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ANALYSIS OF CONTACT OF ELASTIC RODS SUBJECT TO

LARGE DISPLACEMENTS

PIERRE BÉAL AND RACHID TOUZANI

Abstract. We present a mathematical model for describing motion of two
elastic rods in contact. The model allows for large displacements and is es-
sentially based on Cosserat’s modeling of rods. Existence of a static solution
is proved in the case of a unique rod using a penalty technique. The con-
tact modeling involves unilateral constraints on the central lines of the rods.
Existence is also proved for this contact problem.

1. Introduction

Studying contact between elastic rods is of great interest in particular for ana-
lyzing internal friction forces in wire ropes. We consider here the case of two rods in
frictionless contact. The modeling of each rod is based on the Cosserat’s model [4].
A penalized formulation of the energy in which orthonormality constraints of the
director vectors is imposed by a penalty technique, is used. Mathematical results
related to this formulation are given. Let us mention here that only the static case
is considered in the present study.

The main issue here is to define contact constraints that take advantage of the
one-dimensional feature of rod models. To obtain the desired model, we define the
total energy as the sum of energies of the two bodies, the final problem consisting in
the minimization of this energy under the non-penetration constraint. We express
this condition on the central lines of the two thin bodies. We write the constrained
optimization problem, use again a penalty formulation to impose contact constraints
and then derive optimality conditions. The obtained model is then analyzed and
existence of a solution is proved.

In the sequel we shall make use of the following notations : For a vector field v

in R
3, the scalar function vi will denote its i–th contravariant component while a

subscript i will denote its covariant one. Moreover, the same subscript in vi (vector
vi) will be used to denote different vectors. In addition, the summation convention
of repeated indices will be adopted; the superscripts i, j will vary from 1 to 3 and
α, β from 1 to 2. The spaces Lp(0, ℓ; R3) and H1(0, ℓ; R3) will denote traditional
Sobolev spaces Lp and H1 for vector valued functions.

2. A model for elastic rods

In order to model elastic rods bodies the theory developed in [4], [1] is used. For
the sake of conciseness, details that can be found in [1] will be omitted.

In the reference configuration the generating (or central) line is assumed to be
straight and is then aligned with the Ox3–axis. The reference configuration is
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defined as :

Ω = {(x1, x2, s); (x1, x2) ∈ Λ(s), 0 ≤ s ≤ ℓ},

where Λ(s) is a given domain in the plane describing the cross section at location
s.

The deformed configuration is defined by means of the three vectors r(s), d1(s),
d2(s) where r is a parameterization of the deformed generating line. The vectors
d1(s), d2(s) are orthonormal; they are orthogonal to r(s) and they span Λ(s). We
also define d3 := d1×d2. A material point located at x = (x1, x2, s) will be located
in the deformed configuration at the position

p(x) = r(s) + x1d1(s) + x2d2(s).

Since the triple (d1, d2, d3) is orthogonal, there exists (Cf. [1]) a vector field u such
that

(2.1) d
′
i = u × di,

where u is given by ui := u · di for 1 ≤ i ≤ 3. We also define vi := r′ · di for
1 ≤ i ≤ 3. Note here that the components ui and vi have the following mechanical
interpretation (Cf. [1]) : u1 (resp. u2) measures the bending in the plane (d2, d3)
(resp. (d3, d1)), while u3 measures the torsion of the rod. The components v1 and
v2 measure the shear in the d1 and d2 directions respectively and v3 represents the
dilatation of the rod.

2.1. The equations. Balance equations for a rod can be written in the following
way :

− n′(s) = f3(s) 0 ≤ s ≤ ℓ,

− m′(s) + r′(s) × n(s) + dα(s) × fα(s) = 0 0 ≤ s ≤ ℓ,

where n and m denote respectively internal forces and torque of internal moments.
Concerning constitutive laws, we shall consider hyperelastic material, i.e. mate-

rial such that the following relationships hold :

m(u(s), v(s), s) =
∂W

∂ui

(u, v, s)di(s) 0 ≤ s ≤ ℓ,

n(u(s), v(s), s) =
∂W

∂vi

(u, v, s)di(s) 0 ≤ s ≤ ℓ

where W is a given energy potential. As in [3], we choose a quadratic energy
potential given by

W (u, v, s) =
EI(s)

2
(u2

1 + u2
2) + GI(s)u2

3,

where E is the Young’s modulus, A is the section area, G is the shear modulus and
I is the principal momentum of inertia for an assumed circular cross section of the
rod.

Note that we have neglected shear and volume change effects (v1 = v2 = 0,
r′ = d3).

The equilibrium state for a single rod under the action of force (f1, f2, f3) is
therefore a minimum of the energy functional :

J(r, (di)) :=

∫ ℓ

0

W (u, v, ·) ds −

∫ ℓ

0

(f3 · r + fα · dα) ds



CONTACT OF ELASTIC RODS SUBJECT TO LARGE DISPLACEMENTS 3

In what follows, for the sake of simplicity we shall restrict ourselves to the cases
where ∫ ℓ

0

fα · dα ds = 0.

Owing to the fact that W depends no more on v, the notation W (u, ·) will replace
W (u, v, ·). Now, using identity (2.1), we obtain

∑

j 6=i

u2
j(dk) = |d′

i|
2 for 1 ≤ i ≤ 3.

We finally obtain

J(r, (di)) :=
1

2

∫ ℓ

0

(
GI

(
|d′

1|
2 + |d′

2|
2
)

+ (E − G)I|r′′|2
)

ds −

∫ ℓ

0

f3 · r ds.

The equilibrium problem is finally described by the following minimization for-
mulation :

(2.2)

{
Find (r, (di)) ∈ V such that

J(r, (di)) ≤ J(p, (gi)) for (p, (gi)) ∈ V

the set V being given by :

V := {(p, (gi)) ∈ H1(0, ℓ; R12); p′ = g3, p(0) = 0,

gi(0) = d0
i , gi(ℓ) = dℓ

i , gi · gj = δij , (g1 × g2) · g3 > 0},

where dℓ
i ∈ R

3, 1 ≤ i ≤ 3 are given. Notice that we have prescribed Dirichlet
boundary conditions in the set V corresponding to the example case of a clamped
rod.

2.2. A Penalized energy formulation. In order to impose the constraints con-
tained in V we develop here and analyze an exterior penalty method. For a large
positive number θ ≫ 1 we define the functional :

H(d1, d2, d3) :=

∫ ℓ

0

(
(d1 · d2)

2 + (|d1| − 1)2 + (|d2| − 1)2 + |d3 − d1 × d2|
2
)

ds

and the penalized energy :

Jθ(r, d1, d2, d3) := J(r, d1, d2, d3) +
θ

2
H(d1, d2, d3).

The minimization problem (2.2) is then approximated by the following one :

(2.3)

{
Find (rθ, (dθ

i )) ∈ V0 such that

Jθ(rθ, (dθ
i )) ≤ Jθ(p, (gi)) for (p, (gi)) ∈ V0

where

V0 := {(p, (gi)) ∈ H1(0, ℓ; R12); p′ = g3, p(0) = 0, gi(0) = d0
i , gi(ℓ) = dℓ

i}.

Theorem 2.1. Let us assume that f3 ∈ L2(0, ℓ; R3), then for each θ > 0, Problem

(2.3) has at least one solution.
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Proof. To simplify the notations we introduce, for g ∈ L2(0, ℓ; R3), the function

K(g)(s) :=

∫ s

0

g(t) dt

and the functionals :

J̃(g1, g2, g3) := J(K(g3), g1, g2, g3)

J̃θ(g1, g2, g3) := Jθ(K(g3), g1, g2, g3).

Let us first prove that J̃θ is weakly lower semi–continuous (l.s.c.). We denote by
(dn

1 , dn
2 , dn

3 ) a sequence of H1(0, ℓ; R9) that converges weakly in this space.
The sequences (dn

i )′, i = 1, 2, 3 are then weakly convergent in L2(0, ℓ; R3) and
consequently the (dn

i ) are strongly convergent in C0(0, ℓ; R3). From this we deduce
the weak convergence of the products (dn

k )′·dn
ℓ in L2(0, ℓ) for k, ℓ = 1, 2, 3. Therefore

the mappings

(d1, d2, d3) ∈ H1(0, ℓ; R9) 7→ uj =
1

2
εjkld

′
k · dl ∈ L2(0, ℓ) j, k, l = 1, 2, 3

are weakly continuous.
Since the energy potential W is convex (as a function of u) and quadratic, then

by integration, the mapping

u ∈ L2(0, ℓ; R3) 7→

∫ ℓ

0

W (u, s) ds ∈ R

is convex and continuous and consequently l.s.c. for the weak topology. Using the
weak continuity of the mappings

(d1, d2, d3) ∈ H1(0, ℓ; R9) 7→ u ∈ H1(0, ℓ; R3)

we obtain the weak l.s.c. of the mapping

(d1, d2, d3) ∈ H1(0, ℓ; R9) 7→

∫ ℓ

0

W (u, s) ds ∈ L1(0, ℓ).

Finally, the mapping

p ∈ H1(0, ℓ; R3) 7→

∫ ℓ

0

f3(s) · K(p)(s) ds ∈ R

is convex and l.s.c.
In [5], it is proved that the functional J̃ is sequentially weakly l.s.c. Let us prove

that the penalty term has the same property.
The compact imbedding of H1(0, ℓ; R3) into C0([0, ℓ]; R3) implies that the se-

quences (dn
1 ·d

n
2 ), (|dn

1 |
2− 1), (|dn

2 |
2 − 1) and (dn

3 −dn
1 ×dn

2 ) are weakly convergent
in L2(0, ℓ) for the first three ones and in L2(0, ℓ; R3) for the last one. Moreover, the
weak l.s.c. of the mappings :

(d1, d2) ∈ H1(0, ℓ; R6) 7→

∫ ℓ

0

(d1 · d2)
2 ds ∈ R,

dα ∈ H1(0, ℓ; R3) 7→

∫ ℓ

0

(|dα|
2 − 1)2 ds ∈ R for α = 1, 2,

(d1, d2, d3) ∈ H1(0, ℓ; R9) 7→

∫ ℓ

0

|d3 − d1 × d2|
2 ds ∈ R.

Therefore the functional J̃θ (or equivalently Jθ) is weakly l.s.c. in H1(0, ℓ; R9).
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The coercivity of J̃θ results from the fact that this one is the sum of a coercive

functional J̃ (See [3]) and a positive term.

In addition, we have J̃θ(e1, e2, e3) < +∞. Therefore, the domain of J̃θ is
nonempty and its definition implies that it is proper.

The weak closure of the set V0 is proved in [3].
Invoking the Weierstrass theorem we conclude that Problem (2.3) has at least

one solution. �

We can now prove the convergence of the penalized problem.

Theorem 2.2. There is a subsequence of (rθ, (dθ
i )) that converges to a solution

(r, (di)) of Problem (2.2) when θ → ∞.

Proof. Since V ⊂ V0 we have the inequalities

J̃(dθ
1, d

θ
2, d

θ
3) ≤ J̃θ(dθ

1, d
θ
2, d

θ
3) ≤ J̃(g1, g2, g3) for (g1, g2, g3) ∈ V .

The functional J̃θ is therefore uniformly bounded. The coercivity of J̃θ implies
then that (dθ

1, d
θ
2, d

θ
1) is bounded. Therefore, we can extract from this sequence a

subsequence still denoted (dθ
1, d

θ
2, d

θ
1) that converges weakly to a triple (d∗

1, d
∗
2, d

∗
3)

in H1(0, ℓ; R9). In addition, for all θ > 0 we have

J̃(dθ
1, d

θ
2, d

θ
3) +

θ

2
H(dθ

1, d
θ
2, d

θ
3) ≤ J̃(g1, g2, g3) for (g1, g2, g3) ∈ V .

Thus

H(dθ
1, d

θ
2, d

θ
3) ≤

2

θ

(
J̃(g1, g2, g3) − J̃(dθ

1, d
θ
2, d

θ
3)

)
for (g1, g2, g3) ∈ V .

The functional J̃ is weakly l.s.c. and coercive in V0 (cf. [5]) which is weakly

bounded. Therefore, by the generalized Weierstrass theorem (cf. [1]) J̃ possesses
at least one minimum in V0. Then, there exists a real number M such that

H(dθ
1, d

θ
2, d

θ
3) ≤

2

θ

(
J̃(g1, g2, g3) − M

)
for θ > 0, (g1, g2, g3) ∈ V .

Letting θ → +∞ we have H(dθ
1, d

θ
2, d

θ
3) → 0. Moreover, H is l.s.c. (from the proof

of the preceding lemma) so that

H(d∗
1, d

∗
2, d

∗
3) ≤ lim

θ→∞
H(dθ

1, d
θ
2, d

θ
3).

We then deduce that H(d∗
1, d

∗
2, d

∗
3) ≤ 0. Since H is nonnegative we conclude that

H(d∗
1, d

∗
2, d

∗
3) = 0. Therefore (d∗

1, d
∗
2, d

∗
3) ∈ V .

Finally, since for each (g1, g2, g2) ∈ V we have J̃(dθ
1, d

θ
2, d

θ
3) ≤ J̃(g1, g2, g3), the

weak l.s.c. of J̃ yields

J̃(d∗
1, d

∗
2, d

∗
3) ≤ lim

θ→∞
J̃(dθ

1, d
θ
2, d

θ
3) ≤ J̃(g1, g2, g3) for (g1, g2, g3) ∈ V .

Therefore (d∗
1, d

∗
2, d

∗
3) ∈ V is a solution of Problem (2.2). �
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3. Frictionless contact of two rods

We consider in this section two elastic rods that may be in contact. The refer-
ence bodies of these rods are respectively denoted by Ω1 and Ω2 with respective
boundaries Γ1 and Γ2. We formulate the problem as a constrained optimization
one, and give a procedure to determine contact points.

To simplify the presentation, we consider two elastic rods of equal length ℓ and
equal thickness ε. The motion of each rod is defined by the triples

rα(sα), d1α(sα), d2α(sα) α = 1, 2.

The position of a displaced point xα = (x1
α, x2

α, sα) of the rod α is given by

pα(xα) = rα(sα) + x1
αd1α(sα) + x2

αd2α(sα).

We are interested in the frictionless contact process. For this, we shall introduce a
contact distance taking advantage of the one-dimensional character of the problem.
In a classical approach of the contact, we consider any point p1 of the boundary of
the rod α = 1, called master rod :

p1(x1) = r1(s1) + x1
1d11(s1) + x2

1d21(s1),

with (x1
1(s1))

2 +(x2
1(s1))

2 = ε2. To this point we associate at least one point in the
boundary of the rod α = 2, called slave rod p2(x

p
2) with

x
p
2 = arg min

x∈Γ2

|p2(x) − p1(x1)|.

In classical modeling of contact the norm of the vector p2(x
p
2) − p1(x1) is called

contact distance and its use enables prescribing a non-penetration constraint. Here,
in the case of two thin rods, we wish to formulate an approximation of this constraint
invoking the central lines of the rods rather than their actual boundaries. Clearly,
for a small thickness ε the vector p2(x

p
2) − p1(x1) is close to the vector r2(s

p
2) −

r1(s1). It is then natural to adopt the following approach : For each point r1(s1)
on the central line of rod 1 we seek a point r2(s

p
2) on the central line of rod 2 such

that

s
p
2 := argmin

s2∈[0,ℓ]

|r2(s
p
2) − r1(s1)|.

We then define the signed distance :

d(r1, r2, s1) = 2ε − |r2(s
p
2) − r1(s1)|

= 2ε − min
s2∈[0,ℓ]

|r2(s2) − r1(s1)|.

The non-penetration condition reads then :

d(r1, r2, s1) ≤ 0 s1 ∈ [0, ℓ].

Consider now the sets :

Uα :={(r, (di)) ∈ H1(0, ℓ; R12); r′ = d3, r(0) = aδ2α, di · dj = δij ,

d1 × d2 · d3 = 1, di(0) = d
0
i , di(ℓ) = d

ℓ
i}, α = 1, 2,

Uc :={(r1, (di1); r2, (di2)) ∈ U1 × U2; d(r1, r2, s1) ≤ 0 for s1 ∈ [0, ℓ]}.

The total energy functional of the problem is defined by

JT (r1, r2, (di1), (di2)) =
2∑

β=1

Jβ(rβ, (diβ)),
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where

Jα(r, (di)) =
1

2

∫ ℓ

0

(
GI

(
|d′

1|
2 + |d′

2|
2
)

+ (E − G)I|r′′|2
)

ds −

∫ ℓ

0

f3α · r ds.

Note that we have assumed, in order to simplify the notations, that the two rods
have the same mechanical properties. The frictionless contact problem can therefore
be stated as it follows :

(3.1)






Find (r1, (di1); r2, (di2)) ∈ Uc such that

JT (r1, (di1); r2, (di2)) ≤ J(p1, (gi1); p2, (gi2))

for (p1, (gi1); p2, (gi2)) ∈ Uc

Theorem 3.1. Assume that the force fields (f3α) belong to the space L2(0, ℓ; R3)
then Problem (3.1) has at least one solution.

Proof. By proceeding as in Theorem 2.1 we easily show that the functionals Jα,
α = 1, 2 are proper, weakly sequentially l.s.c. and coercive. Their sum has then
the same properties. In order to use the Weierstrass theorem it remains to prove
that the set Uc is weakly sequentially closed in the space H1(0, ℓ; R12)2.

Consider a sequence (rn
1 , (dn

i1); r
n
2 , (dn

i2)) ∈ Uc that converges weakly to (r1, (di1);
r2, (di2)) in H1(0, ℓ; R12)2. We have that (rn

α, (dn
iα)) ∈ Uα for α = 1, 2. The

proof of Theorem 2.1 has shown that Uα is weakly closed in H1(0, ℓ; R12), thus
(rα, (diα)) ∈ Uα.

Therefore, it remains to prove that (r1, (di1); r2, (di2)) satisfies the non-penetration
constraint. Since [0, ℓ] is compact, the minimum

min
s2∈[0,ℓ]

|rn
2 (s2) − rn

1 (s1)|

exists. Now, since the imbedding of H1(0, ℓ; R6) into C0(0, ℓ]; R6) is compact we
deduce that

|rn
α(sα) − rα(sα)| → 0 for s1 ∈ [0, ℓ] α = 1, 2.

Let us assume that

(3.2) min
s2∈[0,ℓ]

|r2(s2) − r1(s1)| = λ < 2ε.

We then get the existence of two integers n1 and n2 such that :

for n ≥ n1, s1 ∈ [0, ℓ] |rn
1 (s1) − r1(s1)| ≤

2ε − λ

4
,

for n ≥ n2, s2 ∈ [0, ℓ] |rn
2 (s2) − r2(s2)| ≤

2ε − λ

4
.

Therefore, for n ≥ max(n1, n2) we deduce that for all s1, s2 ∈ [0, ℓ] :

|r2(s2) − r1(s1)| > |rn
2 (s2) − rn

1 (s1)| − |rn
2 (s2) − r2(s2)| − |r1(s1) − rn

1 (s1)|

> λ.

This is in contradiction with the assumption (3.2). Therefore

|r2(s2) − r1(s1)| ≥ 2ε for s1, s2 ∈ [0, ℓ].

We conclude that the set Uc is weakly closed so that the Weierstrass theorem
applies. �
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