develop this method, we start by defining an ad-hoc formulation for the solu-
tion ûh of (2.6). Let us define the spaces

Ẑh := H1
0 (Ω) + Ŷh,

Ŷh := {v ∈ L2(Ω); v|Ω\Sγ

h
= 0, v|T ∈ H1(T ) ∀ T ∈ T

γ
h ,

[v] = 0 on e, ∀ e ∈ Eh \ E
γ
h },

Q̂h :=
∏

e∈E
γ

h

H
− 1

2

00 (e),

where H
− 1

2

00 (e) is the dual space of the trace space

H
1
2

00(e) := {v|e; v ∈ H1(T ), e ∈ ET , v = 0 on d ∀ d ∈ ET , d 6= e}.

We remark that the jumps [v] for v ∈ Ẑh can be interpreted in H
1
2

00(e) for e ∈ E
γ
h .

This is due to the fact that v ∈ H1(T ) for all T ∈ Th, that for every e ∈ E
γ
h , the

jump of v lies in H
1
2 (e) and vanishes at the endpoints of e as well as on at least two

adjacent edges. This motivates the choice of Q̂h.
The elements of Q̂h will be referred to by µ = (µe)e∈E

γ

h
. We endow Ẑh with the

broken norm

‖u‖Ẑh
= (

∑

T∈Th

|u|21,T )1/2.

On Q̂h we use the norm

‖µ‖Q̂h
=
( ∑

e∈E
γ

h

‖µe‖2

H
− 1

2
00

(e)

) 1
2

:=

(
∑

e∈E
γ

h

(
sup

v∈H
1
2
00

(e)\{0}

∫
e µev ds

‖v‖
H

1
2
00

(e)

)2
) 1

2

.

Above, the integrals over edges e are to be interpreted as duality pairings between

H
− 1

2

00 (e) and H
1
2

00(e). We mention that the broken norm in Ẑh reflects the fact that

Ẑh is not a subspace of H1
0 (Ω).

Next we define the variational problem,

Find (ûH
h , λ̂h) ∈ Ẑh × Q̂h such that:

∑

T∈Th

∫

T

ah ∇ûH
h · ∇v dx −

∑

e∈E
γ

h

∫

e

λ̂h [v] ds =

∫

Ω

fv dx ∀ v ∈ Ẑh, (3.1)

∑

e∈E
γ

h

∫

e

µ [ûH
h ] ds = 0 ∀ µ ∈ Q̂h. (3.2)

The saddle point problem (3.1)–(3.2) indicates that the continuity of ûh across the
edges of E

γ
h is enforced by a Lagrange multiplier technique.

Theorem 3.1. Problem (3.1)–(3.2) has a unique solution (ûH
h , λ̂h) ∈ Ẑh × Q̂h.

Moreover, we have ûH
h = ûh and the following estimate holds

‖ûH
h ‖Ẑh

+ ‖λ̂h‖Q̂h
≤ C ‖f‖0,Ω, (3.3)

9



with a constant C which is independent of h.
Proof. Problem (3.1)–(3.2) can be put in the standard variational form

{
A (ûH

h , v) + B(v, λ̂h) = (f, v) ∀ v ∈ Ẑh,

B(ûH
h , µ) = 0 ∀ µ ∈ Q̂h,

where

A (u, v) =
∑

T∈Th

∫

T

ah ∇u · ∇v dx,

B(v, µ) = −
∑

e∈E
γ

h

∫

e

µ [v] ds,

(f, v) =

∫

Ω

fv dx.

The bilinear form A is clearly continuous and coercive on the space Ẑh × Ẑh. The
bilinear form B is also continuous on Ẑh × Q̂h.

Next we verify that B satisfies the inf-sup condition, i.e. there exists δ > 0 such
that for every λ ∈ Q̂h there exists vµ ∈ Ẑh such that

B(vµ, µ) ≥ δ ‖vµ‖Ẑh
‖µ‖Q̂h

i.e.

∑

e∈E
γ

h

∫

e

µe[vµ] ds ≥ δ ‖vµ‖Ẑh
‖µ‖Q̂h

(3.4)

holds.
Given µ = (µe)e∈E

γ

h
∈ Q̂h and an edge e ∈ E

γ
h choose a triangle T ∈ T

γ
h which

has e as one of its edges. Define vT ∈ H1(T ) as the solution of






∆v = 0 in T,

∂v

∂n
= µe on e,

v = 0 on ∂T \ e,

(3.5)

which is equivalent to
∫

T

∇v · ∇ϕdx =

∫

e

µeϕds for ϕ ∈ H1
e (T )

where

H1
e (T ) = {ϕ ∈ H1(T ); ϕ = 0 on ∂T \ e}.

By Green’s theorem we obtain

‖µe‖−1/2,e =
∥∥∥

∂vT

∂n

∥∥∥
−1/2,e

≤ ‖∇vT ‖0,T ,

∫

e

µevT ds =

∫

T

|∇vT |2 dx,

10



which implies

‖µe‖2
−1/2,e ≤

∫

T

|∇vT |2 dx =

∫

e

µevT ds.

Let χT denote the characteristic function of T and define

vµ =
∑

T∈T Γ
h

χT vT .

Since there are as many edges in E
γ
h as triangles in T

γ
h then [vµ] = vT holds for every

edge e ∈ E
γ
h . Hence we obtain

‖µ‖2
Q̂h

=
∑

e∈E
γ

h

‖µe‖2
−1/2,e ≤

∑

T∈T
γ

h

‖∇vT ‖2
0,T =

∑

e∈E
γ

h

∫

e

µe[vµ] ds.

Furthermore,

‖vµ‖2
Ẑh

=
∑

T∈Th

‖∇vT ‖2
0,T =

∑

T∈T
γ

h

‖∇vT ‖2
0,T

holds. This implies

‖µ‖2
Q̂h

‖vµ‖2
Ẑh

≤
( ∑

T∈T
γ

h

‖∇vT ‖2
0,T

)2

= B(vµ, µ)2.

Adjusting the sign of vµ this is equivalent to (3.4) with δ = 1. The estimate (3.3) is
a direct consequence of (3.4).

Now, it is clear from (3.2) that

[ûH
h ] = 0 on e, ∀ e ∈ T

γ
h .

This implies that ûH
h ∈ H1

0 (Ω). Choosing a test function v ∈ H1
0 (Ω) in (3.1), we find

that ûH
h is a solution to Problem (2.6), and then ûH

h = ûh. The interpretation of λ̂h

is simply obtained by the Green’s formula.
We are now able to present a numerical method to solve the interface problem.

This one is simply derived as a finite element method to solve the saddle point prob-
lem (3.1)–(3.2). We consider for this end a piecewise constant approximation of the
Lagrange multiplier. Let us define the finite dimensional spaces,

Zh := Vh + Yh,

Yh := {v ∈ L2(Ω); v|Ω\Sγ

h
= 0, v|K ∈ P1(K) ∀ K ∈ T

γ
T , ∀ T ∈ T

γ
h ,

[v] = 0 on e, ∀ e ∈ Eh \ E
γ
h },

Qh :=
{
µ ∈

∏

e∈E
γ

h

L2(e); µ|e = const. ∀ e ∈ E
γ
h

}
.

The hybrid finite element approximation is given by the following problem:

Find (uH
h , λh) ∈ Zh × Qh such that:

∑

T∈Th

∫

T

ah ∇uH
h · ∇v dx −

∑

e∈E
γ

h

∫

e

λh [v] ds =

∫

Ω

fv dx ∀ v ∈ Zh, (3.6)

∑

e∈E
γ

h

∫

e

µ [uH
h ] ds = 0 ∀ µ ∈ Qh. (3.7)
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Let us give some additional remarks before proving convergence properties of this
method.

1. The matrix formulation of the method has the following form




A C 0

CT D B
0 BT 0








ũ
ṽ

λ̃



 =




b
c
0



 , (3.8)

where the vector ũ contains the values of uH
h at nodes of the mesh Th, i.e. components

of uH
h in the Lagrange basis of Vh, ṽ contains the components of uF

h in the basis of

Yh, and λ̃ has as components the values of λh on the edges of E
γ
h . There is clearly

no simple method to eliminate off diagonal blocks in the system (3.8) in order to
decouple the variables. More specifically, our aim is to eliminate the unknowns ṽ.

2. The method must be viewed in the context of an iterative process like the
Uzawa method, where the Lagrange multiplier λh is decoupled from the primal vari-
able uH

h . In such situations, each iteration step consists in solving an elliptic problem
with a given λh. Let us recall that, due to the local feature of the basis functions of
nodes on edges of E

γ
h , the unknowns associated to these nodes can be eliminated at

the element level. This is a basic issue in our method.
3. We point out that equation (3.7) entails

[uH
h ] = 0 on e, ∀ e ∈ T

γ
h . (3.9)

This follows from the fact that uH
h is an affine function on each edge of T

γ
h . This

implies that actually uH
h ∈ Wh. Choosing v ∈ Wh in (3.1) we find

∫

Ω

ah∇uH
h · ∇v dx =

∫

Ω

fv dx.

This yields uH
h = uF

h .

4. Convergence analysis. This section is devoted to the proof of existence,
uniqueness and stability of the solution of (3.6)–(3.7) as well as its convergence to
Problem (3.1)–(3.2).

For this result we need a localized quasi-uniformity of the mesh. More precisely,
we assume that

|e| ≥ Ch ∀ e ∈ E
γ
h . (4.1)

In addition, we make the following assumption:

The distance of the intersection point of γ with any edge e ∈ E
γ
h

to the endpoints of e can be bounded from below by δh, where δ is

independent of h.

(4.2)

Although this assumption appears to be quite restrictive, numerical tests have shown
that it can be actually ignored in applications.

Theorem 4.1. Assume that the family of meshes (Th)h satisfies Property (4.1).
Then Problem (3.6)–(3.7) has a unique solution. Moreover, we have the bound

‖uH
h ‖Ẑh

+ ‖λh‖Qh
≤ C ‖f‖0,Ω, (4.3)
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where the constant C is independent of h.
Proof. It is clearly sufficient to prove the inf-sup condition (see for instance

Brezzi-Fortin [7]):

sup
vh∈Zh\{0}

∑
e∈E

γ

h

∫
e
µh [vh] ds

‖vh‖Ẑh
‖µh‖Q̂h

≥ β > 0 ∀ µh ∈ Qh. (4.4)

In the following, for each triangle T ∈ T
γ

h , we shall denote by e+
T (resp. e−T ) the edge

where γ enters T (resp. leaves T ), and by ẽT the remaining edge of T (see Figure
(4.1)). Recall that we fixed an orientation for γ.
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Fig. 4.1. Definition of e
+

T
, e

−
T
, and ẽT .

Let µh ∈ Qh, and let v ∈ Ẑh be the function given by Problem (3.5).
We define a function vh ∈ Zh by






vh|T = 0 ∀ T ∈ Th \ T
γ

h ,
∫

e

vh ds =

∫

e

v ds ∀ e ∈ ET , ∀ T ∈ T
γ

h .
(4.5)

The gradient of vh can be expressed in T ∈ T
γ

h by

∇vh|T =
2

|e−T |

(∫

e−

T

v ds

)
∇ϕe−

T
+

2

|e+
T |

(∫

e+

T

v ds

)
∇ϕe+

T
,

where ϕe+

T
(resp. ϕe−

T
) is the basis function of Zh associated to the added node on e+

T

(resp. e−T ). Then by using (4.1) and the Cauchy-Schwarz inequality, we get for each
T ∈ T

γ
h ,

‖∇vh‖0,T = C1 h−1

∣∣∣∣
∫

e−

T

v ds

∣∣∣∣ ‖∇ϕe−

T
‖0,T + C2 h−1

∣∣∣∣
∫

e+

T

v ds

∣∣∣∣ ‖∇ϕe+

T
‖0,T

≤ C3 h− 1
2

(
‖v‖0,e−

T
‖∇ϕe−

T
‖0,T + ‖v‖0,e+

T
‖∇ϕe+

T
‖0,T

)
. (4.6)

The trace inequality (see [2], eq. (2.5)) and the Poincaré inequality owing to v = 0
on ẽT , yield for T ∈ T

γ
h ,

‖v‖0,e±

T
≤ C4

(
h− 1

2 ‖v‖0,T + h
1
2 ‖∇v‖0,T

)
≤ C5 h

1
2 ‖∇v‖0,T . (4.7)
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On the other hand, Assumption (4.2) implies the uniform boundedness of ‖∇ϕe±

T
‖0,T .

From (4.6) and (4.7) we obtain then

‖∇vh‖0,T ≤ C6 ‖∇v‖0,T .

Using the inf-sup condition (3.4) and (4.5), we finally obtain

‖µh‖Q̂h
‖vh‖Ẑh

≤ C6 ‖µh‖Q̂h
‖v‖Ẑh

≤ C7

∑

e∈E
γ

h

∫

e

µh [v] ds

= C7

∑

e∈E
γ

h

∫

e

µh [vh] ds.

Finally, obtaining the estimate (4.3) is a classical task that we skip here.
We now prove the main convergence result.
Theorem 4.2. Assume hypotheses (2.7) and (4.1) are satisfied, then there exists

a constant C, independent of h, such that

‖u − uH
h ‖Ẑh

≤
{

Ch1−θ |u|2,Ω+∪Ω− if u ∈ H2(Ω+ ∪ Ω−),

Ch ‖u‖2,∞,Ω+∪Ω− if u ∈ W 2,∞(Ω+ ∪ Ω−).

Proof. From classical theory of saddle point problems (see [10], p. 114), we obtain
from Theorem 4.1,

‖ûH
h − uH

h ‖Ẑh
+ ‖λ̂h − λh‖Q̂h

≤ C
(

inf
v∈Zh

‖ûH
h − v‖Ẑh

+ inf
µ∈Qh

‖λ̂h − µ‖Q̂h

)
. (4.8)

Furthermore, using (Braess [4], Theorem 4.8), Property (3.9) implies that Estimate
(4.8) can be improved, for the error on ûH

h by

‖ûH
h − uH

h ‖Ẑh
≤ C inf

v∈Zh

‖ûH
h − v‖Ẑh

. (4.9)

To bound the right-hand side, we choose v = Ihu, where Ih is the previously defined
Lagrange interpolant in Zh. Since ûH

h = ûh (see Theorem 3.1), then by using (2.9)
and (2.16),

‖ûH
h − Ihu‖Ẑh

= ‖ûh − Ihu‖Ẑh

≤ ‖u − Ihu‖Ẑh
+ ‖u − ûh‖Ẑh

≤ C1 h1−θ |u|2,Ω+∪Ω− + C2 h |u|2,Ω+∪Ω− .

If u ∈ W 2,∞(Ω+ ∪ Ω−), then Estimate (2.10) yields

‖ûH
h − Ihu‖Ẑh

≤ C h ‖u‖2,∞,Ω+∪Ω− . (4.10)

Remark 4.1. As it was previously mentioned, we know that if Problem (3.1)–
(3.2) has a unique solution (uH

h , λh) then uH
h = uF

h where uF
h is the solution of Problem

(2.5) and therefore the error estimate (2.13) holds. Consequently, Theorem 4.2 can be
simply proven by obtaining a nonuniform inf-sup condition (i.e. (4.4) with β = β(h)).
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This can be achieved without assuming (4.2). In this case, no error estimate is to be
expected for the Lagrange multiplier.

Finally, since the Lagrange multiplier λ̂h can be interpreted in terms of ûh (see
Theorem 3.1), it is interesting to see how good is its approximation λh. Let, for this,
Eh denote the set

Eh :=
∏

e∈E
γ

h

e.

Theorem 4.3. Under the same hypotheses as in Theorem 4.2, we have the
following error bounds

‖λ̂h − λh‖Q̂h
≤





C(h1−θ + h

1
2 )
(
|u|2,Ω+∪Ω− + ‖λ‖0,Eh

)
if λ̂h ∈ L2(Eh),

Ch1−θ
(
|u|2,Ω+∪Ω− + ‖λ‖ 1

2
,Eh

)
if λ̂h ∈ H

1
2 (Eh).

Proof. We use the abstract error bound (4.8). Let, for e ∈ E
γ
h ,

λe :=
1

|e|

∫

e

λ̂h ds.

Using Lemma 7 in Girault–Glowinski [11], we obtain the bound

‖λ̂h − λe‖
H

− 1
2

00
(e)

≤ Ch
1
2 ‖λ̂h‖0,e if λ̂h ∈ L2(e),

and

‖λ̂h − λe‖
H

− 1
2

00
(e)

≤ Ch ‖λ̂h‖ 1
2
,e if λ̂h ∈ H

1
2 (e),

Combining these bounds with (4.8), (4.9) and (4.10) achieves the proof.

5. A numerical test. To test the efficiency and accuracy of our method, we
present in this section a numerical test. We consider an exact radial solution and test
convergence rates in various norms.

Let Ω denote the square Ω = (−1, 1)2 and let the function a be given by

a(x) =

{
α if |x| < R1,

β if |x| ≥ R1,

where α, β > 0. We test the exact solution

u(x) =





1

4α
(R2

1 − |x|2) +
1

4β
(R2

2 − R2
1) if |x| < R1,

1

4β
(R2

2 − |x|2) if |x| ≥ R1.

We choose R1 = 0.5 and R2 =
√

2. The function f and Dirichlet boundary conditions
are determined according to this choice. Note that unlike the presented model prob-
lem, we deal here with non homogeneous boundary conditions but this cannot affect
the obtained results.
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The finite element mesh is made of 2N2 equal triangles. According to the defini-
tion of a, the interface γ is given by the circle of center 0 and radius R1. The error is
measured in the following discrete norms:

‖e‖0,h :=

(
1

M

M∑

i=1

(u(xi) − uh(xi))
2

) 1
2

,

‖e‖0,∞ := max
1≤i≤M

|u(xi) − uh(xi)|,

‖e‖1,h :=

( ∑

T∈Th

∫

T

|Ih(∇u)(x) −∇uh|2
) 1

2

,

where xi are the mesh nodes, M is the total number of nodes, and Ih is the piecewise
linear interpolant. We denote in the sequel by p the ratio α/β. Table 1 presents
convergence rates for the standard P1 finite element method using the unfitted mesh
(2.1) with the choice p = 1/10.

h−1 ‖e‖0,h Rate ‖e‖0,∞ Rate ‖e‖1,h Rate
10 1.40 × 10−2 2.02 × 10−2 6.28 × 10−2

20 6.78 × 10−3 1.05 1.09 × 10−2 0.89 5.23 × 10−2 0.26
40 3.61 × 10−3 0.91 5.81 × 10−3 0.91 3.68 × 10−2 0.51
80 1.83 × 10−3 0.98 3.06 × 10−3 0.92 2.56 × 10−2 0.52

160 9.44 × 10−4 0.95 1.55 × 10−3 0.98 1.82 × 10−2 0.49

Table 1. Convergence rates for a standard (unfitted) finite element method.

As expected, numerical experiments show poor convergence behavior. Let us con-
sider now the results obtained by the present method, i.e. (3.1)–(3.2) or equivalently
(2.5). We obtain for p = 1/10 and p = 1/100 the convergence rates illustrated in
Tables 1 and 2 respectively.

h−1 ‖e‖0,h Rate ‖e‖0,∞ Rate ‖e‖1,h Rate
10 3.45 × 10−3 4.25 × 10−3 1.75 × 10−2

20 8.18 × 10−4 2.1 1.72 × 10−3 1.3 6.87 × 10−3 1.3
40 1.70 × 10−4 2.3 5.22 × 10−4 1.7 2.81 × 10−3 1.3
80 3.94 × 10−5 2.1 1.64 × 10−4 1.7 1.02 × 10−3 1.5

160 8.57 × 10−6 2.2 4.89 × 10−5 1.7 3.59 × 10−4 1.5

Table 2. Convergence rates for the hybrid finite element method with p = 1/10.

h−1 ‖e‖0,h Rate ‖e‖0,∞ Rate ‖e‖1,h Rate
10 3.26 × 10−3 4.07 × 10−3 1.69 × 10−2

20 7.91 × 10−4 2.0 1.74 × 10−3 1.2 6.65 × 10−3 1.3
40 1.72 × 10−4 2.2 5.47 × 10−4 1.7 2.72 × 10−3 1.3
80 4.01 × 10−5 2.1 1.74 × 10−4 1.6 9.88 × 10−4 1.5

160 8.82 × 10−6 2.2 5.22 × 10−5 1.7 3.50 × 10−4 1.5

Table 3. Convergence rates for the hybrid finite element method with p = 1/100.

Tables 2 and 3 show convergence rates that are even better than the theoretical
results. This is probably due to the choice of a discrete norm but may also be due to a
superconvergence phenomenon. Rates for the L2–norm give also good behavior. For
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the L∞–convergence rate, we can note that we dot retrieve the second order obtained
for a continuous coefficient problem. However, these rates are better (1.5 rather than
1) than the ones obtained for a standard finite element method and, moreover, the
error values are significantly lower in our case. It is in addition remarkable that the
error values depend very weekly on p but the convergence rates are independent of
this value.

6. Concluding remarks. We have presented an optimal rate finite element
method to solve interface problems with unfitted meshes. The main advantage of
the method is that the added unknowns that deal with the interface singularity do
not modify the matrix structure. This feature enables using the method in more
complex situations like in problems with moving interfaces. The price to pay for this
is the use of a Lagrange multiplier that adds an unknown on each edge that cuts
the interface. This drawback can be easily removed by using an iterative method
such as the classical Uzawa method or more elaborate methods like the Conjugate
Gradient. The good properties of the obtained saddle point problem enable choosing
among a wide variety of dedicated methods. This topic will be addressed in a future
work. Let us also mention that the present finite element method does not specifically
address problems with large jumps in the coefficients. These ones are in addition ill
conditioned and this drawback is not removed by this technique.
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